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Abstract: D-A conjugated polymers are key materials for organic solar cells and organic thin-film
transistors, and their film structure is one of the most important factors in determining device per-
formance. The formation of film structure largely depends on the crystallization process, but the
crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to
achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summa-
rized the features of D-A conjugated polymers, which can affect their crystallization process. Then,
the crystallization process of D-A conjugated polymers was discussed, including the possible chain
conformations in the solution as well as the nucleation and growth processes. After that, the crystal
structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was
reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate
are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of
D-A conjugated polymers and explained their formation process in terms of nucleation and growth
processes. This review provides fundamental knowledge on how to manipulate the crystallization
process of D-A conjugated polymers to regulate their film structure.

Keywords: D-A conjugated polymers; polymer features; crystallization process; crystal structure;
crystal morphology

1. Introduction

Conjugated polymers are promising semiconductor materials for organic solar cells
(OSCs) and organic thin-film transistors (OTFTs) due to their intrinsic advantages, including
flexibility, light weight, solution processability and so on [1–6]. Over the past few decades,
the development of conjugated polymers has undergone first generation materials such as
polyacetylene, second generation materials such as poly(3-alkylthiophene)s (P3ATs) and
now third generation materials such as donor–acceptor (D-A) conjugated polymers [7]. As
the key layer of these devices, the structure of D-A conjugated polymer films, or blend
films, is a critical factor for determining device performance [8–17]. However, the structure
of D-A conjugated polymer films, or blend films, is very complex due to the multilevel
structure in polymer materials.

As shown in Figure 1, the structure of D-A conjugated polymer films, or blend films,
can be divided into four levels [16,18]: (1) the short-range structure, including the chemical
structure of the acceptor unit, the donor unit and the alkyl side chain; (2) the long-range
structure, including the molecular weight, the molecular weight distribution and the
conformation of the backbone and the side chain; (3) the crystal structure; and (4) the
film structure. For OTFTs, D-A conjugated polymer films consist of crystalline domains
and amorphous domains. Thus, the crystallization process of D-A conjugated polymers
determines the resulting film structure. In the case of OSCs, blend films are composed of
a polymer donor and a polymer or small molecular acceptor. In general, a three-phase
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model, consisting of a donor crystalline phase, an acceptor crystalline phase, and a mixed
phase, is used to describe the structure of the blend films [19–22]. The formation of blend
films undergoes a competition between the crystallization of the conjugated polymers and
the phase separation of the donor and acceptor components [23–25]. No matter when the
crystallization process occurs, it plays an important role in determining the structure of
donor crystallites and acceptor crystallites. Therefore, understanding the crystallization
process of D-A conjugated polymers is very important in manipulating the structure of
D-A conjugated polymer films, or blend films.
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Figure 1. Schematic diagrams of the multilevel structure in D-A conjugated polymer films (left) and
the typical crystallization process of D-A conjugated polymers (right). (a) represents the chemical
structure of D-A conjugated polymers; (b) represents the chain conformation of D-A conjugated
polymers; (c) represents the crystal structure of D-A conjugated polymers; (d) represents the film
structure of D-A conjugated polymers; (e) represents D-A conjugated polymer solution; (f) represents
the nucleation of D-A conjugated polymer crystals; and (g) represents the growth of D-A conjugated
polymer crystals.

The crystallization of D-A conjugated polymers generally occurs in a supersaturated
solution driven by a decrease in the temperature or the evaporation of the solvent. As shown
in Figure 1, conjugated polymers are first dissolved in the solvent to form a solution. Then,
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crystals emerge through the nucleation and growth processes. Finally, the structure of D-A
conjugated polymer films, or blend films, is frozen when all the solvent has evaporated.
The crystallization process could be regarded as a bridge linking the D-A conjugated
polymers and their structure in the films. In this review, we attempted to provide a clearer
understanding of the crystallization of D-A conjugated polymers based on the progress of
recent research. We first discussed the fundamental features of D-A conjugated polymers
from the perspective of crystallization. Then, we presented the current understanding of
the crystallization process of D-A conjugated polymers, including the chain conformation
in solutions as well as the nucleation and growth processes. We tried to associate the
crystallization process of D-A conjugated polymers with the fundamental features of these
polymers. Finally, we summarized the crystal structure and crystal morphology of D-A
conjugated polymers. We also tried to associate them with the crystallization process
and the fundamental features of D-A conjugated polymers. In addition, the synthesis of
D-A conjugated polymers, the control of film morphology, and the relationship between
film structure and device performance are also very important for the application of D-A
conjugated polymers. The above topics were reviewed by other groups, and readers can
refer to them [13–18,26–34].

