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Abstract: Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic
patterns proposed as a dominant tool for the ‘bottom-up’ fabrication of nanomaterials with different
levels of ordering. The present review article focuses on the recent updates to the self-association
of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly
describe the block copolymers, their types, microdomain formation in bulk and micellization in
selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates
viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety
of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to
micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity.
Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral
block-charged block can transform one block to become hydrophobic under the influence of a
stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly
are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-
corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced
self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion
complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block
copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.

Keywords: block copolymers; self-assembly; polymer micelle; polymersomes; drug delivery

1. Introduction

Amphiphilic block copolymers are constituted of two or more different polymer size
blocks, often incompatible, chemically linked in a linear or branched fashion. The blocks can
be a neutral polymer (hydrophilic or hydrophobic) or polyelectrolyte (anionic, cationic or
zwitterionic) [1–3]. A variety of structures can be obtained from such different constituting
blocks that are schematically shown in Figure 1.

In most extensively investigated copolymers, diblock and sometimes triblock copoly-
mers have been examined. The hydrophilic block in such copolymers includes polyethylene
oxide (PEO) or polyethylene glycol (PEG) condensate type nonionic surfactants (some of
which may not be polymeric due to low molecular weight PEO) that are highly useful and
commercially available as Tweens®, Tritons®, Soluplus®, Cremophor EL®, Solutol HS15®,
TPGS®, etc. Other hydrophilic blocks such as poly(N-isopropylacrylamide) (PNIPAM),
polyvinyl caprolactam (PVCL), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) as
well as some polyacids and polybases are also well-known. The hydrophobic blocks can be
of polypropylene oxide (PPO), polylactic acid (PAA), polycaprolactone (PCL), polybutylene
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oxide (PBO), polystyrene oxide (PSO), polybutadiene (PB), polystyrene (PS), polymethy-
lacrylate (PMA), etc. Some common examples of the hydrophilic and hydrophobic blocks
considering their charges are illustrated in Figure 2.
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Studies have reported the significance of a few Food and Drug Administration (FDA)-
approved block polymers such as poly(E-caprolactone) (PCL), polylactic acid (PLA), polyg-
lycolic acid (PGA) and polylactic acid-co-glycolic acid (PLGA) due to their biocompatibility,
low cost and biodegradability [4–7]. A rising research interest in long-term implantable
drug delivery systems for a semi-crystalline degradable polymer PLA is mentioned in the
reported studies due to its good accelerating rate of bio-absorption, low cost and ease of
availability. Additionally, functional polymeric materials with stimuli-responsive blocks
have been of interest in recent years [8,9]. External stimuli such as temperature, pH, light,
ultrasound, and magnetic field in blocks provide additional properties that modulate the
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chain conformation in different environments, and can transform the block nature from
hydrophilic to hydrophobic and vice versa, thereby resulting in changes of macroscopic
characteristics such as solubility and mechanical features that are useful for wide appli-
cations in biointerfaces, thin films, coating, and as drug delivery vehicles [10–13]. These
block copolymers develop amphiphilic character and show brilliant surface-activity and
micelle formation in aqueous media [1,2]. This behavior is mostly governed by hydropho-
bic interactions (though in few cases other non-covalent interactions may also operate) in
comparison to conventional low molecular weight surfactants [1–3]. However, the nature
and the molecular composition of blocks and the selectivity of the solvent influences the
formation and morphology of nanoaggregates [4–7].

Like block copolymers, graft copolymers are also surface-active and behave like
polymeric surfactants with applications as emulsifiers, surface modifiers, coating agents
and compatibilizers for polymer blends. They constitute multiphase polymer systems
often containing two or more incompatible polymer chains in which one chain (backbone)
has multiple branches on which chains of other polymers are covalently linked through
polymerization and are called grafts. Graft copolymers exhibit core-shell self-assembly
in selective solvents that can load hydrophobic bioactive substances and hence can be
employed as drug delivery vehicles. There exist some interesting review articles that
provide updated information on synthesis, identification/analysis, solution behavior and
the various application areas of drug delivery [12–16]. Several synthetic and natural
polymers can be conveniently transformed into useful amphiphilic graft copolymers.

