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Abstract: Herein, we present a method for fabricating hollow TiO2 microfibers from Ti (OBu)4/poly
(vinyl pyrrolidone) sol-gel precursors and their effects on denitrification as a photocatalyst for air
purification. Various sizes of hollow TiO2 fibers were developed using coaxial electrospinning by
controlling the core flow rate from 0 to 3 mL h−1. At higher flow rates, the wall layer was thinner,
and outer and core diameters were larger. These features are correlated with physical properties,
including specific surface area, average pore diameter, and crystalline structure. The increase in the
core flow rate from 0 to 3 mL h−1 leads to a corresponding increase in the specific surface area from
1.81 to 3.95 µm and a decrease in the average pore diameter from 28.9 to 11.1 nm. Furthermore, the
increased core flow rate results in a high anatase and rutile phase content in the structure. Herein,
hollow TiO2 was produced with an approximately equal content of anatase/rutile phases with few
impurities. A flow rate of 3 mL h−1 resulted in the highest specific surface area of 51.28 m2 g−1 and
smallest pore diameter size of ~11 nm, offering more active sites at the fiber surface for nitrogen oxide
removal of up to 66.2% from the atmosphere.

Keywords: photocatalyst; titanium dioxide; core-sheath hollow fibers; nitrogen oxide removal

1. Introduction

Nitrogen oxides such as NO and NO2 (which are commonly known as NOx), are major
air pollutants primarily emitted during low-grade fossil fuel combustion [1]. NOx causes
severe environmental and human health issues, such as respiratory diseases, lung cancer,
global warming, ozone production, acid rain, and smog [2]. According to the World Health
Organization guidelines, the upper limit of the allowed NO concentration is 40 µg m−3 [3].

Recently, many researchers have reported the need for highly effective photocatalysts
targeting NOx. Owing to the increased attention toward denitrification, titanium dioxide
has been extensively used as a photocatalyst for air purification because of its relatively low
cost, nontoxicity, easy handling, and long-term stability [3]. TiO2 can generate electron–hole
(e−/h+) pairs at its surface in the presence of ultraviolet (UV) light energy higher than its
band gap energy of ~3.2 eV. The exited e−/h+ pairs then react with H2O and O2 molecules
in the atmosphere, leading to the formation of hydroxy radicals and superoxide oxygen via
reactive oxygen species (ROS) [3,4]. Subsequently, these molecules can react with nitrogen
oxides to form nitrates via photocatalytic oxidation.

However, brittleness and handling issues of TiO2 nanoparticles are the major factors
that restrict their applications as photocatalysts for air purification [5]. Therefore, it re-
mains a challenge to develop a facile fabrication method to generate mesoporous TiO2 as
an effective air pollutant photocatalyst.

Electrospinning is an effective fabrication method to address the aforementioned
limitations of TiO2 nanoparticles because it provides a simple method to prepare ultrathin
TiO2 fibers with diameters ranging from several nano- to micrometers. Polymer, organic,
inorganic, and hybrid core/shell or hollow materials have been fabricated via coaxial
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electrospinning, in which a spinneret consisting of two coaxial capillaries form a core-sheath
structure [6]. Controlling the variables using coaxial electrospinning can modify the
architecture and multifunction of fibers.

Core-sheath or hollow materials have attracted extensive attention in recent years
because of their unique heterogeneous or hollow structures that offer high surface-to-
volume ratios and core loading spaces, rendering them useful for air purification [6]. For
example, Chen et al. reported a multifluidic coaxial electrospinning method to fabricate
photocatalytic TiO2 nanowire-in-microtube structured nanofibers [7]. The mesoporous
TiO2 hollow nanofibers, which were fabricated via a facile single-capillary electrospinning
technique, showed 99.5% degradation of Rhodamine B within 60 min, suggesting their
promising application as efficient photocatalysts [8]. Additionally, polyaniline/TiO2 bilayer
microtubes with an average diameter of 200 nm were fabricated for photocatalysis [9].
Polyvinylidene fluoride (PVDF)–TiO2 composite hollow fibers were prepared using the
sol-gel method [10]. Furthermore, fluorinated titania-silica/PVDF hollow fibers were de-
veloped for CO2 removal [11]. Electrospinning was used to prepare PVDF/poly dimethyl-
siloxane composites with TiO2 nanoparticles (0.5 and 1 wt.%) for NOx adsorption [12].