2. The Features of D-A Conjugated Polymers

The chemical structure of D-A conjugated polymers consists of an alkyl side chain
and a conjugated backbone formed by an alternating array of donor and acceptor units [35]
as shown in Figure 1a. The backbone structure of D-A conjugated polymers is critical for
their applications. The alternating array of donor and acceptor units results in a strong
intermolecular charge-transfer interaction, making the energy levels of D-A conjugated
polymers reasonably tuned [35,36]. The highly planar backbone and the strong π-π in-
teraction between adjacent D-A subunits are beneficial to the intrachain and interchain
charge transport, respectively [37–39]. The original idea of introducing the alkyl side chain
was made to increase the solubility of conjugated polymers by increasing the interactions
between the side chain and solvent or by decreasing the interactions between π-conjugated
systems [40]. The forms of the alkyl side chain could be linear or branched [41]. Later,
functional side chains for tuning the absorption, enhancing the polarity, promoting the ion
conductivity and so on were developed [42–45]. Overall, the structure of D-A conjugated
polymer chains is complex and distinctive, which gives them unique crystallization char-
acteristics. The features of D-A conjugated polymers that will affect their crystallization
process were discussed as follows.

2.1. The Regioregularity (RR) of D-A Conjugated Polymers

It is axiomatic that the geometrical regularity of the molecular structure is critical for
polymer crystallization [46,47]. For conjugated polymers, the regioregularity describes the
geometrical symmetry of each monomer unit along the backbone. Kim et al., proposed
that there are three types of RRs for D-A conjugated polymers: directional, positional
and sequential as shown in Figure 2. The first RR was defined by the directional ori-
entation of the functional groups, or side chains, along the backbone. The second RR
was defined by the positional orientation of covalent bonds between monomer units in
the backbone. The third RR was defined by the fraction of identical D-A sequences in
D-A alternating copolymers [48]. Regardless of the type of RRs, regioregular (RRe) D-A
conjugated polymers generally result in a better crystallinity than regiorandom (RRa)
ones, especially along the π-π stacking direction [49–53]. For example, Neher et al.,
prepared two poly[[N,N′-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5′-
(2,2′-bithiophene)]s (PNDIs) with an RRe and RRa backbone, respectively. The plots of
the two-dimensional (2D) X-ray diffraction (GIXD) detector intensities of the RRe PNDI
showed obvious diffraction peaks of lamellar stacking, π-π stacking and backbone stacking,
suggesting a long-range ordered correlation of the crystallites in the film as shown in
Figure 2d. However, only the weak diffraction peaks of lamellar stacking and backbone
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stacking were observed for the RRa PNDI, indicating a much poorer crystallinity [54]. The
irregular backbone of RRa D-A conjugated polymers prevents the formation of ordered
structure along the π-π stacking direction.
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annealed PNDI films spin-coated from CB solutions that were adapted from reference [54] with
permission from Copyright 2014 American Chemical Society.

2.2. The Stiffness of the Backbone

The flexibility of polymer materials stems from the rotational motion of C-C bonds.
If the rotational motion of C-C bonds is prevented, the polymers will show rigidity. For
D-A conjugated polymers, the conjugated backbone and the steric hindrance of side chains
hinder the rotational motion of C-C bonds, and, thus, the rigidity of D-A conjugated
polymers is strong. Besides, it is believed that the rigid coplanar conformation of con-
jugated polymer backbones is beneficial to the intrachain and interchain charge trans-
port [55–57]. Thus, chemical scientists tend to increase the stiffness of backbones when
designing the chemical structure of D-A conjugated polymers [58]. The design strategies
include noncovalent-interaction-locked conjugated polymers [59–61], double-bond-linked
conjugated polymers [62,63] and conjugated ladder polymers [64,65]. As a result, the back-
bone stiffness of D-A conjugated polymers is much stronger than that of flexible polymers
and p3ATs [66–69].

The backbone stiffness of polymers could be quantified by the persistence length (lp)
which describes how long it takes for the backbone to bend 90 degrees on average [70]. The
lp value of D-A conjugated polymers is larger than 5 nm in general, while the lp values
of polyethylene (PE) and p3ATs are only about 0.7 nm and 2.8 nm, respectively [34,66].
The rigid backbone will affect the crystallization process and the crystal structure of D-A
conjugated polymers as discussed in the following sections. For example, a typical feature
is that D-A conjugated polymers generally adopt an extended chain in crystals [71], which
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is significantly different from the folded chain conformation in flexible polymers and
p3ATs [72–75].

