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Abstract: The circular economy includes, among other things, the use of waste materials. One
such material is biochar, which should not be used as a fuel because its combustion generates large
amounts of air pollution. This study evaluates the feasibility of using biochar as a partial filler in
a polymer concrete. The components of the polymer concretes used in this study were vinyl-ester
resin, traditional microfiller—quartz powder, waste microfiller—biochar and quartz aggregate with
grain sizes up to 2 mm. The quartz aggregate was dosed at a constant rate of 1458 kg/m3 of concrete,
whereas the dosage of resin and microfiller was formulated according to the experimental plan for
mixtures and executed based on the volume of the remaining space: resin (65–85%), quartz powder
(5–35%) and biochar (0–10%). The effects on the setting process, the consistency of the fresh composite
mix and the flexural and compressive strengths were investigated. The study revealed significant
deterioration of technological parameters (over 15% of biochar content makes a mixture unworkable)
and slight deterioration of mechanical ones (flexural strength did not change significantly, and the
compressive strength decreased by up to 15%). These results indicate that, despite some limitations,
the use of biochar as an alternative pro-ecological filler is possible.

Keywords: biochar; polymer concrete; eco-friendly microfiller

1. Introduction

Increasing climate challenges and a limited supply of new natural resources for con-
struction projects have shifted research toward sustainability. The concept of the circular
economy is one of the effective ways to achieve a long-term, sustainable construction
sector [1–4]. Circular economy includes, among other things, the use of waste materials
that have not yet been used [5–7]. One such material is biochar, which should not be used
as a fuel because its combustion generates large amounts of air pollution. Polymer concrete
is widely used in the building industry. Its wide application results from its performance
properties including high strength, excellent corrosion resistance, frost resistance, good
abrasion behavior, rapid hardening and easy preparation [8–13]. Another consideration
is its low carbon footprint compared to cement concrete. There is usually no reactivity
between the surrounding polymer matrix and aggregate particles [14]. Therefore, the
replacement of natural aggregates in the production of polymer concrete is a very effective
method of waste material disposal, which preserves natural resources. Powder waste
materials are often used as an essential microfiller in polymer concretes [15–23]. Even
irregularly shaped materials with large specific surface areas that would be difficult to use
in cement concrete can be utilized in polymer concretes [24,25].

The search for greener alternatives for concrete production has drawn attention to the
use of biochar. It is a solid type of waste obtained as a by-product from the thermochemical
conversion of biomass to bioenergy under controlled conditions [26]. More precisely,
according to the guidelines of the European Biochar Certificate [27], biochar is defined
as charcoal resulting from biomass pyrolysis, a process in which organic substances are
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decomposed at temperatures between 350 ◦C and 1000 ◦C in a low oxygen environment.
The resulting material is typically characterized by high specific surface areas, high porosity
and good absorption capacity [28].

Due to the ability of biochar to bind a large fraction of carbon, as well as its porous
structure and water retention properties, it is currently mainly used in agriculture, as a soil
additive. Its properties and effectiveness as a material for carbon sequestration also make it
potentially interesting for use as a component of concretes. Research examining the use
of biochar as an additive in cementitious materials has been conducted and have shown
very promising outcomes [29–35]. Biochar has also been considered as an alternative,
eco-friendly microfiber reinforcement in polymer composites [36,37] because it is more
beneficial than natural fibers. The properties of biochar can be altered by modifying its
fabrication conditions [38] to achieve greater compatibility with the polymer matrix [37,39].
In general, carbon fillers are introduced into polymers to improve mechanical, thermal,
electrical and chemical corrosion resistance properties compared to metal-filled compos-
ites [37,40]. The thermal stability of the obtained biochar composites is higher than that
of natural fiber composites [39]. Improving these properties is desirable for many appli-
cations [32]. The resulting properties of the composites are determined by many factors,
such as matrix and filler characteristics, matrix–filler interactions and dispersion of filler
particles in the polymer matrix [41].