Graft copolymers can be obtained following three common techniques viz “grafting
from”, “grafting onto” and “grafting through”. The former method includes the group of
anionic sites beside a polymer backbone either by metalation of C–H or C–halogen bonds
or by the addition of organometallic compounds such as butyl lithium to reactive vinyl
groups. The method provides graft polymers with broad distribution associated with some
contamination and degradation. The “grafting onto” approach involves the chain coupling
and termination and provides graft copolymers with uniform grafts randomly distributed
beside the backbone. Meanwhile, the latter involve macromonomers prepared by living
polymerization, reacting with well-defined side chains (Figure 3).
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Since the properties of such polymers depend on grafting features, it has now become
convenient to finely tune these transformations. The control of grafting/uniformity in the
number and size of grafts is a more tedious task in their analysis as compared to their block
copolymer counter-parts and so it is difficult to characterize them. However, the grafting
of different kinds of monomers to the polymer backbone has long been investigated for
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enhancing their surface activity, adsorption onto solid surface and micelle formation in
solution [14–19].

This review is confined to amphiphilic block copolymers which have become impor-
tant in macromolecular research in the past few decades, and makes an attempt to briefly
cover the recent advances in their synthesis strategies, self-assembly behavior, and their
emerging scope of application in drug delivery. The self-assembly of block copolymers
i.e., in solid state and liquid state leading progressively to varied micellar structures i.e.,
spherical, ellipsoidal, rod-like, worm-like, polymersome, etc. under different solution con-
ditions is discussed. Possible applications of these polymeric aggregates as drug delivery
vehicles are described. The conclusion highlights that the future perspective of this review
will attract emerging researchers working on block copolymers to understand their ability
to understanding their nanoscale self-assembly which can be used in the fascinating area of
polymer research.

Likewise, hydrophobically altered polymers are water-soluble entities which have
hydrophobic groups (<2%, mole fraction) in a small amount that directly linked to the main
polymer chain, and have recently attracted a lot of attention in oil exploration, paints, min-
eral separation, cosmetics and pharmaceutical formulations due to interesting synergistic
rheological behaviour [5–12]. Several synthetic polymers and polysaccharides have been
hydrophobically modified to examine their self-assembly in water [20–27]. Even poorly
water soluble drugs have been covalently attached to the polymer backbone to induce am-
phiphilic character that displays self-assembly in solution. The hydrophobically modified
polymers show hierarchical self-assembly in water to form nanoaggregates/nanogels that
may be used as potential reservoirs for drug delivery applications [28–32].

2. Synthesis Strategies

An ordinarily used polymerization process for unsaturated monomers is free radi-
cal polymerisation. However, due to uncontrolled polymerization, the polymers formed
are polydisperse with low control on molecular weight. Living anionic polymerization
developed in the past 50 years has led to distinct polymers with low polydispersity. How-
ever, this suffers from the disadvantage that only few monomers can be polymerised or
copolymerized to provide block copolymers with great difficulty. The controlled radical
polymerization (CRP) techniques developed in the late 80s could make the synthesis highly
convenient and provide block copolymers with well-defined architecture and polydis-
persity almost equal to one [33–35]. The polymerization can be performed in a variety
of solvents including water, within a wide temperature range. The CRP techniques use
specially designed reagents which act as equilibrium pivot between propagating radicals
and dormant species. Typical examples of CRPs are atom transfer radical polymerization
(ATRP), reversible addition fragmentation polymerization (RAFT) and nitroxide-mediated
polymerization (NMP). ATRP uses a special transition metal catalyst so that the living
process can be shut down or restarted depending on the experimental conditions. It turned
out to be a robust method for the synthesis of block copolymers with precisely controlled
chemical composition and complex architecture using a variety of monomers with low
polydispersity [36–38]. This technique is very useful in industries involving the polymeric
materials for drug delivery applications. The RAFT polymerisation (discovered in CSIRO
1998) is one of the several living or controlled radical polymerization techniques that can
be used to produce a pre-chosen polymer with narrow molecular weight distribution with
a wide range monomer making use of a chain transfer agent in the form of thiocarbonythio
or related compounds [39–41]. RAFT agents are capable of polymerizing any monomer
that can undergo polymerization by simple free radical polymerization. The nitroxide-
mediated polymerization (NMP) makes use of nitroxide initiator to produce polymers of
low polydispersity and well controlled stereochemistry [42–45].
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3. Self-Assembly
3.1. In Solid State

Block copolymers play a significant role in modern macromolecular science by cover-
ing the full spectrum of polymer chemistry, polymer physics, and polymer materials [25,46].
Due to their structural features, block copolymers are vastly employed as thermoplastic
elastomers in nanopatterning/nanolithography, fuel cells, drug delivery systems, etc. All
these applications depend on the nature of monomers that make the blocks, block type
(di-, tri-, multi-, star-) and molecular characteristics (total molecular weight and % blocks).
Thus, a block copolymer made from the desired polymeric blocks with well-defined molec-
ular characteristics (total molecular weight and % blocks) can be employed for specific
applications [3,47].

