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Abstract: The use of plastic as material in various applications has been essential in the evolution of
the technology industry and human society since 1950. Therefore, their production and waste genera-
tion are high due to population growth. Pyrolysis is an effective recycling method for treating plastic
waste because it can recover valuable products for the chemical and petrochemical industry. This
work addresses the thermal pyrolysis of expanded polystyrene (EPS) post-industrial waste in a semi-
batch reactor. The influence of reaction temperature (350–500 ◦C) and heating rate (4–40 ◦C min−1)
on the liquid conversion yields and physicochemical properties was studied based on a multilevel
factorial statistical analysis. In addition, the analysis of the obtaining of mono-aromatics such as
styrene, toluene, benzene, ethylbenzene, and α-methyl styrene was performed. Hydrocarbon liquid
yields of 76.5–93% were achieved at reaction temperatures between 350 and 450 ◦C, respectively.
Styrene yields reached up to 72% at 450 ◦C and a heating rate of 25 ◦C min−1. Finally, the poten-
tial application of the products obtained is discussed by proposing the minimization of EPS waste
via pyrolysis.

Keywords: thermal pyrolysis; temperature; heating rate; expanded polystyrene waste

1. Introduction

Plastics have played a crucial role and have been essential in the evolution of human
society for 50 years because they are versatile, light, flexible, and moldable, and their
production cost is low. Plastics have promoted the development of numerous applications
in the automotive industry, electronics, construction, medicine, and others [1,2].

By 2020, the global production of plastics was estimated at 367 million metric tons [3,4],
of which North America (United States, Mexico, and Canada) produces 19%, whereas
Mexico individually contributes 2% of the global total [4,5], corresponding to 7.3 million
tons approximately, which is annually increasing.

If the production and management of waste are not controlled, approximately
12,000 metric tons of plastic waste will contaminate the environment by the year 2050 [2].

Polystyrene (PS) is heat resistant, lighter in weight, and has good strength and dura-
bility, making this polymer suitable for various applications [6]. PS applications include
food packaging, beverages, household appliances, the automotive field, and insulating
systems for the construction industry [7–10]. Therefore, the production of PS occupies the
fourth place after polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) [11].
The global production of expanded polystyrene (EPS) was 1.7 million tons in 2016, and
the world demand for this material is constantly increasing [12]. Recycling and reusing
plastic waste are essential for several reasons, the most important being conserving natural
resources and reducing environmental pollution. In terms of recycling, Mexico annually
consumes 125,000 tons of EPS but only recovers 1% for new-product reuse [13]. In such a
scenario, there is great potential for developing an EPS recycling industry.

Plastic recycling technologies began to develop in the 1970s, and since then there
have been many advances; plastic recycling can be grouped into four categories: primary,

Polymers 2022, 14, 4957. https://doi.org/10.3390/polym14224957 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14224957
https://doi.org/10.3390/polym14224957
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-0722-1864
https://orcid.org/0000-0003-0516-3936
https://orcid.org/0000-0001-7810-2566
https://doi.org/10.3390/polym14224957
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14224957?type=check_update&version=1


Polymers 2022, 14, 4957 2 of 17

secondary, tertiary, and quaternary [14–16]. However, recycling plastics is difficult due to
the treatments and processes required to obtain recycled products of acceptable quality. The
efficiency of mechanical recycling depends on the residual plastic’s quality and the sorting
process’s efficiency (primary and secondary). Materials that cannot be recycled by the
mechanical method must be incinerated (quaternary) or landfilled. The high degradation
stability and low density of PS cause significant problems when disposed of in landfills;
therefore, the processing and recycling of PS waste is a significant problem [17].

Various technologies involving chemical recycling (tertiary) have been researched and
developed including depolymerization, pyrolysis, gasification, and hydrocracking [18].
Pyrolysis is a chemical recycling technique that thermally degrades long polymer chains
into small molecules in an inert environment or with limited oxygen at high temperatures
(300–900 ◦C) [6]. The pyrolysis process generates three main products: a liquid fraction
that can be used as a fuel or that can be processed into value-added chemicals; a gas
fraction, which can be used to supplement the energy requirements of the process itself;
and finally, a solid carbon by-product that can be used as an energy source due to its relative
energy content [6,19–22]. Pyrolysis is considered an attractive method for recycling plastic
waste since it transforms plastics directly into usable energy and valuable products for the
chemical industry. On the other hand, the pyrolysis process is friendly to the environment
because it does not produce residues [23,24]. However, not all studies have determined the
composition or applications of the three resulting products.