2.3. The Anisotropic Interchain Interactions

Due to the free rotation of C-C bonds, the intermolecular interactions in flexible poly-
mers can be divided into two categories: parallel to the chain and perpendicular to the chain.
In the plane perpendicular to the chain, flexible polymer chains could adopt a low-energy
conformation during the crystallization process. As a result, a helical chain conformation
is a reasonable choice in flexible polymer crystals [76]. For D-A conjugated polymers,
the rotational motion of C-C bonds is prevented, and, thus, the interchain interaction is
anisotropic. The intermolecular interactions in D-A conjugated polymers can be divided
into three directions: the alkyl side chain, the π-π stacking and the backbone. Among
them, the interchain interaction along the π-π stacking direction is much stronger than the
other directions. In the presence of strong intermolecular interactions, conjugated small
molecules and p3ATs tend to form one-dimensional fibril, or nanowire, structures with the
length axis along the π-π stacking interaction [77,78]. However, the length direction of D-A
conjugated polymer fibrils, or nanowires, is generally along the backbone direction [71,79].
The possible reasons for this were discussed in Section 3. In addition, the three directions
above are orthogonal to each other according to the chemical structure of D-A conjugated
polymers. This could be the reason for typical orthorhombic crystal unit cells being found
in mainly D-A conjugated polymer crystals [80–83]. In general, the (h00), (0j0) and (00k)
diffraction peaks are regarded as the stacking of D-A conjugated polymer chains along
the alkyl side chain (the lamellar stacking), the π-π stacking and the backbone directions,
respectively.

2.4. The Role of Alkyl Side Chains

The alkyl side chains may affect the crystallization of D-A conjugated polymers in two
ways. On the one hand, the alkyl side chains may also crystallize if their length is long
enough [84,85]. For example, Pei et al., designed three tetrafluorinated benzodifurandione-
based poly(p-phenylene vinylene)s (F4BDPPVs) with different branched alkyl chains. The
distance of the branching point from the backbone was two, four and six single bonds as
shown in Figure 3a. For all of the three polymers, alkyl side chain crystallization with
diffraction peaks around 1.5 Å−1 was observed in the 2D wide-angle X-ray scattering
(GIWAXS) patterns as shown in Figure 3c. In addition, the crystallinity of alkyl side
chains was weaker when the branching point was further away from the backbone, which
was consistent with the results of molecular dynamics (MD) simulations as shown in
Figure 3b [86]. On the other hand, the alkyl side chains may affect the crystallinity of
backbones. Long alkyl side chains generally increase the distance of lamellar stacking, but
they have limited influence on the distance of π-π stacking [87,88]. The flexibility of side
chains appears to be an important factor in influencing the distance of π-π stacking. Wang
et al., proposed that the distance of π-π stacking could be decreased by using more flexible
oligo(ethylene glycol) (OEG) side chains [89,90]. Pei et al., proposed that increasing the
distance of the branching point from the backbone is a powerful strategy for decreasing the
distance of π-π stacking [86,91,92]. The possible reason for this is that further branching
point positions could increase the flexibility of side chains, and, thus, the side chains could
adopt a metastable conformation in narrower spaces.

Besides the above features, factors such as the solubility, molecular weight (MW) and
molecular weight distribution of D-A conjugated polymers also affect the crystallization of
D-A conjugated polymers. These factors are common characteristics of polymer materials,
and we dispersedly discussed them in the following sections.
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3. The Crystallization Process of D-A Conjugated Polymers

The formation of crystals may be governed by thermodynamics or kinetics. In the
thermodynamic equilibrium state, the length of the crystal in three directions could be
expressed as [71,77]

L1

2σ1 + ε1
=

L2

2σ2 + ε2
=

L3

2σ3 + ε3
(1)

where Li is the length of the crystal along the i direction; σi is the interfacial energy per
unit area of surfaces perpendicular to the I direction; and εi is the interaction energies per
unit area between two adjacent molecules perpendicular to the i direction (i = 1, 2, 3). For
flexibility polymers, there is a competition between intramolecular nucleation (resulting
in folded chain conformation) and intermolecular nucleation (resulting in extended chain
conformation). The energy barrier for intramolecular nucleation is smaller than that for
intermolecular nucleation, and, thus, intramolecular nucleation is faster than intermolecular
nucleation. If the polymer chains are long and flexible enough, intramolecular nucleation
will dominate and will result in lamellar crystals. The folded chain conformation in lamellar
crystals is unstable and will slowly unfold to approach the more stable extended chain
conformation in the equilibrium crystals. On the contrary, intermolecular nucleation
is dominating when polymer chains are short and rigid. The nucleation process often
passes through a transient mesophase with looser molecular packing to lower the high
nucleation barrier [72]. In the case of D-A conjugated polymers, intermolecular nucleation
is dominating because they adopt an extended chain conformation in crystals. However,
crystallization kinetics seems to play an important role in the crystallization process, and
the resulting crystals are not thermodynamically stable in general. One reason for this
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is that the length direction of D-A conjugated polymer crystals is generally along the
backbone [71]. If the crystallization process is governed by thermodynamics, according
to Equation (1), the length direction of D-A conjugated polymer crystals will be along the
π-π stacking direction due to the strong intermolecular π-π stacking interactions. Another
reason is that the crystal of higher MW D-A conjugated polymers will be slender if the
crystallization process is governed by thermodynamics, which is against the experimental
results of Choi et al. [80]. Therefore, understanding the crystallization kinetics of D-A
conjugated polymers is critical. Because the crystallization of D-A conjugated polymers
begins in the solution, the chain conformation in the solution as well as the nucleation
and growth processes are key factors affecting the crystallization process as shown in
Figure 1e–g.