The presence of incompatible/distinct blocks, their chemical nature, sizes and different
structural features make block copolymers excellent multiphase systems that lead to an
ironic variety of useful microdomain structures in solid state (in bulk) [16,26,48]. In the
case of simple AB diblock copolymers, depending on the volume fraction of the A and
B blocks (and to some extent on the chemical nature of the constituting blocks, degree of
polymerization (DP) and Flory-Huggins interaction parameter), the microdomain structures
that may form are illustrated in Figure 4. The situation becomes more complicated in
triblock (ABA and ABC) and multiblock block copolymers.
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Figure 4. Schematic illustration of diblock copolymer showing various microdomains depending on
the relative composition of the blocks.

3.2. In Liquid State

Though the research on the block copolymers has been in the forefront of polymer
science, interest has exponentially grown and developed due to their distinct solution
behavior. In selective solvents (with one block as a good solvent while the other a non-
solvent), the amphiphilic block copolymer molecules such as conventional surfactants
self-assemble to form nanosized core-shell polymer micelles or bilayered polymersomes
in aqueous solution depending on different factors viz., molecular structure of the con-
stituting irreconcilable blocks, the block composition, molecular weight, the hydrophilic
and hydrophobic block ratio, temperature, pH, charge, concentration and the presence
of additives (electrolytes, non-electrolytes, organic or inorganic compounds, hydrotropes,
surfactants), etc. (Figure 5).
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Figure 5. Self-association of amphiphilic block copolymer as polymer micelle or polymersomes in
aqueous solution.

Polymer micelles are able to solubilize a large amount of hydrophobic substances.
The site of solubilizate depends on the nature of the hydrophobic substance as well as on
the two blocks that form core-shell micelles. Polymersomes are capable of solubilizing
both the hydrophobic as well as hydrophilic substances. It is for this reason that block
copolymers nanoaggregates have become very interesting nanoreserviors for drug delivery
systems [49–53].

The formation of nanoaggregates by the self-assembly of amphiphilic copolymers
with different morphologies depends on the nature, structure (total mol. wt., %composition
of blocks) and solution conditions such as temperature, pH, ionic strength and the presence
of additives. Additionally, the interfacial energy between two blocks and their stretching
lead to transitions from one morphology to another. For simpler systems, morphological
features such as spherical micelles, rod- or worm-like micelles and vesicles can be predicted
from the packing parameter p = v/aolc (where v is the volume of the hydrophobic segment,
ao is the contact area of the head group and lc is the length of the hydrophobic segment).
Figure 6 illustrates the micellar transition giving an account of p value.
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Polymer micelles are kinetically more stable than conventional surfactant micelles [49–53].
Furthermore, depending on the chemical structure of block copolymers, different types
of micelles such as frozen micelles, janus micelles, schizophrenic micelles, and crew-cut
micelles are formed which are schematically illustrated in Figure 7.
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A triblock copolymer with a hydrophobic end block and two hydrophilic oppositely
charged polyelectrolyte blocks with the end one of these having high charge density
can be seen forming core-shell-corona micelles with ionic corona [54,55]. Amphiphilic
block copolymers with hydrophobic block such as polystyrene (PS) and poly(methyl
methacrylate) (PMMA) which have high glass transition temperature make the core glassy.
These nanoaggregates are stable in solution since molecular motion in the hydrophobic
core is arrested and the aggregate has a frozen core. However, these are not equilibrium
(dynamic) structures like those from surfactants and block copolymers and do not exchange
molecules from micelles [56–59]. Janus micelles do form as result of self-assembly of ABC
type triblock copolymers with the two incompatible and hydrophilic or hydrophobic
blocks [60–63]. The crew-cut core shell micelles are obtained when the core forming block
is much larger in size than the hydrophilic block [64–66]. Zhang and Eisenberg examined
polystyrene-b-poly (acrylic acid) aggregates in water following the dissolution procedure
and using good solvent to the solution to induce aggregation of the polystyrene segments
and noticed that crew-cut aggregates can show multiple morphologies such as spheres,
rods, vesicles, lamellae, large compound micelles and several other structures [66].