The liquid hydrocarbon obtained by pyrolysis is not a standardized product; therefore,
there are no official test methods. The liquid hydrocarbon composition varies significantly
with the composition of the raw material, making it difficult to develop standards or
standardized methods. Even with these challenges, efforts have been made to formalize
methods for testing products to achieve a standard outcome.

Styrene is the primary aromatic compound found in the pyrolysis of EPS [17]. Benzene
is another compound used to produce cyclohexane and phenol [25]. Toluene is generally
used as a gasoline mixture to promote high octane, as a solvent paint, and as a precursor to
synthesize other chemical compounds [12]. Additionally, ethylbenzene is widely used to
generate styrene and as a solvent [26]. Xylenes and α-methyl styrene are other valuable
raw materials for manufacturing plasticizers and resins [27]. In this context, the pyrolysis
of EPS is an effective method for obtaining valuable chemical products in the chemical
and petrochemical industry [28,29]. Therefore, recovering those chemical compounds from
plastic waste is essential to the recycling industry.

As mentioned, the main objective of this study is to evaluate the influence of the reac-
tion temperature and the heating rate on the thermal pyrolysis process of EPS waste in the
conversion yields of liquid hydrocarbon, gases, and solid fractions. In addition, the effect
of these input variables is compared with the aromatic compounds of the liquid products.
Furthermore, the possible application of all the by-products obtained is discussed to pro-
pose a process that generates minimal waste. Moreover, the depolymerization mechanism
is discussed, and the structure–property–processing relationship is addressed. Therefore,
the thermal pyrolysis process of EPS waste is analyzed as a potential for developing a
recycling industry in Mexico.

PS Waste Thermal Pyrolysis Overview

PS is a synthetic aromatic polymer in solid or foam form made from styrene monomer.
Standard EPS comprises 98% of air and only 2% of PS [30]. Additionally, EPS waste has a
chemically inert behavior, which means that it does not decompose, degrade, or disappear
in the environment quickly [31].

Some of the physicochemical properties of PS are listed in Table 1. It is observed that
polystyrene is mainly composed of volatile matter with a maximum of 99.59 wt.%. It also
has a high carbon content (91 wt.%) and a low hydrogen and oxygen content. PS has a high
calorific value; however, its use as a fuel is questionable due to its major aromatic content.
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Table 1. Summary of physicochemical properties of PS raw material.

Parameter Value References

Density, kg/m3 1040–1050 [17,32]
Melting point, ◦C 180–260 [17,33]

HHV, MJ/kg 37.22–42.1 [34,35]

Ultimate analysis, wt.%
C 66.47–92.7 [25,32,34–37]
H 7.4–9.43 [25,32,34–37]
N 0–0.8 [25,34–37]
S 0–0.51 [25,34–37]
O 0–6.8 [25,34–37]

Proximate analysis, wt.%
Moisture 0–0.24 [25,34–37]
Volatile 88.9–99.59 [25,32,34–37]

Ash 0–4.6 [25,34–37]
Fixed carbon 0.1–2.25 [25,32,34–37]

Among the parameters that have the most influence on the pyrolysis process is tem-
perature, since it is the one that controls the cracking reaction of the polymer chain [38,39].
Some studies reported that pyrolysis at low temperatures enhances the formation of the
liquid phase and the production of long hydrocarbon chains [38], while others affirm that
by increasing the temperature, the yield of liquid hydrocarbon decreases, and the formation
of gases increases. High temperatures improve the secondary reactions inside the reactor,
which reduce the obtained solid by-product [40].

In terms of state of the art on thermal pyrolysis of PS, the work of Lu et al. [33] is
highlighted, where they experimented with virgin PS in a reactor under an inert atmosphere
with nitrogen. The process was carried out at a heating rate of 5 ◦C min−1 up to a reaction
temperature of 420 ◦C for 120 min. Their results reported a liquid hydrocarbon yield of
76.26%, and 73% styrene stands out in its composition.

On the other hand, Verma et al. [12] evaluated the influence of temperature (400–700 ◦C)
and heating rate (5–25 ◦C min−1) of thermal pyrolysis of polystyrene waste. The pyrolysis
process was carried out in a batch-type reactor and under an inert atmosphere with nitrogen
at a flow of 200 mL min−1. Regarding the heating rate, the results concluded that the liquid
yield increased as the heating rate increased; however, higher rates decreased its yield. The
optimum temperature found under these conditions was 650 ◦C and a heating rate of 15 ◦C
min−1, obtaining 94.37% of liquid hydrocarbon. The composition of the liquid hydrocarbon
corresponded to a concentration of 84.74% of styrene.

