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Abstract: Data-driven soft sensors have increasingly been applied for the quality measurement of
industrial polymerization processes in recent years. However, owing to the costly assay process, the
limited labeled data available still pose significant obstacles to the construction of accurate models. In
this study, a novel soft sensor named the selective Wasserstein generative adversarial network, with
gradient penalty-based support vector regression (SWGAN-SVR), is proposed to enhance quality
prediction with limited training samples. Specifically, the Wasserstein generative adversarial network
with gradient penalty (WGAN-GP) is employed to capture the distribution of the available limited
labeled data and to generate virtual candidates. Subsequently, an effective data-selection strategy is
developed to alleviate the problem of varied-quality samples caused by the unstable training of the
WGAN-GP. The selection strategy includes two parts: the centroid metric criterion and the statistical
characteristic criterion. An SVR model is constructed based on the qualified augmented training data
to evaluate the prediction performance. The superiority of SWGAN-SVR is demonstrated, using a
numerical example and an industrial polyethylene process.

Keywords: soft sensor; polymerization process; data augmentation; data selection; generative
adversarial network; support vector regression

1. Introduction

Data-driven soft sensor models [1–7] have been applied extensively to provide impor-
tant real-time information for the quality prediction of industrial polymerization processes
in modern industry [8,9]. Although without an in-depth understanding of the process
mechanisms, data-driven soft sensors have been constructed for difficult-to-measure prod-
uct quality using easy-to-measure process measurements. Various soft sensors have re-
ceived increasing attention in recent years, including partial least squares regression [10,11],
Gaussian process regression [12,13], support vector regression (SVR) [14–16], and neural
networks [17–21]. Among them, SVR-based soft sensors have exhibited good performance
in several nonlinear regression tasks.

The reliability of training data for the efficient development of data-driven soft sensors
is a key aspect [22,23]. However, only limited labeled samples are obtained in many
polyethylene processes, which is a phenomenon that has received less attention than it
deserves. For example, in the case of frequent changes in operating conditions, manual
operations result in large measurement intervals and long settling times. Consequently,
the acquisition of sufficient training samples is intractable [24–26]. With limited available
training data, it is difficult to capture the process characteristics and model the relationship
between product quality and operating conditions. Hence, the development of a soft sensor
model with insufficient data requires further investigation.

The virtual sample generation (VSG) technique is effective in handling the problem
of the insufficient construction of soft sensors with limited training data [27–30]. Several
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VSG methods have been developed for data augmentation, which can be divided into
three types: sampling-based, information diffusion-based, and deep learning-based VSGs.
For sampling-based VSG, a typical method named bootstrap [31] has been increasingly
adopted for data augmentation, owing to its simple mechanism. Nevertheless, as copies
of the original samples are generated, the virtual samples that are obtained via bootstrap
may not carry new information and cannot fill the gaps between samples. Information
diffusion-based VSG is based on the distribution function of the sample space. Typical
methods include mega-trend diffusion [32] and tree-based trend diffusion [33]. These
two methods employ the information diffusion principle to derive the diffusion function
and generate new samples using the fuzzy set theory. However, an appropriate diffusion
function and coefficient cannot easily be determined.

Deep learning-based VSG methods have gained increasing attention in fields such as
imaging and natural language processing [34]. In recent years, deep learning-based VSG
methods have also been adopted in the process industry [35]. The generative adversarial
network (GAN) [36–39], as one promising generative model, has been well studied and is
valued for its generative properties. By generating virtual data that resemble actual data,
the GAN enlarges the sample capacity to enhance the prediction performance. Although
various improvements have been made in GANs, including alternative loss functions and
training strategies, the training process remains unstable [40–43]. Therefore, the quality of
the generated samples remains uncertain. In practice, both suitable and unsuitable data
exist simultaneously among the generated candidates. The prediction performance of the
model will deteriorate if unsuitable virtual samples are included in the training set. Hence,
data selection for the total number of virtual candidates is significant. Jiang and Ge [42]
used the Mahalanobis and Euclidean distances to measure the similarity between different
samples and, subsequently, selected qualified candidates for data augmentation. However,
they focused on the original individual samples separately for data selection, resulting in
the dilemma of local minima. Thus, a new data selection strategy that considers the general
distribution is necessary.