3.1. The Chain Conformation in the Solution

In the initial solution, polymer chains may form unimer conformations (coil and
rod) or aggregates (short-range, ordered and amorphous). Amorphous aggregates are
hard to disentangle, and they will maintain their morphologies during the crystallization
process [93,94]. Polymer chains with unimer conformations can reach the growth front of
small crystals to form larger crystals, and, thus, they are essential for the crystallization
process. To achieve unimer conformations in solutions, a “good” solvent should be used
to dissolve the D-A conjugated polymers. The “good” solvent should not only show a
high solubility of the D-A conjugated polymer but also should have the ability to prevent
the disordered aggregate of the polymer chains [95]. Short-range ordered aggregates in
solutions are also important to the crystallization process because they can act as nuclei [96].
In general, heterogeneous nucleation happens easier than homogeneous nucleation because
the former needs to overcome less Gibbs free energy compared to the latter. However, if the
initial solution contains too many ordered aggregates, the resulting crystal size will be very
small due to the absence of unimer chains. Therefore, the proper amount of short-range
ordered aggregates is beneficial to the crystallization process.

The chain conformation of D-A conjugated polymers could be adjusted by changing
the temperature [97–100], changing the solvent [101] and adding solvent additives [102,103].
Koöhler et al., analyzed the aggregate forms of three types of conjugated materials (ho-
mopolymers, D-A type polymers and low-MW compounds) in solution during the cooling
process. They proposed that the conformation of molecular chains in solution evolved from
a random coil to a planarized coil, a disordered aggregate, a planarized aggregate and a
crystallized aggregate gradually as shown in Figure 4a. The backbones were supposed to
form an ordered structure prior to the side chins through a series of processes, including
backbone planarization, order–disorder collapse and then backbone planarization [104].
However, the side chains may form an ordered structure prior to the backbone [105].
For example, Han et al., prepared PNDI nanowires by first aging the PNDI solution in
1-bromonaphthalene (BN) for 4 days and then dropcasting it onto the glass substrates. They
proposed that the side chain ordering driven by the unfavorable BN-side-chain interactions
was prior to the backbone planarization as shown in Figure 4b [69].

In addition to the planarization and aggregation of D-A conjugated polymer chains,
D-A conjugated polymers may also form different backbone conformations due to the
intrachain interactions. An example was provided by Pei et al., as shown in Figure 4c [106].
They used the fluorine atom to replace the hydrogen atom in the thiophene units of
PNDI, and the new polymer was named PNDI-4F2T. There are two types of backbone
conformations for the PNDI family: CSO and CSH. In PNDT, they found that the energies of
the two conformations were almost identical. However, due to the formation of additional
fluorine–hydrogen (F···H) interactions, the energy of CSO was much lower than that of
CSH in PNDI-4F2T. Interestingly, they showed that the conformation CSH is kinetically
stable and could change to the thermodynamically stable conformation CSO upon thermal
treatment [106].
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Figure 4. (a) Schematic diagram of the evolution of conjugated polymer chain conformations in
solution during the cooling process, which was adapted from reference [104] with permission from
Copyright 2017 American Chemical Society. (b) Schematic diagram of the evolution of PNDI chain
conformations in the BN solution during the aging process, which was adapted from reference [69]
with permission from Copyright 2021 American Chemical Society. (c) Schematic diagram of the
potential energy and the corresponding chain conformations of PNDI-4F2T before and after thermal
treatment, which was adapted from reference [106] with permission from Copyright 2021 American
Chemical Society.

