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Abstract: In the last decades, development of hybrid materials, especially inorganic–organic materials,
coordination polymers, conducting polymers, carbon materials, and many more, has produced
breakthroughs in diverse applications. Various advance materials have been reported in the literature
using metal organic frameworks (MOFs), which compensate for the limitations of sensors. Diverse
combinations of HMs not only offer excellent features, but also give a ray of hope for unprecedented
advances in materials in different research areas, such as sensing, energy storage, catalysis, non-linear
optics, drug-delivery systems, gas storage, etc. Chemiresistor sensors are a core enabling sensor
technology and have led to much progress in the field of material science. Here, we have reviewed
the recent progress in chemiresistive sensors based on HMs for nitroaromatic compounds, which
could be beneficial for researchers that explore this field further. We have put emphasis on sensing
mechanisms and the performance of diverse HMs for nitroaromatic sensing applications including
pesticides, pollutants, explosives, polycyclic aromatic hydrocarbons (PAHs) and persistent organic
pollutants (POPs). In the end, we explored opportunities, challenges, and future perspectives in this
emerging field.

Keywords: hybrid materials (HMs); inorganic-organic materials; coordination polymers; carbon
materials; chemiresistor

1. Introduction
1.1. Background of the Hybrid Materials

Hybrid materials, in accordance with the International Union of Pure and Applied
Chemistry, are materials made up of a combination of inorganic and organic components,
or a combination of both with sizes varying from a few nanometers to tens of nanometers,
and they are developing into a very powerful and promising category of materials [1,2].
Although the development of organic-inorganic hybrid materials attracted both scientific
and industrial attention in the early 1940s, it is worth noting that the study of hybrid
materials underwent its first major evolution mostly between the 17th century and the
modern era [3,4]. The earliest period, which proved the existence of hybrid materials,
extended from prehistory (20,000 years ago) to the 10th century AD. It can be demonstrated
with examples such as the bleaching agents that were based on clay and used in ancient
Rome or Cyprus. The hybrid clays were utilized to shape and encase Chinese porcelain
known as “egg shell”, and the Maya Blue or Prussian Blue pigments. In the case of natural
materials, mostly, the organic component holds the inorganic constituents and/or soft
tissue together, while the inorganic part gives them mechanical strength and a structure as
a whole [5]. In actuality, these natural hybrid materials are frequently the most integrated
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intelligent systems, which are skilled in striking trade-offs between various tasks such
as mechanical behavior, density, controlled permeability, color, and hydrophobicity [3].
In addition, man-made hybrid materials have existed since the beginning of time; for
instance, an intercalated organic color compound called Maya blue found in clay minerals,
demonstrates the utilization of hybrid materials in the old days [2]. Hybrid materials are
divided into four categories [6]. They are

(i) Composites: matrix and micron-level dispersion constituting the material mixture.
(ii) Nanocomposites: combination of comparable types of materials at the sub-micron scale.
(iii) Hybrids: a sub-micron-scale combination of several materials.
(iv) Nanohybrids: composite, nanocomposite, hybrid, and non-hybrid materials that have

been combined at the atomic or molecular level via chemical bonding.

Based on chemical bond strength, HMs are classified into Class 1 hybrids (hybrids
with weak bonding such as van der Waals forces, weak electrostatic interactions, and
hydrogen bonding) and Class 2 hybrids (strong interactions/Covalent bonding between
components) (Figure 1). The organic–inorganic hybrids can be categorized based on their
interfaces as Class 1 materials, which interact weakly and are linked by blends or interpen-
etrating networks. On the other hand, Class 2 materials interact through strong chemical
bonds, and they are linked by covalently connected polymers. An example of a Class 1
hybrid material is a binary blend of poly (2,6-dimethyl-1,4-phenylene ether) (PPE)/poly
(styrene-co-acrylonitrile) (SAN), and an example of a Class 2 hybrid material is obtained
by the interaction of three organic components, PPE, SAN and SBM (polystyrene-block-
polybutadiene-block-poly (methyl methacrylate)). HMs that are structural composites can
be further classified as either single-layer (continuous or discontinuous fibers) or multi-
layer (laminates) [7]. Metal organic frameworks (MOFs) have been combined with other
functional materials such as metal nanoparticles (NPs), polymers, and other MOFs to create
MOF-based hybrid materials. Hybrid materials based on covalent organic frameworks
(COF) have also been designed [8]. The introduction of MOFs with high electrical con-
ductivity or intrinsic charge mobility presents the possibility for creation of new types of
MOF-based sensing devices. In the new era, two-dimensional (2D) and three-dimensional
(3D) types of MOFs are utilized in chemiresistive sensors. The highest conductivity val-
ues were found in 2D MOFs. It is due to the prolonged conjugation and in-plane charge
delocalization in the 2D sheets, which were mediated through electronic communication
via the metal nodes [9,10]. For the construction of reliable chemiresistive sensors, it is
also important to have a hierarchical pore structure, higher thermal and chemical stabil-
ity, and strong bonds between each of the analytes. All of these properties are found in
MOFs as well as in COFs [11,12]. Considering their functional groups, holes, and highly
organized porosity structure, COFs offer a huge active site in which to insert electroac-
tive molecules. Additionally, the stability of electrochemical sensors is increased by their
improved biocompatibility [12].