This study aims to develop an enhanced data augmentation soft sensor framework to
meet the challenge of limited labeled samples in the polyethylene process. The proposed
soft sensor is named the selective Wasserstein GAN, with gradient penalty-based SVR
(SWGAN-SVR). First, to expand the sample capacity and enrich the data information,
virtual samples are generated using a Wasserstein GAN with a gradient penalty (WGAN-
GP) network. Owing to the instability of the model training, both suitable and unsuitable
samples are generated for the task simultaneously. Subsequently, a data selection strategy is
adopted for sample filtering, which is composed of two parts: the centroid metric criterion
and the statistical characteristic criterion. Moreover, the selected qualified samples serve as
supplements for the original samples. Without the loss of generality, SVR is adopted as the
base regression model. Consequently, using qualified augmented virtual samples, a more
accurate and reliable prediction model can be constructed, compared to that using only the
original data.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the preliminaries. In Section 3, the SWGAN-SVR soft sensor is presented, along with its
algorithmic implementation. Section 4 demonstrates the effectiveness of SWGAN-SVR in
the polyethylene process. Finally, our concluding remarks are presented in Section 5.

2. Preliminaries
2.1. Problem Statement

It has traditionally been assumed that the amount of available training data is sufficient
for soft sensor modeling, and many studies have focused on the design and improvement of
modeling methods. However, it is difficult to collect sufficient samples in many situations,
such as for industrial processes with large measurement intervals or during the early stages
of new working conditions [5]. GANs, which are unsupervised generative models, have
been adopted to generate virtual samples for data augmentation. The connection and main
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differences between traditional supervised soft sensor models and data-augmentation-
based candidates are illustrated in Figure 1. Traditional methods use only the available
limited labeled samples, which are denoted as {ZO} = {XO, YO} for the purposes of model
construction, where {XO} = {xOi}i=1,...,M and {YO} = {yOi}i=1,...,M represent the input
and output data with M samples, respectively. In contrast, data-augmentation-based soft
sensors are constructed based on the augmented dataset. To address the problem of insuf-
ficient models that are established with limited training data, virtual samples, which are
denoted as {ZG} = {XG, YG}, are generated using a GAN, where {XG} = {xGi}j=1,...,N and
{YG} = {yGi}j=1,...,N are the input and output data, respectively, with N generated samples.
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Unfortunately, owing to the unstable training of GANs [40–43], unsuitable samples
are inevitably generated. It is worth noting that the distributions of unsuitable samples do
not properly match the distribution of the real data. If these unsuitable samples are merged
with the original data for establishing the model, the prediction of the soft sensor may be
degraded. In this study, a data selection strategy is proposed to improve the quality of the
generated samples. It is expected that a more reliable soft sensor model can be obtained by
introducing these newly qualified virtual samples into the training data.

2.2. WGAN-GP Data Augmentation Approach

GANs have recently attracted significant attention owing to their good distribution-
learning capabilities. The vanilla GAN uses the Jensen–Shannon (JS) divergence to measure
the distance between the generated and original data. However, this often causes prob-
lems, such as mode collapse and vanishing gradients [44]. To address these problems,
Arjovsky et al. proposed the WGAN [44], which uses the Earth-Mover distance rather than
JS divergence as a distance measurement. In the WGAN, to enforce the Lipschitz constraint,
the weights of the discriminator are clipped to lie within a compact space [−r, r], where r
is a constant. The discriminator attempts to distinguish between the real and generated
samples and concentrates its parameter distribution on the two extremes of the maximum
and minimum; that is, r and −r. Consequently, a WGAN often becomes stuck in a poor
regime and fails to learn.

To solve the problem caused by the weight clipping of the WGAN, Gulrajani et al. pro-
posed a WGAN with a gradient penalty (WGAN-GP) [45]. Specifically, a penalty constraint
is imposed on the gradient norm of the discriminator. The weight of the discriminator is
reduced to an extremely small range using the gradient penalty strategy, which accelerates
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the model convergence and solves the gradient explosion problem. The objective function
of the WGAN-GP is as follows:

min
G

max
D

V(D, G) =Ez0∼pdata(zO)[D(zO)]−EzG∼pG(zG)[D(zG)]︸ ︷︷ ︸
original WGAN

−λE^
z∼p^

z

[(
‖ ∇^

z
D
(

^
z
)
‖2 −1

)2
]

︸ ︷︷ ︸
the penalty term

, (1)

where λ is the penalty coefficient,
^
z is sampled through random interpolation on the

connecting line of the original data zO and generated data zG; that is,
^
z = θzO + (1− θ)zG,

and θ is a random number in [0, 1].