Studies conducted on mixtures with finer grain sizes, classified by the authors as
nanocomposites, indicate a beneficial effect of the use of biochar as an effective reinforce-
ment [42,43].

In this publication, the basic properties of polymer composites containing biochar as
a partial volumetric substitution of mix components, including workability and strength,
were investigated. The authors also focused on the color aspects of the designed composites,
in relation to their use as a repair material meeting aesthetic requirements.

The purpose of dosing waste biochar in polymer concrete is to replace natural raw
materials in the form of quartz powder, the preparation of which generates a high carbon
footprint and consumes natural resources. In turn, the use of biochar will enable the
disposal of waste. The aim of this study is to create a composite with a reduced impact on
the environment, yet without deteriorating the properties of the composite.

The novelty of the presented work is in the potential applications of untreated biochar
as a partial microfiller in polymer concrete; additionally, another new aspect is the possibil-
ity of applying volumetric experimental plan to ternary mixtures to assess the possibility of
using biochar in polymer concrete.

2. Materials and Methods

The polymer used to prepare all composites in this study was synthetic vinyl-ester
resin (Aropol M 105 TB; Ineos Composites, Miszewo, Poland, European Union) of low
viscosity (350 ± 50 mPa·s at 25 ◦C), and high flexural strength and tensile strength (declared
by the producer as, respectively, 110 MPa and 75 MPa). Therefore, concretes made from
this resin should retain high mechanical strength in long-term exploitation, even when
exposed to aggressive environments. The chemical formula of vinyl-ester (the polyester
modified by introducing the fragments of the corresponding bisphenol epoxy resin to the
structure of the molecule) could be found in [44].

Traditionally used quartz powder (SKSM, Sobótka, Poland) and waste powder in
the form of biochar (Fluid S.A., Sędziszów, Poland) were used as a microfiller. Testing
with a laser particle size analyzer (Horiba, Irvine, CA, USA) showed that about 85% of the
particles were below 120 µm in diameter (Table 1, Figure 1). This result does not exclude
the use of biochar as a filler for polymer composites. The shape of the grains was also quite
promising in terms of low specific surface area. Although most grains were not spherical
in shape, most of them had smooth surfaces without much branching that could increase
resin demand (Figure 2). CEN standard sand EN 196-1 (Kwarcmix, Tomaszów Mazowiecki,
Poland) was used to produce the mortar for the strength tests.



Polymers 2022, 14, 4701 3 of 12

Table 1. Selected characteristics of waste and non-waste polymer composite fillers.

Microfiller Specific Surface
Area, cm2/cm3

Average Diameter,
µm

Mode Diameter,
µm

Mean Diameter,
µm

Grains under
120 µm, %

Quartz powder 7847 10.19 10.83 10.19 100
Perlite powder 4392 18.83 18.49 18.83 100

Water sediments 6046 46.25 10.81 43.25 86
Fly ash 9718 35.16 41.92 35.16 98
Biochar 1921 71.93 72.29 67.22 85
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Figure 2. Optical microscope view of biochar: (a) overall picture; (b) shape of the single grain.

The grain size of biochar differed significantly from that of a traditional polymer com-
posite filler, such as quartz powder. However, a comparison of the granulometric character-
istics of biochar with other successfully used waste-derived fillers showed that, in general,
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while its particles were larger, 85% of the particles were smaller than 120 µm, indicating
that the majority of biocarbon can be considered a microfiller (Table 1, Figures 1 and 2).

To assess the initial behavior of biochar in polymer composites, the following tests
were carried out: the course of setting, the effect on consistency, the flexural and compres-
sive strengths.

Sample preparation took place in a three-stage process. In the first step, the microfiller
mixture was prepared, followed by the addition of microfiller mixture to the resin, and
then final mechanical mixing with quartz sand. The mixture was then placed in two layers
in the molds and vibrated for 5 s until the mold was tightly filled (Figure 3).
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The course of binding was analyzed on microreagent samples (resin and microfiller
mixture). The temperature of the microreagent was measured at an interval of 1 min.
The workability time, gelation time, hardening time, curing time and maximum tempera-
ture were evaluated based on the experiment and sample observations according to the
guidelines described in [45].