1.2. History of Chemiresistive Sensors

Chemiresistive sensors are conductive materials with a built-in resistance or con-
ductance that changes in response to analyte binding. The resistance change occurs due
to either electron or hole transfer induced by the surface reaction between the analyte
and the sensing substance. The analyte interacts with the sensing material via covalent
bonding, hydrogen bonding or molecular recognition. Wohltjen and co-workers were the
first to coin the term “chemiresistor” in 1985 [13]. They investigated copper phthalocya-
nine complex as a chemiresistive material. At room temperature, it was found that the
resistance of the complex decreased when ammonia vapor was present. In 1970, a carbon
monoxide detector using powdered SnO2 became the first commercialized metal oxide
chemiresistive sensor [14]. Since the mid 1990s, mixed-metal oxide chemiresistor sensors
have been commercially available for medical, industrial, and air quality monitoring ap-
plications [15]. Metal oxide-based chemiresistive sensors are generally gas sensors that
can detect oxidizing as well as reducing gases. Metal oxide chemiresistive sensors require
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high operating temperature, i.e., 200 ◦C or higher in order to remove an activation energy
barrier for resistivity to change [16]. After metal oxides, conductive polymers are the
second most researched material as chemiresistive sensors. The most cited chemiresistive
materials include metal oxides (MOx), metallic nanoparticles, conductive polymers, and
carbon-based nanomaterials such as carbon nanotubes and graphene [17]. Composite
chemiresistive sensors have recently been developed by integrating two high-performance
materials. These composite materials exhibit a significant boost in sensing properties when
compared to pristine materials. A schematic diagram of a chemiresistor sensor is displayed
in Figure 2 [16].
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1.3. Broadening of Nitroaromatic Compounds

Nitroaromatic compounds (NACs) are one of the most prevalent and significant classes
of industrial chemicals currently in use. The chemical structure of NACs includes one
or more nitro groups, and they are aromatic in nature. These compounds are synthetic
as well as naturally occurring compounds. Nitroaromatic compounds can occur in both
aqueous and atmospheric conditions. Beginning in the early 19th century, the chemistry of
nitro compounds was developed, and in the 20th century, it was combined with organic
chemistry [18]. Nitro compounds are crucial as synthetic intermediates and building blocks
for the synthesis of frameworks for medicines, agrochemicals, dyes, and explosives [18].
Nitro groups have high electronegativity that causes delocalization of the π-electron to
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accomplish its own charge deficiency [19]. The primary reaction step is nitration, which
is generally used to synthesize nitroaromatic compounds. When sulfuric and nitric acids
are mixed, nitronium ions (NO2+) are produced. These ions are then used to react with
aromatic substrates in an electrophilic substitution [19]. Several nitroaromatic compounds
have been used in high-energy explosives due to the nitro group’s peculiar chemistry. The
nitrogen atom rapidly accepts electrons in this oxidation state (III), allowing explosives
based on nitroarene to serve as self-oxidants. As a result, due to detonation of an explosive
charge, energy is quickly released from the molecules. HNO3 alone or in combination
with H2SO4 is used in traditional nitration procedures, and this method has remained
unchallenged for more than 150 years [18].