3.2. The Nucleation Process

It seems easy to nucleate in D-A conjugated polymers because of their rigid backbones
and strong interchain π-π stacking interactions. One can guess that thermal-induced local
planarized backbones may meet each other through chain collapse or thermal motion and
then form a short-range ordered structure due to the π-π stacking interactions. According
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to the classical nucleation theory, the nucleus can exist stably in the solution only when its
size is larger than the critical value [107,108]. For P3HT, Xu et al., proposed that the critical
nucleus contained about 30 crystalline units in weakly supersaturated solutions. They also
found that the number of crystalline units within the critical nucleus was independent from
the degree of supersaturation, which was against the predictions of the classical nucleation
theory [109]. However, calculating the critical size of the D-A conjugated polymer nucleus
is still a challenge. Using small-angle X-ray scattering (SAXS), Toney et al., proposed that
the solution of a diketopyrrolopyrrole-based (or DPP-based) polymer (PDPP) contained
short-range ordered aggregates with a size of about 25 nm along the backbone direction
when the solvent addition 1-chloronaphthalene (CN) was used [102]. Therefore, in their
case, the critical size of the nucleus should be less than 25 nm.

The nucleation process may be homogeneous or heterogeneous. As we mentioned
in Section 3.1, D-A conjugated polymer chains may form short-range ordered aggregates
with the proper temperature and solvent. The formation of these short-range ordered
aggregates could be regarded as a self-seeding nucleation process which is a special case of
heterogeneous nucleation. Extra nucleating agents which could promote the heterogeneous
nucleation process are rarely used in conjugated polymers probably because they may
reduce the electronic performance of conjugated polymers by introducing electronic traps.
For conjugated polymers, heterogeneous nucleation generally occurs on the surface of the
substrate during the film formation process or in the solution during self-seeding. In the
former situation, the surface energy of the substrate is critical for heterogeneous nucleation.
For example, Diao et al., proposed that decreasing the surface energy could reduce the free
energy barrier of heterogeneous nucleation and, thus, resulted in increased crystallinity
and an increased degree of molecular ordering [110]. Self-seeding nucleation is an effective
strategy for controlling the crystallinity of conjugated polymers. Pei et al., controlled the
solution-state aggregation of a D-A conjugated polymer by changing the temperature, and
the results indicated that the polymer film deposited at a medial temperature showed
the highest crystallinity [99]. Han et al., controlled the fibril width of 3,6-bis-(thiophen-2-
yl)-N,N′-bis(2-octyl-1-dodecyl)-1,4-dioxo-pyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene
copolymer (PDBT) in PDBT: [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) blend
films by adjusting the solubility of PDBT in solvent additives. They found that a lower
solubility resulted in a narrower fibril width as shown in Figure 5a. They proposed
that solvent additives could promote the nucleation of PDBT in solution. Increasing the
amount of solvent additives or decreasing the solubility of PDBT in solvent additives
resulted in more nuclei, and, thus, the width of fibrils decreased [96]. Later, Janssen
et al., studied the effect of many factors on the fibril width of an alternating copolymer of
diketopyrrolopyrrole and a thiophene-phenyl-thiophene oligomer (PDPPTPT) in blend
films. They concluded that factors such as MW, cosolvent type and cosolvent blend had a
large effect on the fibril width of PDPPTPT as shown in Figure 5b. They agreed with Han
et al.’s conclusion that the solubility of PDBT in solvent additives determined the fibril
width because the change of the above three factors also induced the decrease of solubility.
However, they proposed that the mechanism of nucleation was homogeneous nucleation
because the amount of solvent had a limited effect on the fibril width in their study. Also,
they thought that the actual nucleation mechanism was a combination of homogeneous
and heterogeneous nucleation [111].
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fibril width of PDBT, which were adapted from reference [96] with permission from Copyright 2015
Elsevier B.V. (b) Factors with a large effect on the fibril width of PDPPTPT in the PDPPTPT:PC71BM
blend films, which were adapted from reference [111] with permission from Copyright 2021 American
Chemical Society. (c) TEM images of PDBT nanowires during the slow evaporation process, which
were adapted from reference [112] with permission from Copyright 2021 Elsevier Ltd.

Homogeneous nucleation generally occurs when the crystallization process begins
from a homogeneous solution. In fact, it is difficult to distinguish between homogeneous
nucleation and self-seeding nucleation because the chain conformation is complex, and the
critical size of the nucleus is unknown. Han et al., prepared PDBT nanowires by slowly
evaporating the solution. The solvent was composed of a low-boiling good solvent chlo-
roform (CF) and a high-boiling marginal solvent o-dichlorobenzene (ODCB). During the
evaporation process, PDBT crystals appeared and then gradually grew into long nanowires
as shown in Figure 5c. They found that decreasing the evaporation speed of CF was critical
for the formation of nanowires. A fast evaporation rate resulted in the amorphous aggre-
gates of PDBT. Therefore, they thought that the nuclei were formed during the evaporation
process through a homogeneous nucleation mechanism.