A recent study developed by Van der Westhuizen et al. [35] evaluated the thermal
pyrolysis process of three different types of PS to analyze the effect of contamination of the
raw material on fuel production. The research studied, as input factors, the temperature
and the heating rate in a semi-batch reactor. Additionally, the study industrially scaled
the process to a semi-continuous rotary reactor and analyzed the properties of the fuel.
The results indicated that contamination in the polystyrene raw material can decrease the
liquid yield by up to 6.4%; however, it did not significantly affect its energy content. Van
der Westhuizen et al. highlighted the importance of blending PS pyrolytic oil with some
other transportation fuel due to its high aromatic content.

2. Materials and Methods
2.1. Materials

The raw material used in this work was EPS waste, generated during packaging
manufacturing. This waste was supplied by a company in Irapuato, Guanajuato, Mexico.
Analytical grade reagents (toluene, benzene, ethylbenzene, xylenes, and styrene) were
purchased from Sigma-Aldrich.
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2.2. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis is commonly used to consider the degradation trend in
terms of different parameters of the pyrolysis process, such as temperature, heating rate,
and others [41]. TGA can be used mainly to study the degradation behavior of polymeric
materials, including homopolymers, copolymers, and others [42]. This study performed
the thermogravimetric analysis of EPS using a TA Instruments SDT Q600 thermobalance
(New Castle, DE, USA). The initial mass of the sample was 4.41 mg. The experiment was
carried out under an inert atmosphere with nitrogen gas (N2 5.0) at a 20 mL min−1 rate
and a heating rate of 20 ◦C min−1 up to 600 ◦C.

2.3. Pyrolytic Oil Characterization

One of the main physical properties of a material is density; in this study, the density
was evaluated by buoyancy using a glass hydrometer, and the measurement was performed
under the ASTM D 1298 standard, at 20 ◦C. For this study, a Cannon-Fenske viscometer
was used, and the measurement of kinematic viscosity was performed under the ASTM
D445 standard at 40 ◦C. On the other hand, the heating value was determined using
an IKA C3000®® isoperibolic bomb calorimeter (Staufen, Germany) under the ASTM
D4809 standard.

2.4. Gas Chromatography

The qualitative analysis and identification of the chemical compounds present were
carried out using a Varian®® 450 GC gas chromatograph (Waltham, MA, USA). The GC was
equipped with an Omegawax®® 250 fused silica capillary column, 30 m × 0.25 m × 0.25 µm,
using benzene, cumene, styrene, ethylbenzene, and toluene as standards. Helium was used
as the carrier gas at a 25 mL min−1 flow rate. The injection volume was 1 µL with a split
ratio of 1:50. The injection temperature was 250 ◦C. For temperature programming, the
oven was held at a temperature of 40 ◦C for one minute and then increased to 200 ◦C at a
10 ◦C min−1 rate; it was then increased to 240 ◦C at a rate of 5 ◦C min−1 and maintained for
15 min. For the quantitative analysis of the products, C19 was used as the internal standard.

2.5. Pyrolysis Experimental Setup

This study carried out the thermal pyrolysis of EPS waste in a semi-batch type reactor.
The reactor consisted of a stainless-steel tube 17 cm high and 4.5 inches in nominal diameter.
The reactor was heated by an external band-type electrical resistance with a ceramic core.
Temperatures were monitored using k-type thermocouples inside the reactor and controlled
by PID temperature control within ±4 ◦C.

The experimental scheme of the studied experimental process is shown in Figure 1.
The reactor was fed with EPS waste and was hermetically sealed to prevent leaks without
the addition of any solvent or any inert gas. The reactor was heated, and the experienced
temperatures considered in this study were those obtained through the thermocouple
(TC1). The gases produced by thermal pyrolysis were dislodged through a pipe that flowed
into a distiller manufactured according to the ASTM D86 standard; this consisted of a
pipe submerged in a container with water at room temperature. The gases that were
not condensed in the first stage passed through a second countercurrent flow condenser.
The condensed product was stored in the secondary collector, the gases that were not
condensed in this stage passed to a water trap unit, and, finally, the non-condensable gases
were released. The solid fraction was collected from the bottom of the reactor.
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Figure 1. EPS pyrolysis experimental scheme.

Pyrolysis residence time started when the temperature measured by the thermocou-
ple (TC2) reached 150 ◦C and ended 30 min after the thermocouple (TC1) reached the
desired temperature.