In addition, micelles can be cross-linked as well as surface-functionalized by the
attachment of bioactive substances which can be advantageously used (Figure 8). Cross-
linked micelles remain undissociated even on extreme dilutions. Additionally, the cross-
linking boosts the micelle stability without the drug loading capability fading. It impacts
the permeability of the shell and consequently alters the temporal rate of the drug release.
Thus, functionalization of BCPs and ease in cross-linking of the core or shell influence the
drug loading capacity and release the entrapped hydrophobic drugs [67–70]. In addition
to this, core degraded micelles are also possible where the hydrophobic core degrades
and shrinks while the shell is not affected. The amphiphilic copolymers can form mixed
micelles with other ionic/nonionic surfactants or polymers to further improve performance.
Such strong synergism in mixed surfactant systems can help in fine tuning the features of
polymer aggregates for desired applications.
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4. Types of Micellar Assemblies
4.1. Schizophrenic Micelles

Double hydrophilic block copolymers (DHBCs) constitute a new class of aqueous mul-
tiphase systems and have speedily increased significance with unique behaviour. These can
be used for a series of applications in stabilization of colloidal dispersions, crystal growth
modification, and polyelectrolyte complexes as drug carrier systems [71–73]. Figure 9
shows some commonly used DHBCs which may constitute a responsive block in DHBC.
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Most extensively examined stimuli-responsive polymers are thermoresponsive poly-
mers followed by pH-responsive polymers. DHBCs with both such stimuli-responsive
blocks can self-assemble to form two distinct micelles with reversed core and shell de-
pending on which of the hydrophilic blocks is turned hydrophobic under the influence of
some stimuli such as temperature, solution pH, light, ultrasound, etc. or in the presence
of ionic strength or a certain additive. Additionally, micelles can be generated by render-
ing a polyelectrolyte block hydrophobic through the electrostatic interaction by adding
oppositely charged polymers. Studies on DHBC polyionic-thermoresponsive blocks are
reported to form micelles with core and shell interchanged under the influence of some
stimuli [74–82]. For example, PAA-PNIPAM diblock copolymer has shown the micelles
with PAA core in very acidic pH at ambient temperature, but under neutral or alkaline pH,
micelles with PNIPAM core were formed at a temperature above the LCST of PNIPAM.
Additionally, interesting structures can be developed in diblock polyanionic-polycationic
copolymers in water and in the presence of salt. A DHBC with a neutral-polyelectrolyte
block is molecularly dissolved in water. However, when a solution of an oppositely charged
polyelectrolyte is added, self-assembled micelles with complexed ionic core results due to
the electrostatic interaction between the oppositely charged blocks. A DHBC with both
polyelectrolyte blocks but with opposite charge may not dissolve in water, but undergoes
self-assembly in the presence of a small amount of salt. Thus, careful choice of the two
hydrophilic blocks and mol. wt./block composition allows the formation of micelles with
high efficiency [83–86].

pH-responsive polymers can release or accept protons by tuning a pH of aqueous
solution. These polymers in their assembly involve acid functionality viz. carboxylic or
sulfonic acid groups or basic functional groups viz. amines. These so-called “smart and
intelligent polymers” are being exploited for a variety of technological and medical appli-
cations. The reports on dual responsive as well as multi-responsive polymers undergoing
self-assembly do exist [87–90]. Extensive studies on water-soluble diblock copolymers
that reveal so-called “schizophrenic” character have been reported by Prof. Armes and
co-workers and few others [91,92]. Schizophrenic micelles (with reversed core and shell)
can be formed from a DHBC when each block can turn hydrophobic under some response
such as temperature, pH, electronic charge, or solution condition such as concentration,
presence of different additives, molecular structure of the constituting irreconcilable blocks,
the block composition (molecular weight), the hydrophilic and hydrophobic block ratio,
etc. as illustrated in Figure 10.
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4.2. Polyion Complex Micelles (PICMs)

Polyelectrolytes (polyacids or polybases) are water-soluble charged polymers that
have peculiar aqueous solution behaviour where they dissociate to form a macroion and
counterion. The counter ion is condensed onto the macroion or remains as hydrated in
bulk solution. The solution behaviour of polyelectrolytes is greatly altered in the presence
of salts and also by pH and temperature. Oppositely charged polymers in aqueous solution
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can form nanoscale water soluble/insoluble complexes or coacervates in solution due to
columbic attraction. The formation of soluble/insoluble polyion complexes (PICs) depends
on several factors such as the chemical structure, charge, flexibility of the macroions, their
mixing ratio concentration, as well as on solution conditions such as pH, temperature,
and ionic strength [93–96]. Polyion complex micelles (PICMs) have an insoluble core of
complexed polyelectrolytes and hydrated shell of hydrophilic block when aqueous solution
of a neutral-polyelectrolyte block copolymer interacts with an oppositely charged polymer
or surfactant (Figure 11).
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Fuoss et al. in 1949 first reported the formation of polyelectrolyte complexes (PECs)
from the two oppositely charged polymers. However, it was not until 1965 that Michaels
et al. observed stable nanosized spherical complexes by mixing two oppositely charged
polyelectrolytes by changing mixing composition, presence of salt, and solution conditions
such as pH, temperature, presence of salt, etc. Detailed theoretical explanations describing
counterion condensation on inter-polyelectrolyte complexes have been provided. Polyelec-
trolyte complexes (both natural and synthetic) have had great applications in textiles, ink
and paper industries as binders, etc. Such PICMs have been of much interest in the last
two decades and are good vehicles due to high drug loading in the biomedical field as
drug carriers or vectors for gene delivery. Several reviews have been published on their
formation, characterization, properties and applications [97–100].