Herein, coaxial electrospinning was used under four types of processing conditions
to develop hollow TiO2 fibers as photocatalysts for air purification. An ideal hollow
architecture with a micro-nanoporous structure was achieved for excellent photocatalytic
performance. Subsequently, physical properties, including morphology, specific surface
area, pore diameter, and crystalline phase, of four types of TiO2 fibers were evaluated.
Moreover, their photocatalytic performance was evaluated for denitrification under UV
irradiation. Additionally, the physical properties of hollow TiO2 fibers were correlated
to the photocatalytic performance. This study provides a comprehensive understanding
and efficient design approach toward hollow TiO2 fibers for various applications, such as
surface coating, electronics, biomedicine, sensing, and water and air purification.

2. Materials and Methods
2.1. Materials

Poly(vinyl pyrrolidone) (PVP) (Mw ≈ 130,000), tetrabutyl titanate [Ti(OBu)4], Tween
80, paraffin oil, ethanol, acetic acid, were purchased from Sigma Aldrich Co., LLC, (Seoul,
Republic of Korea).

2.2. Preparation of Core-Sheath Sol-Gel

PVP was dissolved in a mixture of ethanol solution and acetic acid (1:8:1 w/w/w) in
a flask, followed by the gradual addition of 40 wt.% Ti (OBu)4 solution under stirring at
room temperature for 4 h to form a homogeneous sol for outer sheath material, such as
the Ti (OBu)4 sol. For the core material, paraffin oil solution was prepared by dissolving
5 wt.% Tween 80 in 2 wt.% deionized water. Subsequently, the emulsion was stirred for 3 h
at room temperature.

2.3. Fabrication of Hollow TiO2 Fibers

The coaxial electrospinning experimental setup is illustrated in Figure 1. The spinneret
was assembled using coaxial stainless steel with two capillaries. Typically, the outer and
inner diameters were 3.0 and 2.5 mm and 0.6 and 0.37 mm, respectively. The Ti (OBu)4 sol
synthesized previously was injected into the outer capillaries at a flow rate of 8 mL h−1,
and the paraffin oil emulsion was simultaneously fed into the inner capillary at 0, 1, 2,
or 3 mL h−1. The work distance between the spinneret and collector was 15–20 cm, and
the work voltage was 25–30 kV. After coaxial electrospinning, the collected fibers were
calcinated at 550 ◦C for 1 h at a heating rate of 1 ◦C min−1. The core was removed after
calcination treatment (MF2-12GF, JeioTech, Daegeon, Republic of Korea) to obtain hollow
TiO2 fibers [13].
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Figure 1. Fabrication method of hollow TiO2 fibers via coaxial electrospinning and their reactions for
the hydrolysis process with titanium butoxide as a precursor.

On applying a suitable high voltage to the coaxial spinneret, the conductive outer
fluids (Ti (OBu)4/PVP sol-gel) were elongated owing to an electrostatic force, while the
inner fluids (paraffin oil/Tween 20/water) were subsequently stretched because of shear
forces. The outer Ti (OBu)4 sol-gel solidified easily during the coaxial electrospinning
process because of the rapid evaporation of the ethanol solvent and the hydrolysis of metal
alkoxide at appropriate humidity [7]. As shown in Figure 1, water is emulsified in paraffin
oil to accelerate the hydrolysis and solidification of the core material during reactions [7].
If the core was selectively removed by calcination, then it would leave a vacant space
to develop hollow TiO2 fibers. Electrospinning was used to fabricate hollow and solid
(non-hollow) TiO2 fibers under different conditions and they were labelled with relevant
codes, as listed in Table 1.

Table 1. Electrospinning conditions and sample codes of hollow and solid (non-hollow) TiO2 fibers.

Flow Rate (mL h−1)

Outer 8
Core 1 2 3 0

Sample # TiO2@C1 TiO2@C2 TiO2@C3 TiO2@C0

2.4. Chemical Structures and Physical Properties of TiO2 Fibers

The morphologies and average outer or core diameters of TiO2@C1, TiO2@C2, TiO2@C3,
and TiO2@C0 were analyzed via scanning electron microscopy (SEM, Hitachi, Tokyo, Japan).
For cross sections, samples were immersed in liquid nitrogen and then cut with a razor
blade. The N2 adsorption and desorption analyses were performed (BELSORP-Mini II,
Osaka, Japan) at 77 K. The specific surface areas were calculated from the obtained data
using the Brunauer–Emmett–Teller (BET) method. The total pore volume was estimated
from the amount adsorbed at a P/P0 of 0–0.99. The average pore diameter was derived
using the Barret–Joyner–Halenda (BJH) model. The specific surface areas and pore diame-
ters of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0 were evaluated using the BELSORP
analysis software.