One of the basic technological parameters is the consistency of the mix. In this study,
the mortar flow diameter was measured according to the PN-85/B-04500 standard. The
measurement was based on forming a truncated cone from the mortar and then subjecting
it to 15 shocks. Two perpendicular spread diameters were measured and then their average
was calculated.

Flexural and compressive strength tests were carried out on beams measuring 40 mm
by 40 mm by 160 mm, prepared according to EN 196-1.

In order to determine the effect of biochar on polymer composites, an experimental
plan was prepared, based on the standards for ternary mixtures. The dosage of sand was
applied as a constant. The experimental plan was intended for the component proportions
in the micro slurry. Therefore, the amount of resin (S), biochar (BW), and quartz powder
(MK) were applied as input variables. In preliminary studies, the maximum and minimum
dosages of the individual components were determined, so that the mixture could be work-
able and samples could be formed. Consequently, the experimental plan had limitations
(Figure 4, Table 2). In the experimental plan, the volumetric variation in the dosage of
components was assumed.
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Figure 4. Experimental plan with limitations (orange lines): S—resin, BW—biochar, MK—quartz pow-
der.

Table 2. Compositions of analyzed mortars according to the experimental plan.

Composition Symbol

Volume Proportions, % Mass Proportion, kg/m3

Resin (S) Quartz Powder
(MK)

Biochar
(BW) Resin Quartz Powder Biochar Sand

1 (S85MK5BW10) 85 5 10 451 60 79 1458
2 (S85MK15BW0) 85 15 0 451 180 0 1458

3 (S65MK25BW10) 65 25 10 345 299 79 1458
4 (S65MK35BW0) 65 35 0 345 419 0 1458
5 (S65MK30BW5) 65 30 5 345 359 39 1458
6 (S75MK20BW5) 75 20 5 398 239 39 1458

7 (S75MK15BW10) 75 15 10 398 180 79 1458
8 (S75MK25BW0) 75 25 0 398 299 0 1458
9 (S75MK10BW5) 75 10 5 451 120 39 1458

3. Results

As part of the study to assess the suitability of biochar in polymer composites, the
following technological characteristics were investigated: the workability time; gelation
time; hardening time; curing time; maximum temperature; consistency and mechanical
characteristics—compressive and flexural strength.

3.1. The Course of Binding

Testing the course of setting began shortly after mixing the ingredients, and it was
performed on a 200 mL sample. The shortest curing time was observed for the resin itself
(less than 2 h). The enrichment of the mixture with microfiller resulted in a longer setting
process. The composite consisting of 75% resin and 25% quartz powder (without biochar)
had the shortest workability time, gelation time and hardening time (Figure 5). The setting
process started 1 h later than in the case of pure resin composite. The curing time curves
for the two compositions in which the quartz powder was partially replaced by biocarbon
were the longest—the curing time was about 5 h in both cases. The highest temperature
(and the longest curing time at the same time) was observed for the composition no. 6, in
which the BW/M ratio was 0.2 (Table 3).
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Table 3. Binding characteristics of the composite depending on the proportion of biochar.

Hardening Process Resin Composition 8 (S = 75%;
BW/M = 0%)

Composition 6 (S = 75%;
BW/M = 20%)

Composition 7 (S = 75%;
BW/M = 40%)

Workability time, min 70 120 210 210
Gelation time, min 95 160 260 250

Hardening time, min 120 195 310 290
Curing time, min 240 330 400 400

Maximum temperature, ◦C 72.3 73.7 72.5 75.5

3.2. Consistency

The consistency of the mixture was assessed according to the procedure for measuring
the plasticity of construction mortars (according to the PN-EN 1015-3 standard), just after
mixing the ingredients. A truncated cone (bottom diameter 100 mm, top diameter 70 mm,
height 60 mm) was formed on the flow table. The fresh composite thus formed was
subjected to 15 generative shakes by lifting and dropping the measuring table to a height
of 10 mm at a rate of 1 per second. The diameter of the resulting flow was then measured.
The results are summarized in Table 4. In this study, it was noted that with an increase in
biochar content in the mix, there was a decrease in the measured flow diameter. It can also
be seen that the greater the reduction in the mix flowability, the smaller the resin impaction
in the fresh composite. Each of the resulting mixtures created within the experimental plan
could be considered as sufficiently workable. They tightly filled the test molds and showed
no segregation (Figure 6).