PICs form predominantly because of electrostatic interaction between the oppositely
charged polyelectrolytes though other interactions, such as hydrogen bonding, and hy-
drophobic interactions may also contribute to complex formation. The gain in entropy
due to the release of counter ions from the macroions of the complex formed is dictated
by stoichiometric mixing and solution conditions. These can be soluble, stable colloidal
dispersions or insoluble coacervates. The effects of ionic strength and pH are remarkable in
the formation of PICs from different ones and their characteristics (charged groups, mol.
wt., chain flexibility, etc.) and mixing proportion. Low ionic strength allows the complex
structure closer to its thermodynamic equilibrium while high ionic strength would shrink
it due to the shielding of polyelectrolyte charges.

PICMs form when a polyelectrolyte complex becomes amphiphilic and thus shows self-
assembly in analogy to surfactant. Usually, when an amphiphilic block or graft copolymer
with one polyelectrolyte moiety in aqueous solution is present, core-shell-charged polymer
micelles can form with the core of the hydrophobic block. However, in case of DHBCs
(from hydrophilic neutral block-polyelectrolyte block) there is no self-assembly and the
solution contains molecularly dissolved polymer. To such a solution, if an oppositely
charged polymer is added, with progressive charge neutralization of interacting oppositely
charged species, it may so happen that a hydrophobic complex is formed. This may result
in the hydrophobic polyelectrolyte complex attached to the hydrophilic chain of the neutral
water-soluble polymer chain and gives rise to amphiphilic character and consequently
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self-assembly. The nanoaggregates formed with complexed core and hydrated shell are
polyelectrolyte complex micelles. Several polyelectrolytes, both synthetic and natural,
can interact with DHBCs in aqueous mileu form PICM, which can be characterised using
spectral, scattering, thermal and microscopic techniques. Interesting structures can be
developed on interaction of two DHBCs with oppositely charged polyelectrolyte blocks
and the same or a different hydrophilic neutral block. Additionally, these systems can
further be designed using stimuli-responsive DHBCs. In short, the PICM (or sometimes PIC
polymersomes) that may form can have different morphologies and features that depend
on the mol characteristics of DHBCs, polyelectrolytes, their composition in mixed systems
and of course on solution conditions [101,102]. There have been some interesting review
articles to which readers can refer on PICs and PICM [93–98]. We describe some recent
studies carried out in the past few years.

4.3. Polymerization Induced Self-Assembly (PISA)

Polymerization-induced self-assembly (PISA) is a cost-effective one-pot approach that
requires simple procedures to produce polymeric nanoparticles proficiently of various
sizes/shapes (sphere, worm-like micelles and vesicles) at high solid concentration as high
as 50% (Figure 12).
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PISA often involves numerous types of living polymerization techniques; most stud-
ies operate RAFT [103–105]. Here, a soluble precursor block is chain-extended using a
monomer whose corresponding homopolymer is insoluble in the chosen solvent. When
the second block reaches a certain level of polymerization, it finally becomes insoluble and
results in situ self-assembly and produces nanoaggregates. There have been several arti-
cles/ reviews published in the past decade on the production, properties and applications
of PISA in the fabrication of a variety of polymeric nanoparticles [106–110].

4.4. Crystallization-Driven Self-Assembly (CDSA)

Living crystallization-driven self-assembly (CDSA) has developed as a growth route
to form colloidally stable nanoparticles and more complex hierarchical assemblies with
the desired size and low size dispersity from crystallizable polymers. The origin of the
low dispersity has often been described as initiation being faster than propagation, and
termination is absent. When crystal packing forces dominate, a morphological transition is
triggered and may lead to elongated nanostructures such as cylinders, nanoribbons, fibres,
etc. that depend on crystallization temperature and time, solvent quality, and polymer
composition. Thus, the crystallization entails an accurate control of their molecular weight,
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and their distribution and stereochemistry, and so crystallizable polymers can be used
as the immiscible core-forming block to create nanostructures with additional structural
characteristics [111–115].