2.5. Characterization of Synthesized TiO2 Fibers

X-ray diffraction (XRD, D8 Advance, Bruker, Billerica, MA, USA) was used to analyze
the crystalline phases of synthesized TiO2 fibers. The diffractometer was operated in the
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reflection mode with Cu-K radiation (35 kV; 30 mA) and a diffracted beam monochromator,
using a step scan mode with a step of 0.075◦ at 4 s per step. Diffraction patterns of both
anatase and rutile TiO2 fibers at different flow rates were compared with a reference using
the JCPDS database.

2.6. Photocatalytic Performance of TiO2 Fibers for NO Removal

The photocatalytic activities of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0 for the
removal of NO gas molecules were assessed based on ISO 22197-1:2016. Hollow TiO2
microfiber (TiO2@C1, TiO2@C2, and TiO2@C3) or solid (TiO2@C0) TiO2 fiber (5 cm × 10 cm)
samples were placed in the middle of two plain glasses (5 cm × 10 cm) of non-photocatalytic
blank samples in a photoreactor. Each sample was irradiated with UV-A light (10 W m−2)
using a UV lamp system, consisting of two 6 W lamps, placed over the photoreactor, with
an emission peak at 365 nm. An NOx analyzer (T-API, T200, San Diego, CA, USA) was
used to measure nitrate concentrations at 1 min intervals. Under UV light irradiation, the
NO gas flowed at a rate of 3 L min−1 containing 1 ppmv of NO in air with 50% relative
humidity at 25 ◦C. The concentration of NO in the outlet stream was monitored for 20 min
before the light was switched on and afterward during the UV irradiation for 60 min.

3. Results and Discussion
3.1. Morphology of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0

Figures 2 and 3 show the synthesized TiO2 fibers before and after calcination, respec-
tively. The synthesized TiO2 fibers have smooth surfaces without a hole inside. After
calcination of the synthesized TiO2 fibers, they display a reduction in the average fiber di-
ameter. The removal of the polymer (PVP and paraffin oil) by calcination shows a decrease
in fiber diameter from about a few hundred nanometers, as shown in the SEM images in
Figure 3. The average diameters of the core and sheath as well as the wall thickness of TiO2
fibers were measured at randomly selected areas of SEM images. The hollow core corre-
sponds to the vacancy of the core paraffin oil emulsion. In Table 2, the TiO2@C1 has a core
and sheath with average diameters of 1.45 and 1.81 µm, respectively, with a wall thickness
of 0.26 µm. For TiO2@C2, the average diameters of the core and sheath are 1.80 and 2.09 µm,
respectively, with 0.38 µm wall thickness. TiO2@C3 displays core and sheath diameters
of 2.83 and 3.94 µm, respectively, with a wall thickness of 0.53 µm, while TiO2@C0 has
an average fiber diameter of 3.95 µm without the core. Increasing the flow rate of the core
paraffin fluid from 1 to 3 mL h−1 increased the core diameter from 0.26 to 0.53 µm and the
outer diameter from 1.81 and 3.94 µm. Di et al. reported that hollow fibers electrospun
with increased inner liquid flow rates of 1.0, 3.0, and 5.0 mL h−1 showed increased inner
diameter from 0.9 to 1.90 µm [14]. Another study reported that decreasing the flow rate
resulted in thicker hollow fibers because there was deficient outer solution to enclose the
outer shell continuously [15]. Furthermore, the core flow rate was very slow, resulting
in the outer layer being too thick due to less shear stress [13]. In contrast, a high core
flow rate would make the wall thinner and decrease the stability of the electrospinning
process because there may not be sufficient outer fluid to effectively capture the inner
contents, leading to their leakage. Therefore, an appropriate flow rate is a critical variable
for fabricating hollow fibers.