The most commonly used NACs include 2,4,6-Trinitrobenzene (TNB), 2,4,6-Trinitrophenol
(TNP), 2,4,6-Trinitrotoluene (TNT), Dinitrobenzene (DNB), Dinitrotoluene (DNT), Dini-
tronaphthalene (DNN), 1,3,5-Trinitroso-1,3,5-triazinane (RDX), Dinitrophenol (DNP), Ni-
trobenzene (NB), Nitroaniline (NA), and Nitrocatechol (NC). NACs can be used as starting
materials in the chemical synthesis of a wide range of substances, including explosives,
pesticides, dyes, drugs, cosmetics, preservatives, paints, corrosion inhibitors, gasoline
additives, and other industrial chemicals. The nitro group has some special properties that
make it useful in this regard [20].

Picric acid or 1,3,5-trinitrophenol (TNP) was initially developed as a yellow fabric dye
in 1771, and it is now used in explosive shells [21]. Toluene and nitric acid are combined to
create dinitrotoluene (DNT). Although DNT exists with six isomers, most of the information
is relevant to 2,4-DNT and 2,6-DNT [22]. Mononitrotoluene, DNT, and TNT are the products
sequentially produced by the nitration of toluene. 2,4-DNT is synthesized through the
nitration of 4-nitrotoluene [23]. Explosive DNT is used to make smokeless powders, as a
rocket propellant plasticizer, and as a gelatinizing and waterproofing agent [24].

A chronology of nitro compounds as explosive is presented in Figure 3. In 1867,
dynamite was invented. TNT was used as a weapon in World War I in 1914 as it had more
advantages over dynamite since the shock waves produced by TNT could rupture the steel
on armor-plated vehicles. During World War II, two new explosives were introduced, RDX
and PETN (penta erythrito tetranitrate). RDX was renamed as Composition Four or C-4
explosive. In 1945, ammonium nitrate, as an inexpensive fertilizer, was manufactured and
shipped to Europe for enriching depleted farm soil. In 1957, ammonium nitrate fuel oil was
developed as an explosive [25].
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2. Prerequisites for Chemiresistive Sensors

A simple chemiresistor is made up of a sensing material that coats a group of interdig-
itated electrodes or fills the space between two electrodes. It measures the resistance lying
between the electrodes. As analytes interact with the sensing material, the intrinsic resis-
tance of the sensing material can be altered in their presence. These interactions result in
changes in measured electric properties such as resistance, which can be used to determine
if an analyte is present or not, as well as its quantity if present.

It is advantageous to generate π-stacking complexes with electron-rich fluorophores
due to NACs’ electron-deficient characteristic. It can be used to detect them using chromo-
fluorogenic probes. Chemical sensors offer unique techniques for the fast detection of
ultratrace NACs in explosives and can be integrated with small microelectronic systems [26].
Single-walled carbon nanotubes (SWCNTs) are a desirable type of chemiresistor due to their
low-cost synthesis, ability to operate at ambient temperature, and extremely low power
needs. The principle of a chemiresistor formed on chemically sensitive conducting polymers
for the specific detection of chemical sensing substances is schematically illustrated in
Figure 4 [27].
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More recently, research on chemiresistor sensors based on MOFs has been gaining
more attention due to their excellent properties, including high porosity, high surface area,
chemical and thermal stability, and stable luminescent/electrochemical nature [28]. All of
these properties have been summarized in Figure 5. Importantly, MOFs constructed from
periodic table Group IV elements, i.e., metals such as cerium, zirconium, and hafnium,
have become of particular interest. It is due to their notable chemical stability in water and
their operation in aqueous media. Many research reports have been published on similar
MOFs for chemosensors since 2013 [29]. Additionally, adding MOFs to a composite of
active sensing materials will enhance the performance of chemiresistive sensors. Numerous
research initiatives have been implemented in this regard to develop different electrically
conductive MOFs as well as materials generated from MOFs for their usage in a variety
of applications, including chemiresistive sensors [28]. For instance, chemically resistive
sensors for the detection of CO2, NO2, and SO2 gases can be produced with UiO-66 and
its derivatives. Due to their low electrical conductivities, the resistive responses of such
Zr-MOFs are still within the range of 10−10 Ohm [30].
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3. Progress on Chemiresistive Sensors for Nitroaromatic Compounds

Many of the chemiresistors based on hybrid materials such as quantum dots, carbon
nanotubes, nanosheets, and fibers for sensing of nitroaromatics have been summarized
in Table 1. From Table 1, we can conclude that the chemiresistive sensors most used for
nitroaromatics are nanosheets and transition-metal doped nanoparticles. TiO2 nanosheets
and Ni-ZnO were reported for sensing of various explosives such as PNT, RDX and TNT at
analyte concentrations as low as 9 ppb.