2.6. Operation Parameters

Statistical analysis was performed with the experimental data obtained in the present
study. The analysis was performed using Statgraphics Centurion software XVI with a
multilevel factorial design, which is used to study effects with n quantitative factors. The
input variables were the heating rate and the reaction temperature; in contrast, the output
responses focused on the percentage of conversion to liquid hydrocarbon and the formation
of styrene. Both input variables had four levels, and a replica was made for each experiment
representing 32 runs.

The yields of liquid, solid, and gas fractions were calculated using Equations (1)–(3),
respectively:

Liquid yield (wt.%) = (Liquid mass/EPS mass) × 100 (1)

Solid yield (wt.%) = (Solid mass/EPS mass) × 100 (2)

Gas yield (wt.%) = [(Liquid mass + Solid mass/EPS mass)] × 100 (3)

3. Results
3.1. Thermogravimetric Analysis

Figure 2 shows the calorimetric curve indicating the non-isothermal mass loss of
EPS measured by a thermogravimetric analyzer (TGA) at a heating rate of 20 ◦C min−1.
The results show that the sample tended to degrade at temperatures higher than 350 ◦C,
obtaining a 98% mass loss at 454 ◦C, approximately. The final degradation temperature
was close to what was reported by Kremer et al. [43], which was 448 ◦C for PS at the same
rate of 20 ◦C min−1. Fuentes et al. [44] reported temperatures close to 458 ◦C for virgin PS
and PS wastes.
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As noted, these slight differences between the degradation temperatures of the EPS
sample used for the TGA in this work and the ones reported by Kremer et al. [43] and
Fuentes et al. [44] were the product of several factors, such as the preparation method
of polymer, particle size, the molecular weight of the polymer, operating conditions of
the thermogravimetric apparatus, and the mathematical treatment of thermogravimetric
data [45–47].

Even when those factors influenced the degradation temperatures, activation energy,
and kinetic behavior, they did not affect the overall thermal decomposition. The TGA/DTG
plots (Figure 2) for the thermal decomposition of the EPS revealed a one-step degradation
in the temperature range of 350 ◦C to 450 ◦C, which is consistent with the data reported in
the literature [46–51].

EPS has shown a glass transition temperature of around 100 ◦C [52], and when
thermally decomposed melts at about 160 ◦C, and the volatility of molten polymer with
high molecular weight decreases at 275 ◦C [47]. This behavior could be seen in the first stage
of the exothermic reaction (blue line) when it surpassed 288.20 ◦C and reached 375.81 ◦C.

At this point, the single-phase degradation occurred (green line), and it was attributed
to the decomposition of the EPS solid matrix to volatile styrene monomers and derivatives
(fragments with low molecular weight), reaching 431.66 ◦C to 454 ◦C for the complete
degradation reported by Mehta et al. [48] and Ali et al. [47]. It is noteworthy to mention
that this weight loss indicated that thermal degradation of EPS in a non-inert atmosphere
will show a reductive behavior.

3.2. Influence of Temperature on the Performance of the EPS Pyrolysis Process

Table 2 shows the conversion yields of the products obtained at different pyrolysis tem-
peratures grouped by the heating rate experimented. It was observed that the production of
liquid hydrocarbon increased as the pyrolysis temperature increased. For any heating rate,
the maximum liquid hydrocarbon yield was obtained at 450 ◦C, which was consistent with
results from TGA. In this context, with temperatures above 450 ◦C, the liquid hydrocarbon
yield began to decrease by a maximum of 3 wt.%, related to the reduction in the fragments
of high molecular weight and the increment of volatile styrene monomers and derivatives
(low molecular weight), as well other gas products of the reductive atmosphere.
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Table 2. Influence of temperature on the performance of the EPS pyrolysis process.

Temperature ◦C

Yield, wt% 1

Heating Rate: 4 ◦C min−1 Heating Rate: 12 ◦C min−1

Liquid Gas Solid Liquid Gas Solid

350 76.5 11.6 11.9 84 10.64 5.36
400 88.5 4.75 6.8 91.5 3.69 4.81
450 93 3.01 4 92 4.24 3.76
500 92 3.3 4.7 91 5.12 3.88

Temperature ◦C
Heating rate: 25 ◦C min−1 Heating rate: 40 ◦C min−1

Liquid Gas Solid Liquid Gas Solid

350 82.5 9.71 7.8 82.5 6.34 11.2
400 90.5 4.35 5.2 85.5 8.29 6.2
450 91 3.98 5 89.5 5.84 4.7
500 89 5.66 5.3 86.5 6.74 6.8