3. The SWGAN-Based Soft Sensor Framework
3.1. Virtual Sample Selection Strategy

Owing to the unstable training of the WGAN-GP, the quality of the generated virtual
samples varies significantly. A data selection strategy is proposed for sample filtering,
to eliminate the negative effects of unqualified virtual samples that are generated by the
WGAN-GP for model construction. The selection strategy includes a centroid metric
criterion, which is denoted as S1, and a statistical characteristic criterion, which is denoted
as S2. The distribution scatters of the original and rough virtual samples are plotted in
Figure 2. The distribution of most virtual samples conforms to the real data distribution.
However, the WGAN-GP also generates samples that are located in regions A and B, which
are far from the distribution of the original data. If the generated samples in regions A
and B, which are regarded as unqualified, are added to the original set, the prediction
performance of the model may deteriorate. A detailed description of the proposed selection
strategy is provided below.
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First, the S1 criterion is developed to filter the virtual samples in region A. The
samples in region A are too close to the centroid zC of the original samples. Furthermore,
the distribution of these samples is not uniform compared to that of the original sample.
Thus, the virtual samples around the centroid are considered to be information-poor and
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unqualified. The centroid zC is defined as the closest point in space to the original data,
as follows:

zC = (µOX,µOY) =
1
M

(
M

∑
i=1

xOi,
M

∑
i=1

yOi), (2)

where µOX and µOY are the process and target variables of zC, respectively.
The Euclidean distance is commonly used to measure the distance between two

samples. A large distance indicates that the samples are far from one another. The square of
the distance between zC and a finite number of original samples is formulated as follows:

dC =
M

∑
i=1
‖zC − zOi‖2

2 = min(
M

∑
i=1
‖zr − zOi‖2

2), (3)

where zOi is the ith original sample and zOi = (xOi, yOi), and zr is any point in space.
Similarly, the square of the distance between the jth generated sample and the original

samples is calculated as follows:

dj =
M

∑
i=1

∥∥zGj − zOi
∥∥2

2, (4)

where zGj = (xGj, yGj) is the jth generated sample.
According to the definitions of dj and dC, dj ≥ dC. A smaller dj means that zGj is closer

to zC, indicating a more dissimilar distribution of zGj to the original samples. A sample in
region A satisfies dj < ρdC, where ρ ≥ 1 is a parameter. Therefore, the qualified samples,
based on the S1 criterion, are defined as:

dj ≥ ρdC, ρ ≥ 1. (5)

Subsequently, the S2 criterion is adopted to filter the unsuitable virtual samples in
area B. The samples in region B are far away from the distribution of the original data and
tend to be outliers. The samples can be screened according to the statistical characteristics
of the original samples. Based on the probability density function p(x) for each normal
operating data point of the initial samples, the 100β% confidence bound can be defined as
the likelihood threshold h that satisfies the following formula:∫

x:p(x)>h
p(x)dx = β, (6)

where p(x) is a multivariate Gaussian distribution and the above confidence bounds can be
found in a previous paper [46]. In particular, when the generated sample xGj satisfies the
following formula, it is considered as an outlier, as follows:

D2 = (xGj − µOX)
TC−1

OX(xGj − µOX) > χ2
q(β), (7)

where C−1
OX is the covariance of the input data of the original samples and χ2

q(β) is the
β-fractile of the Chi-square distribution, with a degree of freedom, q.

In summary, according to the aforementioned two-stage data selection strategy, k-qualified
samples are selected from the rough generated data and are denoted as

{
xSj, ySj

}
j=1,...,k. This

data selection strategy makes the selected virtual samples more homogeneous, in agreement
with the original data distribution.

3.2. SWGAN-SVR Soft Sensor Model

In this case, SVR is adopted as the base soft-sensor model for nonlinear processes.
SVR is a statistical learning method that uses the structural risk-minimization criterion
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instead of the empirical risk-minimization criterion for model construction [15]. The target
function of the SVR is as follows [15]:

minJ(w, b, ξi, ξ∗i ) =
1
2‖w‖

2 + γ
n
∑

i=1
(ξi + ξ∗i )

s.t.


yi −wTφ(xi)− b ≤ ε + ξi

wTφ(xi) + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0, i = 1, . . . , n

, (8)

where b is the bias, w is the weight vector, ξi and ξ∗i are slack variables, γ is a regularization
parameter that controls the penalty for samples exceeding the fitting error, φ is a nonlinear
kernel function, ε is an insensitivity coefficient, and n is the number of samples for the
SVR model.