The flow rate of the core is an important factor in modifying the morphology of hollow
TiO2 fibers, in terms of the core and outer diameter size. The higher the flow rate, the
thinner the wall layer and the larger the core and outer diameters [16].
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3.2. BET Analysis of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0

BET and BJH plots of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0 at 77 K are presented
in Figure 4a,b. TiO2@C2 and TiO2@C3 showed a relatively narrow distribution of TiO2@C0,
with values ranging from 5 to 30 nm. The order of the overall specific surface area is as
follows: TiO2@C3 > TiO2@C2 > TiO2@C1 > TiO2@C0. The specific surface area of TiO2@C3
was approximately 51.2 m2 g−1. The increase in the core flow rate from 0 to 3 mL h−1 results
in a corresponding increase in the specific surface area from 16.01 to 51.28 m2 g−1 and
a decrease in the average pore diameter from 28.9 to 11.1 nm, as listed in Table 2. TiO2@C0
has the lowest specific surface area of 16.01 m2 g−1 and the highest average pore diameter
size of 28.9 nm owing to the solid (non-hollow) structure of TiO2@C0. Previous studies have
reported various advantages of hollow TiO2 fibers owing to their mesoporous walls and
unique hierarchical pore structure [8]. This hollow structure helps to improve the efficiency
of air mass transport, which leads to a larger specific surface area and porosity [17,18].

Hou et al. developed hollow TiO2 fibers with a BET surface area of ~27.2 m2 g−1

and an average pore diameter of 38 nm. However, our fabrication methods resulted in
significantly higher specific surface area (~2 times higher than the aforementioned value),
which provides more active surface sites for the adsorption of reactive molecules, resulting
in more prominent photocatalytic effects [19]. The results suggest that hollow TiO2 fibers
(TiO2@C3) prepared via the proposed method might exhibit good photocatalytic activities.
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Table 2. Physical properties of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0.

TiO2@C1 TiO2@C2 TiO2@C3 TiO2@C0

Average sheath diameter (µm) 1.81 (±0.8) 2.09 (±0.88) 3.94 (±1.43) 3.95 (±1.44)
Average core diameter (µm) 1.51 (±0.37) 1.80 (±1.01) 2.83 (±1.28) -

Wall thickness (µm) 0.53 (±0.30) 0.38 (±0.10) 0.26 (±0.10) -
BET surface area (m2 g−1) 33.04 40.73 51.28 16.01

Average pore diameter (nm) 18.8 11.3 11.1 28.9
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3.3. XRD Analysis of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0

After calcination, TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0 contained anatase,
brookite, and rutile phases. Generally, TiO2 has three representative crystalline phases,
anatase, brookite, and rutile phases. TiO2 is most likely to be a mixture of the aforemen-
tioned phases rather than the pure anatase, brookite, or rutile structure; thus, quantitative
analysis is significantly important for analyzing the variations in photocatalytic activities.
Figure 5 and Table 3 present the XRD data of developed TiO2@C1, TiO2@C2, TiO2@C3,
and TiO2@C0 in the 2θ range of 20◦ to 80◦ according to standard JCPDS card No. 21-1272.
The anatase reflections dominated the reflection patterns, while rutile was present as well.
All the diffraction peaks (blue dot lines) at 25.25◦, 37.80◦, 38.50◦, 48.05◦, 53.9◦, 55.05◦,
62.65◦, 68.85◦, 70.30◦, 75.05◦, and 76.10◦ could be well indexed as pure anatase phases.
The brookite presents diffraction peaks (pink dot lines) at 2θ = 25.3, 27.7, 36.2, 42.3, 55.2,
and 57.2◦ [20]. TiO2@C3 and TiO2@C0 displayed an increase in the rutile phase content
and showed diffraction peaks (yellow dot lines) at 27◦, 36◦, and 55◦, corresponding to the
crystalline region of TiO2 [21]. The XRD results (Table 3) show that crystalline TiO2@C1
consists of 53.5% of the anatase phase, 7.2% of the rutile phase, and 39.3% of the brookite
phase. TiO2@C2 and TiO2@C3 showed an increased rutile phase content of 11.8% and
24.3%, respectively, while TiO2@C0 had 60.1% of the anatase phase and 9.5% of the rutile
phase. XRD data show that the increased core flow rate results in the higher composition of
the anatase form and lower content of the rutile phase in the structure. TiO2 has three major
stable polymorphs, namely, anatase, rutile, and brookite. Among them, anatase structure
generally shows the highest photocatalytic activity, with certain crystallographic planes
of anatase being particularly reactive [22]. Anatase transforms to the brookite or rutile
phase at temperatures below 600◦. A higher transformation rate of anatase to brookite, as
compared with that of anatase to rutile, is observed and explained by the increased surface
area of TiO2@C3, resulting from their aggregation, which act as sites for the rutile nucle-
ation [23]. Upon heating, which is usually accompanied by a coarsening of the crystals,
the crystal growth leads to alterations of phase stability [23]. The band gaps of anatase,
rutile, and brookite are 2.13, 1.86, and 2.38 eV, respectively. Anatase is an indirect band gap
semiconductor. In contrast, both rutile and brookite belong to the direct band gap semicon-
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ductor category [24]. It has been reported that a similar composition mixture of anatase
and rutile crystalline phases of TiO2 exhibited significantly higher photocatalytic activity
than the pure anatase phase [8,25]. The primary reason is the enhanced charge transfer
triggered by the energy gap between the band edges of crystalline phases of TiO2 [8,26].
These photocatalysts show varying anatase/rutile ratios depending on the conditions of the
core flow rate. Furthermore, the developed TiO2@C3 consists of a mixture of anatase/rutile
(~1:1 ratio) crystalline phases, thereby exhibiting better photocatalytic performance than
TiO2@C1, TiO2@C2, and TiO2@C0, as evident from our results.
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Table 3. Relative composition of crystalline phases and NO removal (%) of TiO2@C1, TiO2@C2,
TiO2@C3, and TiO2@C0.