3.3. Flexural Strength

To test the flexural strength of the composite, three rectangular specimens, measuring
40 mm by 40 mm by 160 mm, were made for each composition included in the experimental
plan. The specimens were tested according to the EN 196-1 standard. The three-point
loading method was used. The distance between the supports was 100 mm. The specimen
was placed in the apparatus with one side face on the supporting rollers and with its
longitudinal axis normal to the supports. The load was applied vertically by means of
the loading roller to the opposite side face of the prism and increased smoothly at the
rate of (50 ± 10) N/s until fracture. The flexural strength was calculated. The results are
summarized in Table 4.
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Table 4. The result of consistency, flexural and compressive strength.

Composition Number

Volume Proportions, % Test Results

Resin (S) Quartz Powder
(MK) Biochar (BW) Flow, cm Flexural

Strength, MPa
Compressive

Strength, MPa

1 (S85MK5BW10) 85 5 10 19.5 30.0 ± 1.8 85.9 ± 0.3
2 (S85MK15BW0) 85 15 0 27.8 32.2 ± 1.7 98.4 ± 1.0

3 (S65MK25BW10) 65 25 10 14.3 28.8 ± 1.9 93.0 ± 1.0
4 (S65MK35BW0) 65 35 0 20.0 31.9 ± 1.6 100.3 ± 1.1
5 (S65MK30BW5) 65 30 5 15.0 32.5 ± 1.3 100.0 ± 0.9
6 (S75MK20BW5) 75 20 5 19.7 32.7 ± 2.1 94.4 ± 1.6

7 (S75MK15BW10) 75 15 10 15.7 32.3 ± 0.4 91.7 ± 1.1
8 (S75MK25BW0) 75 25 0 26.0 32.3 ± 1.0 100.2 ± 0.5
9 (S75MK10BW5) 75 10 5 23.5 29.5 ± 1.3 94.0 ± 1.8
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For the obtained flexural strength results the search for the regression equation describ-
ing the dependence between flexural strength and adopted variables was unjustified. The
differences between the results were within the standard deviations of the measurements
made for one composition. Therefore, it can be concluded that modifications to the compo-
sition of the composite within the established limits of the experimental plan do not have a
statistically significant effect on the result of the flexural strength assessment (Figure 7).

A dosage of biochar up to 5% (S65MK30BW5) does not result in a significant reduction
in flexural strength. A 10% biochar dosage (S65MK25BW10) is likely to have lower flexural
strengths than non-biochar modified composites due to poorer workability and thus more
difficult compaction of the fresh composite (Figure 7b). However, despite the lower average
flexural strength value, it should be noted that the differences between the compositions
with different levels of biochar dosage: S65MK35BW0, S65MK30BW5 and S65MK25BW10
are within the standard deviations of the results for one composition.

3.4. Compressive Strength

To test the compressive strength of the composite, six specimens were made for each
composition in the experimental plan. The specimens were tested according to the EN
196-1 standard. The compressive strength test was carried out on prism halves that had
been broken earlier in the flexural strength test. The compression surface was determined
by steel plates measuring 40 mm by 40 mm. The prism halves were centered laterally to
the plates of the machine within ± 0.5 mm, and longitudinally so that the end face of the
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prism overhung the plates by about 10 mm. The load was increased smoothly at the rate of
2000 N/s over the entire load application until fracture. Next, the compressive strength
was calculated and results are summarized in Table 4.
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Figure 7. Flexural strength of the tested composites: (a) dependence in the experimental plan;
(b) dependence on biochar content.