Table 1. Summary of chemiresistive sensing of nitro explosives with different materials.

Type of
Sensor Analyte Material Used

in Sensing
Detection

Limit
Analyte

Concentration Response Reference

Quantum
dots NB PbS quantum

dots
65 ppb–16

ppm - - [31]

Schottky
junction-

based

DNT

Core-shell
ZnO/reduced

graphene oxide
(rGO)

411 ppb - - [32]

TNT

Core-shell
ZnO/reduced

graphene oxide
(rGO)

9 ppb - - [32]

RDX

Core-shell
ZnO/reduced

graphene oxide
(rGO)

4.9 ppt - - [32]

Nanosheets

DNT TiO2 nanosheets - 180 ppb 65.5% [33]
TNT TiO2 nanosheets - 9 ppb 115.6% [33]
RDX TiO2 nanosheets - 4.9 ppt 40.0% [33]
PNT TiO2 nanosheets - 647 ppb 830.0% [33]
PA TiO2 nanosheets - 097 ppb 115.0% [33]

Organic
polymer film TNT PPy-BCGnBA 0.2 ppb - - [34]

Fibers
TNT flower-like

PANI fibers 0.094 ppb - 8.1 s [35]

PA flower-like
PANI fibers 0.029 ppb - - [35]

Transition-
metal doped
nanoparticle

TNT Ni-ZnO - 9.1 ppb 45.5% [36]
DNT Fe-ZnO - 411 ppb 38.9% [36]
RDX Ni-ZnO - 4.9 ppt 45.5% [36]
PNT Ni-ZnO - 647 ppb 22.9% [36]
PA Fe-ZnO - 0.97 ppb 36.1% [36]

SWCNT TNT PMA-SWCNT
network - 10 ppt - [37]

Carbazole
oligomer

CNT
composite
materials

NT
(4-nitrotoluene) Tg-Car/CNT 95 ppb - - [38]
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NACs are a common form of organic pollutant found in the environment [39]. NACs
are extensively employed in dyes, fireworks, leather, pharmaceuticals, cosmetics, and agro-
chemicals (pesticides, herbicides, fungicides). Additionally, they are used as preservatives,
paints, antioxidants, gasoline additives, explosives and corrosion inhibitors [20,40]. NACs
were also discovered in various food items, e.g., vegetables, grilled and smoked meats,
tea, coffee, spices, fresh and cured meat items, oils, and beverages [39]. As per the avail-
able literature, approximately 65,000 nitroaromatic pollutants are released from various
chemical industries/sources [41] into the environment. In the sensing of nitroaromatic
compounds, electrophoresis (CE), spectrometric methods such as Raman spectroscopy
(RS) and ion mobility spectrometry (IMS), and chromatography techniques such as liquid
chromatography-tandem mass spectrometry (LC-MS) and gas chromatography coupled
with mass spectrometry (GC-MS) are used. These detection techniques are conventional,
complicated, and need a trained person. In recent years, various sensor-based techniques
have also been used in the detection of NACs. Amongst them, optical fluorescence sensing
is the most common method for the detection of NACs. The fluorescence method is based
on the fact that reactions between sensors and analytes change the luminescent spectra [42].
Apart from fluorescence techniques, various other techniques such as colorimetric [43],
MIP based [44] sensing of nitroaromatics are also used.