1 Yield variation of ±1%.

Additionally, Maafa [6] reported that if the preferred product in the PS pyrolysis
process is liquid, it is recommended to use a temperature range of 350 to 500 ◦C. In contrast,
if ash or gases are desired as a product, temperatures above 500 ◦C are indicated. The
yield of gases and solid fractions is significant at a temperature of 350 ◦C, while there is
no significant difference for the other temperatures. This is explained by the fact that in
the range of 350 ◦C and 450 ◦C, the single-phase thermal degradation of EPS is a radical
chain process characterized by three consecutive steps: (1) initiation, (2) propagation, and
(3) termination [47,53,54].

During this time, the diffusion of heat or decomposition gases has to be considered as
a simultaneous process to the overall chemical reaction (including intermolecular conden-
sation reactions), which has an endothermal/exothermal behavior, inducing heterogeneous
temperature distribution in the reactor with no effect on the general composition [55,56].

Particularly in semi-batch systems, like the one used in this study, the evaporated
volatiles are removed from the heated zone by evacuation or purge and sweep gases [57]
Consequently, thermal degradation occurs only in the liquid phase, and the remnant
cracking reactions in the gas phase are negligible [58].

The results of this study were similar to those reported by Tamri et al. [41], who
studied the high-impact polystyrene (HIPS) pyrolysis process and obtained maximum
yields at 450 ◦C. In the present study, a maximum yield of 91 wt.% was obtained, having
a difference of 3.9%, respective to their study, but without the two additional parameters
used by them: an inert environment with nitrogen gas flow and a stirring of 50 rpm. Even
compared to catalytic pyrolysis processes, which work at higher temperatures (superior to
600 ◦C), with the process addressed in this study, it is possible to recover higher values in
liquid hydrocarbon [6,59–62].

3.3. Influence of Heating Rate in Obtaining Liquid Hydrocarbon

The heating rate is a parameter that influences the pyrolysis process, directly impacting
kinetic behavior; studies have observed that a higher heating rate enhances the production
of ashes and gases, reducing the yield of liquid hydrocarbon [63]. Figure 3 shows the
results obtained evaluating the four heating ramps (4, 12, 25, and 40 ◦C min−1). It was
observed that for the heating rates experienced, both the pyrolysis temperature and the
effect of the heating rate had quadratic responses in the yield of liquid hydrocarbon. At a
higher heating rate, it will favor the production of liquid; however, it has a maximum point
at a 12 ◦C min−1 rate. With higher values, a decrease in performance will be observed.
Nanda and Berruti [7] stated that rapid pyrolysis and high degradation temperatures tend
to decrease the yield of the plastic pyrolysis liquid. This is due to the faster achieving of
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the exothermic phase, where the weight loss is at its maximum, which, for the EPS sample
used in this work, was 98% at 454 ◦C, as mentioned before.
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Reaching the exothermic phase so fast implies that the endothermic phase, where the
polymer suffers the glass transition, has a minimum time to break the larger molecules and
melt into a polymer with high molecular weight. Moreover, since the thermal degradation
occurs only in this liquid phase and the reactions in the gas phase are negligible [58], the
volatile compounds produced are minimal. The last are those that after condensation
become a pyrolytic liquid oil, which is the main product of interest in this work.

3.4. Influence of Temperature and Heating Rate in Obtaining Value-Added Products

The pyrolysis of EPS is the process where the highest conversion percentage is ob-
tained among all plastics. However, the pyrolytic liquid cannot be used as fuel due to
its aromatic composition (principally styrene and α-methyl styrene), which causes a very
low thermal–oxidative stability [17] and, therefore, increased engine carbon deposition
(if used as automobile fuel) [56]. Thus, the application of this product is mainly based on
the petrochemical industry. Figure 4 shows the results of the compounds obtained in the
temperatures experimented, grouped in the four heating rate studies. It was observed that
for the thermal pyrolysis of EPS in a semi-batch reactor and regardless of the tempera-
ture, the main product was a liquid rich in aromatic compounds such as styrene, toluene,
ethylbenzene, and α-methyl styrene. The results showed that styrene was the aromatic
compound found in the highest proportion. The maximum styrene concentration found
was 72.99% at a temperature of 450 ◦C and a heating rate of 25 ◦C min−1. In contrast, the
minimum was found at 51.28% at a temperature of 350 ◦C and a heating rate of 40 ◦C
min−1. This is explained by the fact that in the range of 350 to 450 ◦C, the single-phase
thermal degradation of EPS was occurring, as has been stated before.