The constrained optimization can be solved using the Lagrange function by introduc-
ing Lagrange multipliers. Subsequently, Equation (8) is converted into a dual problem,
as‘follows:

min
α,α∗

1
2

n
∑

i=1

n
∑

j=1
(α∗i − αi)(α

∗
j − αj)K(xi, xj) + ε

n
∑

i=1
(α∗i + αi)−

n
∑

i=1
(α∗i − αi)

s.t.


n
∑

i=1
(α∗i − αi) = 0

0 ≤ αi, α∗i ≤ γ, i = 1, 2, . . . , n

, (9)

where αi and α∗i are the Lagrange multipliers and K(·, ·) represents a kernel function. In
this study, the radial basis function (RBF) is adopted:

K(xi, xj) = exp(−ψ
∥∥xi − xj

∥∥2
), (10)

where ψ > 0 is a controlling parameter for the RBF kernel width.
Therefore, the SVR model can be described as

f (x) =
n

∑
i=1

(α∗i − αi)K(xi, x) + b, (11)

A flowchart of the SWGAN-SVR model is presented in Figure 3. It is difficult to
develop a reliable SVR soft sensor for the initial limited training data, {xOi, yOi}i=1,...,M. In
such a situation, the WGAN-GP is adopted for data augmentation and N virtual samples
are generated, which is denoted as

{
xGj, yGj

}
j=1,...,N . Furthermore, considering the unsta-

ble training process of the WGAN-GP, unsuitable virtual samples are generated, which
need to be screened out from the group of rough virtual samples. Consequently, after
employing the proposed two-stage data selection strategy; that is, the centroid metric
criterion S1 and statistical characteristic criterion S2, k-qualified samples

{
xSj, ySj

}
j=1,...,k

are obtained. By combining qualified virtual samples with the initial limited training
samples, a new augmented training sample set is obtained, which can be denoted as{

xOi ∪ xS j, yOi ∪ ySj

}
i=1,...,M,j=1,...,k

. Subsequently, an SVR soft sensor is constructed for

quality prediction. Note that other supervised soft-sensor modeling methods, such as
partial least squares regression and Gaussian process regression, can also replace SVR in
this framework.
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4. Results and Discussion

A numerical example and an industrial polyethylene process were adopted to validate
the effectiveness of the proposed SWGAN-SVR modeling method. The commonly used
root-mean-square error (RMSE), coefficient of determination (R2), and mean absolute error
(MAE) indices were used for the performance evaluation and are expressed as follows:

RMSE =

√
1
m

m

∑
t=1

(yt − ŷt)2, (12)

R2 = 1−
m

∑
t=1

(yt − ŷt)
2
/ m

∑
t=1

(yt − yt)
2, (13)

MAE =
1
m

m

∑
t=1
|yt − ŷt|, (14)

where yt and ŷt are the quality measurement and prediction values of the tth observation,
respectively, and m is the sample size.

4.1. Numerical Example

A numerical example with a two-dimensional input and one-dimensional output was
constructed to simulate the process of insufficient initial training samples:

x1 = 3u2 + 4u, u = −10,−9.8,−9.6, . . . , 10
x2 = 8u + 2 cos(πu/3), u = −10,−9.8,−9.6, . . . , 10
y = x1 + x2 + e

, (15)

where x1 and x2 are two state variables that are constructed using the variable u, y is an
output variable, and e is Gaussian noise with a zero mean and a variance of 0.01.
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In this study, 100 samples were collected. To build the soft-sensor model, 50 samples
were randomly selected as the training data and 50 samples were used for testing. In such a
situation, using only limited training samples to train an SVR soft sensor may be insufficient.
Therefore, it is essential to generate virtual samples to increase the data capacity and enrich
the data diversity.