The chemiresistive sensing technique is an electrical sensing method that is based
on resistance (or conductance) change. In the chemiresistive sensor, the flow of holes or
electrons generated either by adsorptions or surface reactions of analyte molecules on
detecting materials occurs [28]. Chemiresistive sensors provide a number of advantages,
including inexpensive manufacturing costs, ease of integration with a variety of electronic
devices, and downsizing [28]. Chemiresistive sensors are made up of a thin layer of
chemically sensitive material, coated on a conductive electrode platform, which changes
its electrical resistance when exposed to a particular analyte. Metal oxide or conducting
polymer sheets are commonly used in traditional chemiresistors [45]. Advancement in
technologies gave rise to various materials for chemiresistive sensing, such as quantum
dots [31], carbon nanotubes [46], graphenes and their oxides [47], hybrid nanoparticles [48],
and MOFs [28]. There are different types of nitroaromatic compounds, and they have
different chemiresistive sensitivities. They are described in the upcoming paragraphs.
Figure 6 shows a chemiresistor sensor and its utility for sensing different materials.
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Pesticides are chemicals that are applied to destroy as well as control pests and weeds.
They are commonly employed in agricultural fields to save crops from a range of infections
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and pests. Excessive uses of pesticides cause several harmful impacts on the environment
as well as on living beings [49]. Organophosphate pesticides (OPs) are a varied group of
chemicals that include insecticides, fungicides, and herbicides. Several pesticides such as
parathion, fenitrothion, methyl parathion, pendimethalin, trifluralin, pentachloronitroben-
zene, 2,6-dichloro-4-nitroaniline etc. contain nitro groups in their structures, as shown in
Figure 7 [50]. Bhuvaneswari et al. in 2020 presented a density functional theory (DFT)-
based chemiresistive approach for the sensing of ethyl parathion [44]. They used a 2D
nanomaterial, namely ε-Arsenene nanosheet, for the absorption of target molecules that are
preeminent allotropes of arsenene (Figure 8). Several factors, such as the projected density
of states (PDOS) spectrum, adsorption energy, electron density, energy band gap, average
energy gap, and Bader charge transfer modification, indicate the utility of ε-Arsenene
nanosheet as a chemiresistive sensor.
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Using dielectrophoretically aligned SWNTs across electrode pairs for real-time de-
tection of paraoxon was shown by Liu et al. (2007). When paraoxon is injected into the
sensors, the electrical conductance changes in real time because of enzymatic hydrolysis.
Aligned carbon nanotubes are used, as they provide consistent coverage and increase
the interfacial contact between the organophosphorus hydrolase (OPH) enzyme and the
SWNTs, which can increase sensitivity. However, the non-specific binding (NSB) nature of
the enzyme hinders the biosensor from being useful since it may cause enzyme leaching
during operating circumstances [52].

3.2. Explosive Sensor

Due to the escalating terrorism situation, fast and accurate detection of explosives has
come to be a major global challenge [33]. In their illicit explosive devices, terrorists employ
both less potent homemade explosives made of readily available commercial chemicals
as well as powerful military explosives. Military explosives include 2,4,6-trinitrotoluene
(TNT), hexogen (RDX), dinitrotoluene (DNT), and other nitro-explosives, and their chemical
structures are shown in Figure 9 [33].
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To monitor these substances, a variety of analytical methods are available, including
Raman spectroscopy, gas chromatography coupled with mass spectrometry (GCMS), ion
mobility spectrometry, fluorescence, etc. [53]. Apart from these, trained animals are also
used for the sensing of explosive materials [54]. To enable the rapid and precise detection of
dangerous compounds in a range of government agencies and public facilities such as air-
ports, railway stations, and bus stations, highly sophisticated systems with high sensitivity,
mobility, minimal power utilization, and low cost are needed. Since explosives have low
vapor pressure, they are difficult to detect. Vapor detection methods must be capable of
detecting extremely low concentrations and/or sampling enormous volumes [55]. Several
materials, such as metal organic frameworks (MOFs), quantum dots (QD), graphene, etc.,
are used to detect nitro explosive in the vapor phase. For the fabrication of chemiresistors,
colloidal QD offers various advantages: (a) QD treatment from the solution phase and
deposition on various substrates are made possible by the colloidal stability of QD disper-
sions; (b) the QD’s high surface-to-volume ratio enhances the potential for analyte detection
through QD surface chemical modification; and (c) a variety of metal electrodes can be
employed since the QD energy levels can be adjusted in accordance with the size-dependent
electronic structure [31].