3.3. The Growth Process

The growth direction of D-A conjugated polymer crystals may be along the alkyl side
chain, the π-π stacking and the backbone. Understanding which direction is dominant
during the growth process is also very important. For example, the length direction of D-A
conjugated polymer crystals is along the backbone in most cases [71]. Han et al. [96] and
Janssen et al. [111] proposed that the fibril width of D-A conjugated polymers depends
on the nucleation density, indicating that the fibrils could grow along the π-π stacking
direction (the chains adopted edge-on orientation). However, the growth of nanowires
is mainly along the backbone direction, as shown in Figure 5c. To further understand
the growth direction of D-A conjugated polymer crystals, our group studied the effect
of nucleation density on the morphologies of poly[2,5-bis(2-octyldodecyl)pyrrolo-[3,4-
c]pyrrole-1,4(2H,5H)-dione-alt-2,2′: 5′,2′′: 5′′′,2′′′-quaterthiophene] (PDQT) pure films and
blend films as shown in Figure 6a. We found that increasing the amount of the solvent
additive ODCB resulted in a narrower fibril width in blend films, which was consistent
with the results of Han et al. [96]. In the case of pure films, the crystal density increased
when the amount of ODCB increased, but the fibril width had a limited change. The results
indicated that the dominant growth direction of PDQT crystals was different in blend films
and pure films. We proposed that the growth of PDQT fibrils was in a confined space
for blend films due to the presence of PC71BM, as the fibrils could not grow along the
length direction when the crystal size in this direction was large enough, and, thus, the
fibrils could only grow along the radial direction [113]. Another example is the effect of
MW on the crystal sizes of D-A conjugated polymers. Choi et al., synthesized a highly
crystalline DPP-based polymer (DPPBTSPE). They found that the aspect ratio of nanowires
for low-MW (8 kDa) DPPBTSPE was much higher that of high-MW (68 kDa) DPPBTSPE
during the slow crystallization process in the dilute solution as shown in Figure 6b [80].
This result could not be explained by Equation (1). Additionally, if MW only affects the
nucleation process, the aspect ratio of nanowires for high-MW and low-MW DPPBTSPE
should be similar. Therefore, the MW must also affect the growth process of D-A conjugated
polymer crystals.
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Figure 6. (a) TEM images of PDQT:PC71BM blend films (top) and pure PDQT films (bottom) pro-
cessed with different amounts of solvent additive ODCB, which were adapted from reference [113]
with permission from Copyright 2017 Wiley Periodicals LLC. (b) TEM images of high- and low-MW
DPPBTSPE nanowires, which were adapted from reference [80] with permission from Copyright 2015
American Chemical Society.

In fact, understanding the growth process of D-A conjugated polymers is a challenge.
This is because most polymer crystallization theories were based on the hypothesis of folded
chains [72–75,114,115], which is different from the extended chain conformation in crystals
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for D-A conjugated polymers [71]. Think about the nature of the crystallization process; it is
actually the motion of molecules. The movement types of molecules could be divided into
translational motion and rotational motion, which could be realized by the diffusion and
the conformational transition of molecules during the crystallization process, respectively.
For small molecules, their conformational transition process is very fast because of their
small molecular sizes. The growth theory of small-molecule crystals is mainly concerned
about the diffusion process [116]. In the case of flexible polymers, the conformational
transition process is rather important because of the rich chain conformations. The fold
of polymer chains during the growth process could be regarded as the conformational
transition process. D-A conjugated polymers have the feature of rigidity because of the
conjugated backbone and the feature of flexibility because of the long chains, and, thus,
both the diffusion process and the conformational transition process are important during
the growth process. Based on the above analyses, our group proposed a crystallization
theory based on diffusion and conformational transition (D-CT) to quantitatively explain
the crystallization process of D-A conjugated polymers [117].

In consideration of the fact that some polymer chains may form amorphous aggregates
during the crystallization process, we used the average aggregate rate (vA) to replace the
growth rate of crystals. The vA was proposed to describe how many polymer chains attach
to every aggregate per unit time as shown in Figure 7a. According to this definition, vA
could be expressed as [117]

vA =
(c0V0 − ceVe)