TiO2@C1 TiO2@C2 TiO2@C3 TiO2@C0

Anatase (%) 53.5 15.3 25 60.1
Rutile (%) 7.2 11.8 24.3 9.5

Brookite (%) 39.3 72.9 50.7 30.3
NO removal (%) 33.5 56.8 66.2 31.2

3.4. Photocatalytic Performance of NO Removal

Figure 6 shows the NO removal performance of TiO2@C1, TiO2@C2, TiO2@C3, and
TiO2@C0, which changes significantly with on-off UV lamp irradiation. To confirm the
effectiveness of UV irradiation for triggering photocatalytic reaction, denitrification experi-
ments were performed under UV irradiation (turning on UV lamp) and darkness (turning
off UV lamp) conditions. The results show that the denitrification efficiency in the dark was
~0.01% during the initial 10 min. Moreover, under UV lamp irradiation, the NO removal
(%) for TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0 showed a rapid increase up to 66.2%,
56.8%, 33.5%, and 31.2%, respectively. When the UV lamp was turned off, the removal
efficiency of NO decreased rapidly in the dark, reaching 1 ppm of NO concentration at
70 min and maintaining the NO concentration constant without photocatalytic activity.
This implies a significant photocatalytic effect of UV irradiation on NO removal.
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The degradation of NO gas molecules (1 ppm) was achieved in 60 min under light
irradiation in the presence of TiO2@C1, TiO2@C2, TiO2@C3, and TiO2@C0. The highest
efficiency was observed for the photocatalyst TiO2@C3, containing a mixture of 41.12%
and 58.65% of rutile and anatase phases with minimum impurities, resulting in enhanced
charge transfer owing to the energy gap between the two crystalline phases [8,26]. The
highest BET specific surface area of 51.28 m2 g−1 leads to more active sites and higher
capacity at the hollow TiO2 fiber surface for NO adsorption, resulting in more prominent
photocatalytic effects. Amano et al. reported that the surface area and photocatalytic
activity or capacity for reactant adsorption had a proportional relationship [27]. Therefore,
TiO2@C3 is an efficient photocatalyst for air purification.

4. Conclusions

Herein, we demonstrated a facile method to fabricate easy-to-handle hollow TiO2
fibers as photocatalysts for air purification, particularly for denitrification. The hollow TiO2
fibers were fabricated using different core flow rates, ranging from 0 to 3 mL h−1, with
a fixed outer flow rate of 8 mL h−1. The obtained TiO2 fibers showed mesoporous walls
and a unique hierarchical pore structure. They were composed of mixed anatase and rutile
phases with distinct hollow features. However, depending on the core flow rate, the fiber
morphology changed in terms of the outer and core diameter sizes, wall thickness, BET
specific surface area, and crystalline phase content as well as photocatalytic activity. Results
show that TiO2@C3 had the largest core and outer diameters that improve the air mass
transport. Furthermore, among the prepared photocatalysts, TiO2@C3 exhibited a balanced
anatase/rutile phase ratio as well as the highest BET specific surface area of 51.28 m2 g−1

and smallest pore size of 11.1 nm, offering more active sites for NO removal and resulting
in the most effective denitrification up to 66.2%.

This study provides a comprehensive understanding and an ideal design for the fabri-
cation of hollow TiO2 fibers in terms of the crystalline phase composition as well as hollow
and mesoporous structures for the desired photocatalytic performance. Our methodology
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presents a facile approach to fabricate hollow architecture for various applications including
surface coating, electronics, biomedicine, sensing, and water and air purification.
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