First, we investigated the number of generated samples that were sufficient for this
example, using a 10-fold cross-validation algorithm. Specifically, a new training set
containing both the original samples and generated virtual samples was divided into
10 non-overlapping subsets. Subsequently, based on the ith subset, which was regarded
as a temporary test set, and extra subsets other than the ith subset, which was regarded
as a temporary training set, an SVR model was constructed. Each subset was used as a
temporary test set, in turn. Consequently, the total prediction result for a certain number of
generated samples was obtained across 10 trials. The RMSE results for different numbers
of generated samples are depicted in Figure 4. As the number of virtual samples increased,
the RMSE value first decreased and then increased. This is mainly because the generated
virtual samples filled the information gap in the initial training stage, which improved the
model prediction accuracy. When the size of the virtual samples was sufficiently large, the
influence of the initial samples was weakened, and more significant differences occurred
between the initial and virtual samples. Therefore, as illustrated in Figure 4, the appropriate
number of virtual samples for this example was 450.
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The scatter distributions of the original samples and the 450 generated samples are
presented in Figure 5a. Several unsuitable samples did not conform to the initial data
distribution. According to the proposed S1 and S2 data selection criteria, the scatter
distribution of the qualified virtual samples, rough virtual samples, and initial limited
samples are shown in Figure 5b. Unsuitable samples that were too close to the centroid
and distant outliers were filtered. Consequently, the qualified virtual samples matched
the distribution of the original samples. When combined with the original training data,
the qualified virtual samples served as complements to the initial samples. The SWGAN-
SVR model was built, based on the qualified augmented training samples; the prediction
results for the test set are listed in Table 1. For comparison, the prediction results of SVR,
WGAN-SVR, and WGAN-SVR using the S1 criterion (denoted as WGAN-SVR(S1)), and
WGAN-SVR using the S2 criterion (denoted as WGAN-SVR(S2)), are also listed in Table 1.
WGAN-SVR, WGAN-SVR(S1), WGAN-SVR(S2), and SWGAN-SVR outperformed the SVR
method, with smaller RMSE and MAE values and larger R2 values. This is mainly because
the generated samples increased the diversity of the training samples. The prediction
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performances of WGAN-SVR(S1) and WGAN-SVR(S2) were further enhanced, compared to
the results of WGAN-SVR. By adopting only one data selection criterion, unsuitable virtual
samples around the centroid or far-away outliers were screened out, which improved
the quality of the augmented samples. This also demonstrates that unsuitable virtual
samples result in the insufficient construction of reliable soft sensors. Furthermore, after
simultaneously adopting the S1 and S2 criteria, SWGAN-SVR achieved the best prediction
performance among the five methods. This indicates that a two-stage data selection strategy
is beneficial for selecting qualified augmented samples and improving the performance of
the base SVR soft sensor.
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Table 1. Performance comparison of SWGAN-SVR and other methods for the numerical example.

RMSE R2 MAE

SVR 30.399 0.933 27.248
WGAN-SVR 20.083 0.971 18.548

WGAN-SVR(S1) 18.222 0.976 16.653
WGAN-SVR(S2) 16.249 0.981 15.478

SWGAN-SVR 14.144 0.986 13.407

For a better illustration, the detailed prediction results and relative prediction errors of
the five soft sensors on the test set are presented in Figure 6a,b, respectively. As shown in
Figure 6a, SWGAN-SVR tracked the real trajectory better than the other four soft sensors,
and the prediction curve of SWGAN-SVR was the one that was most consistent with the
real curve. As illustrated in Figure 6b, the prediction errors of the proposed SWGAN-SVR
were much smaller for the entire test set, and the errors were mostly around zero. A
boxplot of the absolute prediction error values for the five methods is shown in Figure 7.
SWGAN-SVR had a narrower error range, which was closer to zero, than the other four
methods. Furthermore, as demonstrated through a comparison of the red lines in the boxes,
the median value of the absolute error was smaller than that of the other four methods,
indicating a better prediction performance for SWGAN-SVR.
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4.2. Industrial Polyethylene Process

An industrial polyethylene process [4] was utilized to verify the necessity and superi-
ority of the proposed method for practical applications. The product of the polyethylene
manufacturing process was sampled once daily from the laboratory. Hence, in the initial
stage of a new product grade, the collected quality variables (that is, the melt index (MI))
are insufficient for the development of a reliable soft sensor. After using a simple 3-sigma
criterion to remove outliers, 60 samples were investigated. The dataset was partitioned into
two parts: 30 randomly selected samples were used as the training data and the remaining
30 samples were used for testing.