Toluene concentrations varied from 4.28 to 12.31% at 350 and 450 ◦C, respectively.
In the chromatographic analysis, values lower than 0.5% were discarded for this study.
Additionally, as by-products of the process, the solid fraction was considered to be mainly
coal and other non-degradable residues and non-condensable gases. According to the
literature, the significant components in the gaseous fraction are related to alkane and
alkene. These non-condensable compounds and non-water-soluble gases are methane,
ethane, ethene (ethylene), propane, and pentene [63–65]. The presence of nitrogen has also
been reported [64].
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The reaction mechanism of the EPS thermochemical degradation is a chain reaction
that begins with a random scission (β-scission) that forms macroradicals (C13–C24 fraction)
along with styrene [66–68]. The second stage, called propagation, is a series of intermolecu-
lar hydrogen transfers, initially forming low molecular weight macromolecules (C6–C11
fraction), and in the final stages, dimers and trimers are derived from styrene [55,68,69]. This
is the best fitted reaction model, which involves around 2700 to 4500 reactions happening
simultaneously, entailing 64 to 93 dead and live species, according to the literature [70–72].
Based on the above and the results of the chromatographic analysis of the present study,
the proposed reaction mechanism for the degradation of polystyrene is shown in Figure 5.
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Toluene, ethylbenzene, and cumene are intermediates between the fractions, donating
or accepting hydrogens during the propagation stage because to degrade styrene monomers,
dimers, and trimers, many hydrogen radicals are required [73]. This is correlated with
the change in styrene selectivity [17], which decreases as the temperature and the heating
rate increase [63], as can be seen in Figure 4, where at 500 ◦C a noticeable fall is shown for
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the heating rates of 25 and 40 ◦C min−1. Furthermore, as mentioned before, the thermal
degradation of EPS only happens in the liquid phase and between the range of 350 to
450 ◦C, reaching complete degradation at 470 ◦C [47,48].

Ethylbenzene is a hydrogenated compound derived from styrene, which explains
the relationship between both and their mirrored behavior, as shown in Figure 4. As the
styrene concentration increased, the concentration of ethylbenzene decreased, and vice
versa. In addition, the relationship between α-methyl styrene and cumene had an opposite
behavior, because even though the latter is the hydrogenated compound of the former,
the presence of cumene was only detected when the concentration of α-methyl styrene
increased considerably. This corresponded to the diminution of styrene at the highest
temperature (500 ◦C), where complete degradation of the EPS sample was reached.

On the other hand, the presence of toluene, even when it showed the same tendency as
styrene for any temperature, was in a significant percentage at 500 ◦C, also corresponding
with the lowest styrene concentration. This factor had an overall boost of benzene and
cumene compounds, which were only shown at this temperature. Consequently, the
obtained oil predominantly comprised styrene monomers, toluene, benzene, styrene dimers,
and styrene trimers [63,64]. These oxygenated compounds are the product of the reductive
atmosphere inside the reactor and the trapped oxygen in the EPS [63].

3.5. Characterization of by-Products from EPS Waste Pyrolysis

Table 3 shows the physicochemical properties of the liquid fraction with the highest
liquid yield and highest styrene concentration found and is compared with the literature.
It was observed that the highest liquid yields resulted at heating rates of 12 to 25 ◦C min−1,
and low heating rates (5 ◦C min−1) decreased the conversion to liquid. The results of
the present investigation indicated that temperatures above 500 ◦C decreased the con-
version to a liquid fraction. In this context, it was compared with the results of Van der
Westhuizen et al. [35], who reported the characterization of the PS pyrolytic oil with the
highest yield of 82.5 wt.% at 550 ◦C, which is 8.5 wt.% lower than that obtained at 500 ◦C
in the present investigation.

Table 3. Physicochemical properties of liquid hydrocarbon from EPS pyrolysis.

EPS Pyrolysis-Derived Oil Lu et al. [33] Van der Westhuizen et al. [35]

Parameters
Temperature, ◦C 450 500 420 550
Heating rate, ◦C min−1 25 12 5 n.r.

Yields, wt.%
Liquid hydrocarbon 89 91 76.24 82.5
Gas 5.66 3.88 10.75 3
Solid 5.35 5.12 13.01 0.4
Styrene 72.99 71.38 73 39.4

Properties
Density at 15 ◦C, kg m−3 933 935 n.r. 923
Kinematic viscosity, mm2 s−1 1.09 1.17 n.r. 0.88
Heating value, MJ kg−1 41.64 41.65 n.r. n.r.

n.r. = not reported.