4.5. Cross-Linked, Functionalised and Stimuli-Responsive Micelles

Polymer micelles can be cross-linked using different reagents where both the core and
shell can be cross-linked. Furthermore, these micelles can be functionalized at the terminal
end of the hydrophilic tail (Figure 8). These possibilities provide better opportunity for
such micelles to act as nanocarriers. The core cross-linking often increases micelle stability
and such cross-linked micelles retain their structure even at low concentration below critical
micelle concentration (CMC) of micelle, thereby forming polymeric amphiphile. These
micelles can be isolated and re-dissolved as stable nanoparticles and thus prolong the
circulating time. The most vulnerable approach is the core cross-linking. This can be
achieved using a polymerizable group in the hydrophobic moiety of the block copolymer
or adding a polymerizable monomer that stays in the micelle core and then is polymerized
using a certain initiator. Sometimes, the decrease in free volume of the micelle core may
adversely affect the drug loading capacity. Likewise, the shell of micelles can be cross-linked
and the core of the shell cross-linked micelle can disintegrate through degradation/good
solvent resulting in nanocontainers as reported by several researchers [67–70,116]. Another
way to alter micelle morphology/characteristics is to functionalize the chain ends of the
soluble shells. The chemical functionalization includes the covalent linkage between chain
end and an agent that could be ligand. The ligand receptor interaction being highly
selective helps in targeting the release of the solubilized drugs to the site of interest. The
presence of different additives and salts that can be fine-tuned micellization and micelle
characteristics can be also employed for improved solubilization and release. Furthermore,
stimuli-responsive block copolymer can form core-shell aggregate which can be used
for drug loading. The drug can be released under the influence of external stimuli such
as pH, temperature, magnetic response. There are excellent reviews describing cross-
linked, functionalised and stimuli- responsive micelles in the context of drug delivery
systems [117–120].

4.6. Mixed Micelles

Two or more block copolymers may interact synergistically and form mixed poly-
meric system with improved features that can be employed as vehicles for drug delivery
systems [121,122]. The mixed micelles can have improved physical stability, enhanced
solubility and drug bioavailability, and provide better functionality by simple mixing of
the constituting amphiphilic copolymers. Polymer mixed micelles from block copolymers
as well as polymer-surfactant mixed systems have been of great interest over the past few
decades due to their applications in industries and biomedical fields. Several research
papers on mixed micelles assembled from block copolymers and their use for drug delivery
have appeared in the past and have been critically reviewed. The presence of incompatible
blocks drives the block copolymers to a separate phase, but the covalent bond between
them prevents phase separation at a macroscopic length scale and occurs at a nanometer
length scale, thus producing a rich array of nanostructures in solid state and as well as in
selective solvents. These structures exhibit tunable and enhanced mechanical, electrical
and chemical properties and thus are significant from a technological view point. Thus,
complete information on nanostructures coupled with precise synthesis of block copoly-
mers is highly desired for practical purposes. Additionally, the theoretical studies based on
the self-consistent field theory (SCFT) have been used to examine the micro scale phase
separation and self-assembly of block copolymers [123–125].

4.7. Polymer-Drug Conjugates

Polymer-drug conjugates a contain covalent bond between a water-soluble polymer
and a drug. This idea was propounded by Rings Dorf in the mid-1970s. Polymer-drug
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conjugates behave like a prodrug that resides inactively before cutting of the conjugated
bond and release of the active drug (Figure 13). The resulting drug conjugates readily
self-assemble in solution and can potentially be used in drug delivery [126–132].
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The conjugate protects the drug, enhances solubility, alters pharmacokinetics, de-
creases the immunogenicity, and may help develop delivery systems for both active and
passive targeting. Several drugs have been conjugated with homopolymers viz. PEG,
N-(2-hydroxypropyl) methacrylamide, polyamino acids such as polylysine (PL) and poly
L-glutamic acid (PGA), polysaccharides as well as block/graft copolymers as possible
drug carriers. Of these, polysaccharides are highly stable, safe, non-toxic, biodegradable,
biocompatible and contain several polar/ionic groups that produce bioconjugate when
covalently linked with hydrophobic drugs. The polymer-drug conjugation is important in
cancer chemotherapy as the clinical use of anticancer drugs suffer from their poor water
solubility, short circulation life, non-site-specific targeting, dose-dependent toxicity, and
metabolic instability. Instead of novel formulations, careful procedural considerations must
be made in their clinical usage since polymer-drug conjugates are evaluated for regulatory
reasons as a new chemical entity [126–132].