The regression equation describing the dependence of strength on composition was
obtained from the compressive strength results (Equation (1)). The coefficient of determina-
tion (R2 = 0.80 and MAPE = 1.58%) was calculated. The partial autocorrelation function and
autocorrelation function of the residual number of the equation of compressive strength
were analyzed (Figure 8):

fc = 94.51·S + 115.61·MK + 21.13·BW (1)
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A summary of the results of the compression strength analysis, together with the
forecast values is summarized in Table 5. In most compositions, the forecast can be
considered as good.

Table 5. Result of the compressive strength—measured and predicted.

Composition
Number

Volume Proportions, % Statistical Verification

Resin (S) Quartz Powder
(MK) Biochar (BW)

Mean
Compressive

Strength, MPa

Predicted
Compressive

Strength, MPa

Prediction
Error, %

1 (S85MK5BW10) 85 5 10 85.9 88.2 2.7
2 (S85MK15BW0) 85 15 0 98.4 97.7 −0.7
3 (S65MK25BW10) 65 25 10 93.0 92.4 −0.6
4 (S65MK35BW0) 65 35 0 100.3 101.9 1.6
5 (S65MK30BW5) 65 30 5 100.0 97.2 −2.8
6 (S65MK20BW15) 75 20 5 94.4 85.6 −9.3
7 (S75MK15BW10) 75 15 10 91.7 90.3 −1.5
8 (S75MK25BW0) 75 25 0 100.2 99.8 −0.4
9 (S75MK10BW5) 75 10 5 94.0 83.5 −11.2

The resulting model indicates that the introduction of biochar into the polymer matrix
yields a slight reduction in compressive strength. This effect is less pronounced when
biochar replaces part of the polymer (a decrease of 5–7%) than when it replaces part of
the quartz filler (a decrease of 10–15%). A dosage of biochar up to 5% (S65MK30BW5)
does not result in a significant reduction in compressive strength. A 10% biochar dosage
(S65MK25BW10) is likely to have lower compressive strength than non-biochar modified
composites, due to poorer workability and thus more difficult compaction of the fresh
composite (Figure 9b).
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4. Discussion and Conclusions

This study examined the potential use of biochar as a partial microfiller for concrete-
like polymer composites. Such a solution would reduce the consumption of mineral raw
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materials, which would be both environmentally and economically beneficial. The grain
size characteristics of biochar show mostly positive features in the context of concrete
polymers. More than 85% of biochar by mass are grains smaller than 0.125 mm. A
disadvantage may be unburned biomass fragments, the amount of which depends on
the parameters of the pyrolysis process carried out.

The substitution of quartz powder with biochar, even in a small amount, increases
the setting time of the resin mixture. This is because the biochar particles are larger than
the grains of the dust fraction of the powder, which results in a longer setting time of the
polymer matrix near the microfiller grains.

The biochar does not impair the flexural strength of the polymer composite. The results
obtained after flexural tests range from 27 to 35 MPa, which is in line with the expected
range for polyester resin-based composites. The concretes of all tested compositions have
a high compressive strength. An increase in the proportion of biochar in the composite
resulted in a slight deterioration of this mechanical characteristic. What is important in the
context of compressive strength is the total microfiller content, which should be around 35%
of the proportion in the composite. The small substitution of quartz powder by biochar then
results in a negligibly small decrease in compressive strength, compared to the large-scale
economic benefits. The research conducted here supports the conclusion that biochar can
be used as a partial substitute for quartz powder in the role of microfiller for polymer
composite. Statistical analysis showed that replacing the traditional microfiller in a volume
amount of about 15%, with a total share of quartz powder and biocarbon of 35% in the
composite, produced very positive results with acceptable consistency and workability.

Due to the variability of the waste, it is necessary to repeat the tests for material
obtained under different manufacturing conditions. Further research is also required to
determine the durability of the composite under conditions of chemical aggression.
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