The EDA-capped PbS QD sensor can efficiently detect nitro-benzene vapor at ambi-
ent temperature, with a response of 0.34% measured at an NB concentration of 65 ppb
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with 2 ppb detection [31]. Graphene-based devices for chemiresistive sensing are par-
ticularly intriguing because they have the potential to integrate flexibility with excel-
lent mechanical properties, thermal stability, electrical conductivity, and specific surface
area [56]. As the forerunners of the RGO gas sensor, reduced graphene oxide (RGO) sen-
sors could detect warfare chemicals and explosives at parts-per-billion (ppb) levels [57].
Trinitrotoluene (TNT) sensing has been achieved in seawater using graphene nanoribbons
(GNRs) and graphene films. Graphene sheets used for chemiresistive detection of NO2
showed qualitatively similar conductance variations when exposed to the pseudo explosive
2,4-dinitrotoluene (DNT) [58]. As a result of interaction between its aromatic hexagon
structure and the graphene surface, the TNT molecule induces a higher shift in conduc-
tance than the nitramines [58]. Ge et al. in 2017 reported a gas sensor with In-doped ZnO
nanoparticles, which responded more favorably to saturated nitro-explosive vapors at
ambient temperature. In contrast to the pure ZnO nanoparticle-based sensors, responses to
DNT, TNT, PNT, RDX and PA were enhanced from 8.5, 22.2, 2.9, 9.8, and 4.9% to the values
of 52.9, 54.7, 57.2, 47.4, and 58.3%, respectively. Furthermore, a significantly faster response
time (<6.3 s vs. 20–40 s) [59] was observed. The crystal structures of 5% In-doped ZnO and
pure ZnO NPs are schematically shown in Figure 10.
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crystal structures (lower part). (b) Schematic illustration of sensing on the surface of 5% In-doped
ZnO (upper part) and pure ZnO NPs (lower part), and (c) possible effects of In3+ concentration on
the reaction site, the oxygen vacancy concentration, crystallinity degree and charge depletion layer
depth. Reprinted with permission from [59].

A nanocomposite of polyvinyl alcohol, polypyrrole, and molecularly imprinted poly-
mer (PVA/PPy/MIP) was synthesized and fabricated in order to identify the 2,4-DNT
vapor as a non-aromatizing explosive substance. This sensor showed a linear range of
response between 0.1 and 70 parts per million [60].The sensor’s ability to detect DNT is
due to strong hydrogen bonds that exist between the explosive nitroaromatic material and
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polypyrrole’s recoverable adsorption, as shown in Figure 11 [60]. Another graphene-based
MIP sensor developed by researchers had cavities consistent with nitrobenzene molecules.
Methacrylic acid and vinyl benzene were used as the monomers during its synthesis. It was
then mixed with graphene to develop a chemiresistor gas sensor from nanocomposite. This
sensor responded linearly to concentrations between 0.50 and 60.0 ppm, with a 0.2 ppm
sensing limit [61].
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Carbon nanotubes (CNTs) were discovered by Iijima in 1991, and they are considered
as a perfect sensing component for chemical sensors due to their distinct qualities. CNTs are
classified as single-wall carbon nanotubes (SWCNTs), double-wall carbon nanotubes (DWC-
NTs), and multi-wall carbon nanotubes (MWCNTs) [62]. The SWCNTs fabricated with
1-pyrenemethylamine (PMA), known as PMA-SWCNTs, were used to create a chemiresis-
tive sensor with exceptional sensitivity for TNT detection. Due to the selective interaction
between the amino substituent of PMA and TNT, negatively charged complexes were
formed, which acted as molecular gates. PMA-SWCNT had an LOD of 10 ppt and a
response time of less than 1 min for TNT sensing [37,62]. Another group of researchers fab-
ricated an SWCNT chemiresistive sensor in order to detect nitroaromatic explosives. They
fabricated sensors using a porous thin SWCNT film, and it was coated with an oligomer of
carbazolylethynylene (Tg-Car) for nitroaromatic explosive sensing [38].

Apart from the above nanomaterials, a dye-doped chemiresistive sensor for TNT
sensing was also developed. In 2017, Ghoorchian et al. developed a chemiresistive gas
sensor for very sensitive ambient 2,4,6-trinitrotoluene sensing in air. It is based on a
modified conducting polypyrrole layer doped with sulfonated dye. They fabricated a
sensor via electrosynthesis of polypyrrole (PPy) on Au interdigital electrodes (Au-IDEs)
with the exposure of the sulfonated dyes. The films were treated using n-butylamine (nBA).
When TNT was absorbed on the film, it formed the Meisenheimer complex. The detection
limit for determination of TNT with this sensor was reported to be 0.2 ppb [34].

Zhang and their co-workers in 2019 developed a filter paper-based chemiresistive
sensor for nitroaromatic detection. They sprayed polyaniline (PANI) on filter paper and
achieved non-contact, rapid sensing of nitroaromatic explosives. They achieved limits of
detection of 0.094 ppb for 2,4,6-trinitrotoluene (TNT) and 0.029 ppb for picric acid (PA) [35].