5. Self-Assembly in Drug Delivery Application

The potential to significantly increase the solubility of poorly water-soluble drugs,
lengthen the half-life of the drug in systemic circulation, release the drug at a sustained
and controlled rate, deliver the engineered drug in a targeted manner with little interfer-
ence to healthy cells, suppress drug resistance, and lessen immunogenicity are put forth
with the rapid and enormous advances in nanotechnology, and various drug delivery
systems [133–135]. Biocompatibility and biodegradability along with the high drug loading
capacity and controlled release profile are important for the block copolymers acting as
vehicles. In contrast to surfactant micelles, polymeric micelles are far superior as these
are formed at very low concentration (low CMC), larger in size with low polydispersity,
more firm with a slower rate of dissociation, allow retention of loaded drugs for a longer
period of time, and achieve higher accumulation at the target site. A cumulative volume of
research during the past several years has spurred the development of the polymer-based
drug delivery systems [48,102]. Guiraud et al. promoted 25R2 for DNA transfection of
skeletal muscle in a similar manner to P105 [136]. Zhang et al. reported the P123 and
F127 mixed system for the treatment of multidrug-resistant tumors [137]. Hassanzadeh
et al. synthesized F127 and 10R5 mixed micelles for doxorubicin to enhance its thera-
peutic function and reduce the side effects to normal cells [138]. D. Patel et al. reported
the Curcumin solubilization and release profile for polymeric micelles [139,140]. Basak
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et al. scrutinized the temperature and pH effect on the spherical micelles of F127 which
were used for hydrophobic drug encapsulation [141]. Meng et al. reported the Pluronic
F-68-coated carbon nanotubes on mesenchymal stem cells [142]. The effectiveness of drug
encapsulation and the kinetics of drug release are vital for a block copolymeric micellar
cargo in drug delivery. The innovative block copolymer platforms have intrinsic variations.
The delivery of drug from drug-loaded micelles in the body depends on their size/shape
(typically, an ideal carrier is of uniform size less than about 100 nm) and surface properties.
These parameters are strongly dependent on the block constituting polymer chains, their
types, molecular weight and block composition along with temperature, pH, and presence
of salt in aqueous media. It is therefore not surprising that a variety of copolymers using
different monomers and block compositions have been attempted to form micelles or poly-
mersomes that can show favorable drug solubilization with its controlled release profile
while the core of polymer micelles is essentially hydrophobic, and can solubilize hydropho-
bic drugs, and polymersomes with bilayer-like structures (similar to liposomes formed by
phospholipids) can solubilize both hydrophobic and hydrophilic drugs. Therefore, the fine
tuning of these features is of prime importance to design a good drug delivery vehicle with
enhanced stability [143–149]. Sun et al. synthesized doxorubicin-pluronic F68 conjugate
micelles for resistant human erythroleukemic cancer cells [141]. Zang et al. reported an
interesting review on P123 micelles used for various kind of drug delivery [142]. Tang et al.
described the Porous organic polymers for drug delivery: hierarchical pore structures, vari-
able morphologies, and biological properties [143]. Additionally, the same group reported
on poly(l-histidine)-based nanovehicles for controlled drug delivery [144]. Furthermore,
the functionalization of the outer surface of these micelles nanoaggregates improves physic-
ochemical and biological properties favorable for receptor-mediated drug delivery. Some
polymer-based drug encapsulation and release formulations are currently undergoing
Phase I/II clinical trials [145–147]. Water-soluble polymers show weak surface-activity
and adsorption on solid surfaces while amphiphilic copolymers are surface-active and can
stabilize colloidal particles through steric stabilization where the hydrophobic moiety is
anchored between particle and hydrophobic chain. The stability can be further improved if
the hydrophilic shell is charged and the colloid stability is governed by electrostatic stabi-
lization. Stimuli-responsive block copolymers where the hydrophilic/hydrophobic chains
show stimulus response show remarkable adsorption or dispersion stability that responds
to the applied stimulus [147–149]. In most cases, the hydrophilic segment is PEG, though
other water-soluble thermoresponsive blocks from PVME, PVNCL, PNIPAM and others
such as PVA, PVP are employed. The hydrophobic moiety can be thermoresponsive PPO
(commonly used) or PB, PVP, and biodegradable polymers such as PCL, PLA, and PGLA
are used to form core-shell nanoaggregates with high drug loading capacity and exhibiting
controlled release. The stimuli-responsive ligand has further widened the possibility for
their use in targeted drug delivery.