On the other hand, no significant difference in styrene formation was observed be-
tween temperatures from 420 to 450 ◦C. Likewise, at higher temperatures, a lower yield
percentage was found. However, the objective of the work carried out by Westhuizen
et al. was to reduce the styrene concentration to propose it as a fuel, in the case of the
physicochemical properties, density, and viscosity decreases at temperatures close to 550 ◦C.
However, the application to be given to the pyrolytic liquid must be considered to indicate
the required values. Finally, the energy content of the pyrolytic oil derived from EPS
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waste is higher than 41 MJ/kg, so its use as an energy source would be advantageous.
Nevertheless, when burned, the aromatic content must be considered.

An essential aspect of the pyrolysis of plastics is identifying the applications of all the
by-products. Most of the literature focuses on liquid hydrocarbons; however, few have
studied the possible applications of non-condensable gases, which are typically burnt [74].
However, converting non-condensable gases into valuable materials can improve the econ-
omy of waste-to-liquid production and make thermochemical processing more competitive
compared to other recycling technologies.

Singh et al. [63] mentioned and Veksha et al. [75] studied the conversion of non-
condensable gases from the pyrolysis of plastics, including PS, into carbon nanotubes
(NTCs). NTCs show a diversity of potential applications, including photothermal ther-
apy, photoacoustic imaging, biomedicine, and even an alternative to removing air pollu-
tants [76].

Additionally, Miandad et al. [77] used PS pyrolysis-derived char for the synthesis
of nano-absorbent carbon metal double layer oxides (C/MnCuAl-LDOs) through co-
precipitation for the adsorption of Congo red (CR) from wastewater. The nano-absorbent
from PS pyrolysis was compared with pure carbon (PC), thermally activated carbon (TAAC),
and oxidized carbon (Ox-C). Their results reported that C/MnCuAl-LDOs showed maxi-
mum adsorption capacity for CR among all the used absorbents.

Moreover, Dogu et al. [78] mentioned that PS, when pyrolyzed with other solid plastic
waste, produces a valuable liquid oil and gases that by aromatization or catalytic reforming
could produce an aromatic blend with the potential to be used as aviation fuel.

3.6. Statistical Analysis
3.6.1. Liquid Hydrocarbon

Figure 6 shows the standardized Pareto chart for the conversion to liquid oil yield with
a confidence interval of α = 0.5 and t = 2.05 (blue line). It was observed that the factor with
the most significant influence on liquid performance was temperature, having a positive
effect. As the temperature increased, the liquid yield increased. On the other hand, there
was a significant influence on the interaction between temperature and heating rate.

Polymers 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

Density at 15 °C, kg m−3 933 935 n.r. 923 
Kinematic viscosity, mm2 s−1 1.09 1.17 n.r. 0.88 
Heating value, MJ kg−1 41.64 41.65 n.r. n.r. 

n.r. = not reported. 

An essential aspect of the pyrolysis of plastics is identifying the applications of all the 
by-products. Most of the literature focuses on liquid hydrocarbons; however, few have 
studied the possible applications of non-condensable gases, which are typically burnt [74]. 
However, converting non-condensable gases into valuable materials can improve the 
economy of waste-to-liquid production and make thermochemical processing more com-
petitive compared to other recycling technologies. 

Singh et al. [63] mentioned and Veksha et al. [75] studied the conversion of non-con-
densable gases from the pyrolysis of plastics, including PS, into carbon nanotubes (NTCs). 
NTCs show a diversity of potential applications, including photothermal therapy, photo-
acoustic imaging, biomedicine, and even an alternative to removing air pollutants [76]. 

Additionally, Miandad et al. [77] used PS pyrolysis-derived char for the synthesis of 
nano-absorbent carbon metal double layer oxides (C/MnCuAl-LDOs) through co-precip-
itation for the adsorption of Congo red (CR) from wastewater. The nano-absorbent from 
PS pyrolysis was compared with pure carbon (PC), thermally activated carbon (TAAC), 
and oxidized carbon (Ox-C). Their results reported that C/MnCuAl-LDOs showed maxi-
mum adsorption capacity for CR among all the used absorbents. 

Moreover, Dogu et al. [78] mentioned that PS, when pyrolyzed with other solid plas-
tic waste, produces a valuable liquid oil and gases that by aromatization or catalytic re-
forming could produce an aromatic blend with the potential to be used as aviation fuel. 