3.3. Persistent Organic Pollutant (POP) Sensors

Persistent organic pollutants (POPs) are a category of hazardous synthetic chemicals
with a high level of chemical resistance and a long half-life before degrading. They resist
chemical, biological, and photochemical degradation and thus pose a huge risk to the envi-
ronment [63]. Thus, through the Stockholm Convention on Persistent Organic Pollutants,
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an international agreement was introduced in 2001 to regulate, eliminate, and manage
POPs (United Nations Environment Programme, 2001) [64]. Since most of the POPs exist
in isomeric forms, development of highly selective systems is very important. A few of
examples of POPs include Aldrin, Dieldrin, DDT, Hexachlorobenzene, Chlordane, etc.

A variety of imine-linked covalent organic frameworks (COFs) including triphenyl-
benzene as an intrinsically luminous platform and a luminescent azine-linked COF that
functioned as a docking site to lock guest molecules were used to report the chemo-sensing
capabilities for polynitroaromatic compounds. Pablo et al. (2019) reported materials for
the chemical detection of contaminants directly in water using pyrene-IMDEA-COF. They
reported the disintegration of materials and the formation of stable aqueous suspensions in
order to find a number of possible water pollutants, such as nitro explosive compounds and
organic dyes. To explore the potential use of COF colloids as chemical sensors, their fluo-
rescence properties were assessed. For a range of organic dyes, the colloidal IMDEA-COF-1
nanolayers exhibited impressive chemical sensing abilities to dyes such as nitrobenzene,
dinitrobenzene, methylene blue, janus green, malachite green, bromophenol blue, thionin
and crystal violet. They proposed that the mechanism of IMDEA-water COF-1’s colloid
pollutant detection was associated with the quenching effect of the interaction between the
surface of the colloid’s COF nanolayers and the aromatic portion of the nitro derivative or
organic dye [65].

Novel MOF-5 covered SERS-active gold gratings were reported by Guselnikova and
their co-workers [66]. A schematic of the two-step process used to create the water colloids
(Tyndall effect) for IMDEA-COF-1 and IMDEA-COF-2 is shown in Figure 12. Growing
MOF materials on specifically designed gold gratings has the main benefit of reducing the
inhomogeneity caused by the aggregation of metal nanoparticles, which are frequently
employed as plasmonic surfaces. The repeatability of SERS signals was subsequently
improved. The created platform had a detection limit of 10−12 M for two polar organophos-
phorus insecticides, paraoxon and fenitrothion.
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3.4. Polyaromatic Hydrocarbon Sensor

Polycyclic aromatic hydrocarbons (PAHs) that include at least one nitro-functional
group on their aromatic benzene ring are called nitro-polycyclic aromatic hydrocarbons (N-
PAHs) [67]. The N-PAHs are the main subgroup of PAHs existing in ambient air particles
occurring from diesel emissions [68]. One of the most common N-PAHs discovered in
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diesel emission particles is 1-nitropyrene (1-NP) (DEPs), and it is a main contributor to
DEPs’ mutagenicity [68]. N-PAHs can occur through thermal decomposition of organic
compounds and are found in toners of photocopying machines, combustion emissions
from gas fuel, kerosene heaters, and liquified petroleum, coal fly ash, air particulates, and
food. They are largely found in particulate matter in the environment [69,70]. N-PAHs are
more highly carcinogenic than PAHs. Even if they are present in smaller trace amounts
than their parent substances, N-PAHs can be primarily produced from the same source
of PAHs, although secondary production is frequently caused by interactions with OH
and NO3 radicals [71]. Numerous N-PAHs have undergone significant research into their
toxicological properties, including their mutagenicity, carcinogenicity, and metabolism [70].
A study of N-PAHs’ variations in urban Shanghai showed that, under meteorological
conditions, the amounts of PAH and NPAH present were both dominated by ambient
temperature [72]. Chemical structures of some N-PAHs are shown in Figure 13.
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3.5. Miscellaneous Sensing