ρNV0tc
(2)

where c0 and ce are the solution concentrations at the beginning and the end of the crys-
tallization process, respectively. V0 and Ve are the solution volumes at the beginning and
at the end of the crystallization process, respectively. ρN is the density of the nuclei, and
tc is the crystallization time. The key hypothesis of the D-CT theory was that the growth
of D-A conjugated polymer crystals involved two steps: (a) the chain segments diffused
to the growth front of the crystals from the solution and (b) the rest part of the polymer
chain transformed into the extended chain conformation as shown in Figure 7b [117]. The
first process was named “diffusion”, and the average diffusion rate (vD) was proposed to
describe how many polymer chain segments could reach the growth front of every crystal
per unit time. According to this definition, vD could be expressed as [117]

vD =
kTnsct

ζlD
NfSf P(S) (3)

where k is the Boltzmann constant, T is temperature, ns is the average number of chain
segments in every polymer chain, ct is the solution concentration, ζ is the friction coefficient,
lD is the average diffusion distance of the chain segment, Nf is the number of growth fronts
in every crystal, Sf is the effective surface area of every growth front and P(S) is the
probability that the conformation of the chain segment matches with the growth front. The
second process was named “conformational transition,” and the average conformational
transition rate (vT) was proposed to describe how many polymer chains could transform
into the extended chain conformation along the growth front of every crystal per unit time.
According to this definition, vT could be expressed as [117]

vT =
Nf

Ans
e−

∆GT
kT (4)

where A is a constant and ∆GT is the energy difference during the conformational transition
process of the chain segment.
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and conformational transition processes of polymer chains. (c,d) The possible growth directions
of a single polymer chain. (e) The diagram of how vD, vA and vT values affect the morphology of
D-A conjugated polymer crystals. These were adapted from reference [117] with permission from
Copyright 2022 Elsevier Ltd.

Another important hypothesis of the D-CT theory was that the growth rate of more
thermodynamically stable D-A conjugated polymer crystals along the backbone direction
(vb) should not be faster than those of the π-π stacking direction (vπ-π) [117]. That is, the
crystal structure shown in Figure 7d is more stable than that shown in Figure 7c. According
to this hypothesis,

vb
vπ−π

=
Nb

Nπ−π
=

lb/Le

lπ−π/dπ−π
≥ 1 (5)

where Nb and Nπ-π are the average number of polymer chains along the backbone and
the π-π stacking directions, respectively; lb is the size of the crystal along the backbone
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direction; lπ-π is the size of crystal along the π-π stacking direction; Le is the average length
of the extended chain; and dπ-π is the π-π spacing. Equation (5) could be rewritten as

lb
lπ−π

≥ Le

dπ−π
(6)

By analyzing how vD, vA and vT values affected the morphology of D-A conjugated
polymer crystals, the D-CT theory could be used to qualitatively predict the crystal structure
of D-A conjugated polymers as shown in Figure 7e [117].

The D-CT theory could be used to explain the above experimental results associated
with the growth process. For example, the Le value of D-A conjugated polymers is generally
larger than dozens of nanometers (based on the MW), and the dπ-π value is about 0.3–0.4
nm. According to Equation (6), the lb/lπ-π value of D-A conjugated polymer crystals is
generally larger than 100. This could explain why the length direction of D-A conjugated
polymer crystals is along the backbone [71,117]. Additionally, decreasing the MW results
in a higher vD value, and, thus, polymer chains reach the crystal growth front along the
backbone direction easier. As a result, the crystals of the low-MW polymer are closer to the
thermodynamically stable structure (high aspect ratio) [117].

4. The Crystal Structure

Once a three-dimensional ordered structure is formed through the nucleation and
growth process, it can be regarded as a crystal. As mentioned above, D-A conjugated
polymer crystals are generally orthorhombic crystals because the intermolecular interac-
tions along the alkyl side chain as well as the π-π stacking and the backbone directions
are orthogonal to each other. In consideration of the fact that D-A conjugated polymer
thin films, or blend films, are two-dimensional structures, the molecular orientation of D-A
conjugated polymers in crystals is an important factor affecting their applications [118,119].
Another factor associated with the crystal structure is polymorphism [120]. We will discuss
them in this section.

4.1. The Molecular Orientation

According to which crystal axis is perpendicular to the substrate, the molecular orienta-
tion of conjugated polymers could be divided into three types: face-on, edge-on and flat-on.
In films, conjugated polymers generally adopt a face-on or edge-on orientation [121,122]. If
the π-π stacking direction is perpendicular to the substrate, the molecular orientation is
named “face-on”. On the other hand, the molecular orientation is named “edge-on” if the
side chain stacking direction is perpendicular to the substrate. In particular cases [123,124],
conjugated polymers may adopt a “flat-on” orientation where the backbone is perpendicu-
lar to the substrate. Additionally, the backbones may form an ordered arrangement in the
direction parallel to the substrate if an appropriate shear force is applied during the film
formation process [125–128]. This situation will not be discussed here because the resulting
structure belongs to film structure or texture structure.