Using a 10-fold cross-validation method, a suitable number of virtual samples was
first determined for this example. The complete RMSE indices for different numbers
of virtual samples are presented in Figure 8. The RMSE value was smallest when the
number of generated samples was 150. Hence, 150 virtual samples were generated as
an appropriate supplement to the initial limited samples. The proposed data selection
strategy was adopted to improve the quality of the generated virtual samples. Subsequently,
the proposed SWGAN-SVR model was built, based on the qualified augmented samples.
Furthermore, SVR, WGAN-SVR, WGAN-SVR(S1), and WGAN-SVR(S2) were built to
predict the MI value. The details of the prediction performance of the five methods on the
test set are listed in Table 2. According to the prediction results, the SVR method achieved
the largest RMSE value and smallest R2 value, indicating the worst prediction accuracy
among the five methods. This occurred because the initial training data were insufficient
for the construction of reliable soft sensors. With this data augmentation strategy, the
WGAN-SVR, WGAN-SVR(S1), WGAN-SVR(S2), and SWGAN-SVR methods can improve
the prediction accuracy, compared to the SVR approach. The generated virtual samples
fill the information gap in the initial data and increase the sample capacity. Moreover, by
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adopting the two-stage data selection criteria, the SWGAN-SVR method achieved the best
prediction performance among the five methods. The SWGAN-SVR method attempts to
select the qualified virtual samples and, subsequently, to improve the quantity and quality
of the initial training data. Note that owing to the strong nonlinearity of this example, the
R2 index was relatively smaller than that of the numerical example described in Section 4.1.
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Table 2. Performance comparison of SWGAN-SVR and other methods for industrial polyethylene.

RMSE R2 MAE

SVR 50.925 0.015 33.061
WGAN-SVR 36.227 0.502 22.550

WGAN-SVR(S1) 32.923 0.588 22.835
WGAN-SVR(S2) 34.597 0.546 21.828

SWGAN-SVR 28.854 0.684 19.379

The scatter distribution of the rough generated samples and selected unsuitable sam-
ples are presented in Figure 9. Virtual samples close to the centroid and the distant outliers
were filtered. The remaining qualified samples matched well with the distribution of
the original samples. Moreover, the diversity of the original samples increased with the
incorporation of the qualified samples.

Polymers 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 8. Total RMSE values of the different numbers of generated samples for the polyethylene 
process. 

Table 2. Performance comparison of SWGAN-SVR and other methods for industrial polyethylene. 

 RMSE R2 MAE 
SVR 50.925 0.015 33.061 

WGAN-SVR 36.227 0.502 22.550 
WGAN-SVR(S1) 32.923 0.588 22.835 
WGAN-SVR(S2) 34.597 0.546 21.828 

SWGAN-SVR 28.854 0.684 19.379 

The scatter distribution of the rough generated samples and selected unsuitable 
samples are presented in Figure 9. Virtual samples close to the centroid and the distant 
outliers were filtered. The remaining qualified samples matched well with the distribution 
of the original samples. Moreover, the diversity of the original samples increased with the 
incorporation of the qualified samples. 

 
Figure 9. Scatter distribution comparison of the qualified virtual samples for the polyethylene 
process. 

Figure 9. Scatter distribution comparison of the qualified virtual samples for the polyethylene process.



Polymers 2022, 14, 4769 12 of 15

The detailed prediction results of the five soft sensors on the test set are depicted in
Figure 10. The proposed SWGAN-SVR method was superior to the other four methods
in terms of tracking the real trend of the output variable. The prediction of SWAGN-SVR
was in good agreement with the actual trajectory of the MI value, and, thus, exhibited a
much smaller deviation. The relative prediction errors of the five methods are shown in
Figure 11. The SWGAN-SVR method achieved the best prediction performance and yielded
the smallest prediction error at most sampling points. Consequently, the obtained results
indicate that the proposed SWGAN-SVR soft sensor can enhance prediction performance
when dealing with insufficient training samples.
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5. Conclusions

In this study, a reliable soft sensor framework is developed to enhance prediction
performance by introducing augmented data. Because having limited training data will
be insufficient for establishing a reliable soft sensor, rough virtual samples are generated
using the WGAN-GP method to enrich the sample information. Subsequently, based on a
two-stage data selection strategy, qualified augmented samples are gradually selected to
eliminate the negative effects of unsuitable samples on the prediction performance. Based
on the qualified augmented training samples, the SWGAN-SVR method is designed to
capture the process characteristics, which is beneficial for regression. The prediction results
for the two examples demonstrate the advantages of the proposed approach. Further
investigations will aim to enhance the quality of the generated samples, using GANs.
Additionally, the combination of the process characteristics to generate more informative
samples for practical applications is an interesting topic.
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