However, there are some major problems in the clinical testing of some drugs. The
in vivo instability and the firm clearance of drug from the blood by the reticuloendothelial
system (RES) is one such challenge. To circumvent this problem, nanocarriers with some
hydrophilic polymers such as PEG and non-ionic amphiphiles based on it etc. are linked so
that highly hydrated flexible PEG successfully escaped from the RES. Additionally, polymer
adsorption onto drug-loaded nanoparticle may improve the stability but is undesirable for
toxicity issues [150,151]. The possibility of cross-linking the core as well as shell further adds
to the advantageous features. Alternatively, an external cross-linker can be used. There
are several reports on shell-cross-linkable micelles and those containing functional groups
at the chain end of the hydrophilic shell [146–148]. Additionally, the graft copolymers of
polysaccharides (neutral or charged) backbone with grafts of polymerised hydrophobic
chain of monomers can form nanoaggregates suitable for drug delivery [149–151].



Polymers 2022, 14, 4702 15 of 21

6. Conclusions and Future Perspectives

The present review offers an insight into the self-assembly and structure development
of various amphiphilic block copolymers in a targeted drug-delivery system. Self-assembly
of amphiphilic block copolymers is spontaneous and often a reversible organization of
molecules into nanoaggregates, often called micelles, driven by hydrophobic effect. It
is a ubiquitous phenomenon with immense applications in chemical industries, in biol-
ogy and in biomedical sciences. The advances in controlled polymerization processes
to synthesise such amphiphilic block copolymers with a variety of monomers in desired
molecular characteristics (structure, mol. wt., block composition) and low polydispersity,
and in their characterization techniques have generated much research interest to develop
advanced therapeutic systems. During the past several decades, these block copolymers
have shown progressive increase in market share, i.e., about 40% of the total polymer
production worldwide. However, the market shows dominance of polyethoxylated prod-
ucts, i.e., those with PEG hydrophilic chain as these are often compatible with other types
of polymers forming mixed systems with improved solution properties, enhanced per-
formance and commercial importance. As a consequence, the Polymeric micelles (PMs)
and polymersomes have become so important due to their potential as nanoreserviors
to solubilize hydrophobic therapeutic agents either in aqueous or non-aqueous media
in drug delivery systems as powdered or liquid formulations. Such performance is rel-
atively due to more hydrated thermo- and pH-responsive micelles and longer retention
period of loaded drugs in polymeric micelles or due to the slower dissociation rate of
these micelles. It is therefore important to design block copolymers using monomers
(charged/nonionic/stimuli-responsive) to produce a well-defined biocompatible/nontoxic
block copolymer that self-assembles into well-characterised nanostructures with high load-
ing capacity for hydrophobic drugs with optimized release kinetic profile. The recent
development has shown the rapidly increasing importance of DHBCs and PIC micelles
for fruitful future research towards the exploration of new applications. The potential of
these micelles is much larger and has excellent properties as pigment stabilizers or crystal
growth modifiers. PISA results in in situ self-assembly and produces nanoaggregates
which can be used in the fabrication of a variety of polymeric nanoparticles. Furthermore,
to enhance the drug loading and release efficacy, grafting of polymers, cross-linking or
surface-functionalization of polymers can be achieved. Polymer-drug conjugations help to
develop delivery systems for both active and passive targeting. Even the mixed micelles
improve the physical stability and enhanced solubility with improved features so that they
can be employed as vehicles for drug delivery systems. These nanostructures generated
from self-assembly of block copolymers are highly desired platforms for drug delivery
applications and are being clinically tested.

The current challenge is to design and formulate the micellar systems that enhance
its specific delivery to the site of action with effective penetration ability. Additionally, the
drugs transport within the body and its targeted delivery is one of the recent challenges.
Overall, in this review, the block copolymer classification, synthesis, various types of block
copolymers and its self-assembly with contemporary applications in nanotherapeutics are
briefly deliberated. The block copolymers and associated nanostructures grasp massive
potential for enhancing the therapeutic efficacy. Despite the exciting growth of block
copolymer research in recent years, their utilization in drug delivery systems has not yet
been fully exploited. By binding the intrinsic strengths of block copolymers and their
synthetic approaches, their potential can be applied to shrink the gap between their design
and applications. Such a brief review presented here will surely inspire the readers to
infuse the amphiphilic block copolymer features whose mode of action can be modulated
as per the desired applications of therapeutics delivery in the field of medicine.
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