The development of sensors employing chemiresistors and field-effect transistors has
received a lot of attention since nitrogen dioxide is one of the most prevalent harmful
gases. Compounds such as organic materials, carbon nanomaterials, conducting polymers,
and semiconducting metal oxides [73] were explored for detecting the existence of NO2
gas in the atmosphere. An inert iron (II) phthalocyanine (FePc) thin film-based chemire-
sistor sensor using FePc and an organometallic molecular crystal was developed for the
sensing of nitrogen dioxide [73]. FePc works as an electron donor whenever nitrogen
dioxide gas is present and generates a charge carrier complex. This complex decreases
the resistivity, and its measurement helps in the estimation of NO2 concentrations. Con-
sistently, a concentration in the range of 0.5–2 ppm was recorded. Shaik et al. in 2015
reported chemiresistive sensors utilizing nitrogen-doped graphene nanosheets coated onto
the interdigitated electrodes NGS/IDE for the detection of nitrogen dioxide gas at room
temperature [74]. The proposed sensor showed good response to low concentrations with
a minimal detection threshold of 120 ppb (S/N = 3). Even at high concentrations, the
sensor displayed outstanding selectivity for sensing NO2 gas in comparison to a variety of
interfering gases, including ethanol, CO, H2S, NH3, dichloromethane (DCM), benzene, and
chloroform, which may be related to the strong electron-withdrawing properties of NO2
gas. The increased capacity of the NGS/IDE sensor to detect NO2 gas could be attributed
to the increased accessibility of active sites for the adsorption of gas because of the nitrogen
doping in NGS. Figure 14 shows NGS/IDE for the room temperature sensing of NO2 gas.
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Chemiresistor sensors are also used for various biosensing applications, such as
detection of various nitroaromatic peptides, which can help in the detection of several
diseases. Many groups of researchers reported employing polypyrrole nanoparticle-based
chemiresistive biosensors to detect Alzheimer’s disease (AD), specific biomarkers Aβ40
and Aβ42 peptides on a unique platform. The suggested platform was able to detect
both nitroaromatic peptides over a broad detection range (10−14–10−6 g/mL), with limited
sensing on the order of 10−15 g/mL. A schematic representation of the proposed Aβ sensing
platform is shown in Figure 15 [75].
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4. Challenges and Conclusions

NACs are one of the most commonly found pollutants in the environment. In light of
the harmful impacts of NACs, many articles in the literature have been published for their
regulation and sensing. There is extensive review literature on gas sensing using chemire-
sistive sensors [73,74]. However, there is none on nitroaromatic compound sensing using
chemiresistors. We have discussed chemiresistive sensing of PAHs and persistent organic
pollutants that have not been included in any review paper on chemiresistive sensors.

Several materials such as graphite and their composites, carbon nanotubes, and quan-
tum dots are conductive in nature and hence usually used in chemiresistive sensing appli-
cations. In the case of nitroaromatic compounds, only nitro explosives such as TNT, DNT,
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RDX, picric acid (PA), etc. have been explored using various materials, as shown in Table 1.
Cross-sensitivity is also a problem that is seen in the sensing application of analytes with
nano materials. Cross sensing is a phenomenon of similar responses to different types of
analytes [76]. In the case of chemiresistive sensors, low sensitivity and poor selectivity are
major challenges [28]. Metal oxides offer greater sensitivity than other materials. Since
they work at extremely high temperatures, they have limitations such as baseline drift
and limited selectivity. [77]. Apart from metal oxides, carbon-based materials have higher
surface area, but they have poor selectivity and low response and reproducibility [78].

In the field of nanomaterials, metal organic frameworks (MOFs) are emerging as
materials for sensing applications with good selectivity, sensitivity, and reproducibility.
MOFs can be designed according to the need for analyte synthesis. Sensing of formaldehyde
with a Co-based MOF (ZIF-67) was first reported using pure MOF-based chemiresistive
sensing [79]. MOF-based chemiresistive sensors for the sensing of nitroaromatics are less
explored in the literature.

Poor electrical conductivity is a major challenge to the potential use of pure MOFs
for applications in chemiresistive sensing. Generally, MOFs are not conductive at ambient
temperature. Strong orbital overlap and hard metal ions in MOFs prevent electron transit
or circulation [80]. Today, the synthesis of conductive MOFs (C-MOFs) is not a difficult task.
Various pre- and post-synthesis approaches are available to produce MOFs as C-MOFs. C-
MOFs can effectively transduce the electrical signals from surface processes, making them
a new family of substances for chemiresistive sensors. Apart from pure MOF, MOF-based
composite materials/MOF derivatives are used in chemiresistive sensor applications.

In the field of nitroaromatic sensing, we have great opportunities to explore chemire-
sistive sensing applications for different classes of pollutants, such as nitro explosives, nitro
polycyclic aromatic hydrocarbons, nitro-based pesticides, and other emerging pollutants.
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