3.6. Statistical Analysis 
3.6.1. Liquid Hydrocarbon 

Figure 6 shows the standardized Pareto chart for the conversion to liquid oil yield 
with a confidence interval of α = 0.5 and t = 2.05 (blue line). It was observed that the factor 
with the most significant influence on liquid performance was temperature, having a pos-
itive effect. As the temperature increased, the liquid yield increased. On the other hand, 
there was a significant influence on the interaction between temperature and heating rate. 

 
Figure 6. Standardized Pareto diagram for liquid oil yield. 

Figure 7 shows the main effects of temperature and heating rate on the conversion to 
liquid hydrocarbons. The analysis was performed in a second model. The order allowed 
for a better approximation model for the phenomenon being studied. It was observed that 
the response of the variables had a curved effect; as the temperature increased, the liquid 

Figure 6. Standardized Pareto diagram for liquid oil yield.

Figure 7 shows the main effects of temperature and heating rate on the conversion to
liquid hydrocarbons. The analysis was performed in a second model. The order allowed
for a better approximation model for the phenomenon being studied. It was observed that
the response of the variables had a curved effect; as the temperature increased, the liquid
yield increased. However, temperatures above 470 ◦C would decrease the conversion
of liquid hydrocarbon. On the other hand, the curved effect of the heating rate on the
output response was also observed; heating rates greater than 4 ◦C min−1 but less than
12 ◦C min−1 would improve liquid hydrocarbon production.
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Additionally, Equation (4) describes the fitted multiple regression model (R2 = 80.40%)
of the conversion to liquid hydrocarbon, where T is the reaction temperature, and H is the
heating rate.

%Liquid = −67.3048 + 0.649545 × T + 0.805674 × H − 0.0006625 × T2

−0.00134173 × T × H − 0.0066103 × H2 (4)

3.6.2. Styrene Production

This section shows the statistical analysis results of styrene production as an output
response, evaluating the reaction temperature and the heating rate as input variables.
Figure 8 shows the standardized Pareto chart for styrene production by an analysis with a
confidence interval of α = 0.5 and t = 2.05 (blue line). It was observed that the factor with
the most significant influence on the formation of styrene was the heating rate. In addition,
it was visualized that this effect was negative, representing that at a higher heating rate,
less styrene will be formed. On the other hand, the reaction temperature also influenced
the output response; however, its effect was positive. At a higher reaction temperature, the
liquid hydrocarbon composition would have a higher concentration of styrene. There was
no interaction between both factors that influenced the formation of styrene.
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In the same way as the conversion to liquid hydrocarbon, the main effects of the input
variables on the production of styrene were analyzed. It is visualized in Figure 9 that
both temperature and heating rate had curved effects on the output responses. It is crucial
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to analyze nonlinear models since sometimes the linear trend makes false statements.
Therefore, it was statistically stated that there was a decrease in styrene production at
temperatures greater than 450 ◦C and at heating rates above 17 ◦C min−1.
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Regarding the multiple regression model that describes the formation of styrene,
Equation (5) describes the behavior with a fit of 77%, where T is the reaction temperature,
and H is the heating rate.

%Styrene = −91.8019 + 0.65818 × T + 1.43878 × H − 0.000694625 × T2

−0.0013590 × T × H − 0.0239486 × H2 (5)

Finally, in Figure 10, the response surface of the styrene production is shown through
a contour plot. It is seen that the highest concentration of styrene in liquid hydrocarbons
obtained by thermal pyrolysis of EPS was centered at temperatures below 500 ◦C and
maximum heating rates of 20 ◦C min−1.
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4. Conclusions

The influence of temperature and heating rate in the thermal pyrolysis process of (EPS)
post-industrial waste shows an intrinsic relationship between the production of liquid
hydrocarbon yield and styrene content. Moreover, neither the temperature nor the heating
rate showed an influence on the general composition found in the pyrolytic oil.

The results showed a maximum yield of liquid hydrocarbon of 91 wt.%, with 72.99%
of styrene in its composition, at 450 ◦C and a heating rate of 25 ◦C min−1. It is noteworthy
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that in a simple thermal pyrolysis process as the one addressed in this study, it was
possible to recover higher values in liquid hydrocarbon compared to other studies. It
was even compared to catalytic pyrolysis processes, which achieve these yields at higher
temperatures (superior to 600 ◦C) and by adding elements that lead to higher operational
costs [6,59–62].

This proposed pyrolysis can go hand-in-hand with EPS mechanical recycling, which
will solve the limitations of this type of plastic waste management but also for producing a
liquid hydrocarbon with added value for the petrochemical industry.
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