During the film formation process, the D-A conjugated polymers will adopt a random
orientation if the nucleation process is homogeneous. The orientation of D-A conjugated
polymers may be formed through three approaches. The first approach is heterogeneous
nucleation on the surface of the substrate. In this situation, the conjugated polymer chains
adopt an appropriate orientation to increase the interactions between the substrate and
the conjugated polymers. Adjusting the molecular structure of D-A conjugated polymers
can influence the interactions between the substrate and the conjugated polymers, and,
thus, the thermodynamically stable orientation of D-A conjugated polymers may also
change. For example, Yang et al., synthetized four brand-new thieno-benzo-isoindigo-
based (or TBIG-based) copolymers by changing the ratio of TBIG and the isoindigo (IIG)
units as shown in Figure 8a. The backbone coplanarity increased when the copolymer
contained more TBIG units. The 2D-GIXD results indicated that the relative content of the
edge-on orientation increased when the coplanarity of the backbone increased as shown



Polymers 2022, 14, 4612 16 of 29

in Figure 8b [129]. In another example, Hwang et al., synthetized three PDPPs by using
furan and selenophene units to replace the thiophene unit of the backbone. The results
indicated that the PDPP containing furan units adopted a face-on orientation, while the
PDPP containing thiophene or selenophene units adopted an edge-on orientation as shown
in Figure 8c [130].

The second approach is the orientation of aggregates when D-A conjugated polymers
are preaggregated in the solution. For example, PDNI mostly adopted a face-on orientation
in spin-coated films. When the films underwent a melt-annealed process, PNDI changed
to the edge-on orientation as shown in Figure 8d [131]. The edge-on orientation resulted
from the heterogeneous nucleation happening on the surface of the substrate, while the
face-on orientation could be attributed to the chain collapse of the aggregates formed via
the coiling of individual polymer chains [101,132]. In another example, Pisula et al., found
that difluorobenzothiadiazole-based (or FBT-based) polymers (FBT-Th4(1,4)) adopted an
edge-on orientation in the film casted from CF, but the orientation changed to face-on when
1,2,4-trichlorobenzene (TCB) was added into the solution. They proposed that FBT-Th4(1,4)
preaggregated in CF solution due to strong intermolecular π-π stacking interactions, and
the aggregates lay flat on the substrate (face-on) to maximize the interaction between the
polymer and substrate. On the contrary, TCB efficiently lowered the aggregates in the solu-
tion and, thus, resulted in a face-on orientation [133]. Therefore, competition between the
orientation of aggregates formed in the solution and heterogeneous nucleation happening
on the surface of the substrate may be the reason for different molecular orientations.
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face-on orientations of the four polymers calculated from the results of 2D-GIXD, which was adapted
from reference [129] with permission from Copyright 2020 Royal Society of Chemistry. (c) Schematic
diagrams of the chemical structure and the molecular orientation of the three PDPPs, which were
adapted from reference [130] with permission from Copyright 2022 American Chemical Society.
(d) Schematic diagrams of the molecular orientation of PNDI, which were adapted from refer-
ence [131] with permission from Copyright 2011 American Chemical Society. (e) Schematic diagrams
of the surface molecular orientation in solutions and films, which were adapted from reference [133]
with permission from Copyright 2016 Wiley.

The last approach is the orientation of D-A conjugated polymer crystals. During the
film formation process, the crystals grown in solution will adopt an appropriate orientation
to maximize the interaction between the crystal and substrate. The evidence for this is
that conjugated polymer nanowires prepared in the solution generally adopted edge-on
orientations when they were cast on the substrate [80,82,112,134,135].

4.2. Polymorphism

The polymorphism of D-A conjugated polymers has been reported by several groups.
Janssen et al., found that the solution of D-PDPP4T-HD (a PDPP) in the CF and TCB mix
solvent contained two semi-crystalline polymorphs (β1 and β2). When the content of TCE
increased, the β1 phase transformed into the amorphous α phase, and then a new β2 phase
appeared as shown in Figure 9a,b. The two polymorphs had distinctly different parame-
ters such as the maximal absorption peak, the optical bandgap and the π-π stacking dis-
tance [136]. PNDI also exhibited two distinct polymorphs when melt-annealed at different
temperatures [137,138]. Brinkmann et al., proposed that PNDI adopted a face-on orienta-
tion with the acceptor and donor units stacked in segregated columns when melt-annealed
at 220 ◦C as shown in Figure 9c. However, PNDI changed to an edge-on orientation with
a mixed stacking of the acceptor and donor units when melt-annealed at 300 ◦C [137].
Changing the chemical structure may also result in new polymorphs [139,140]. For exam-
ple, Brinkmann et al., proposed that a new polymorph was achieved when using a F atom
to replace the H atom in the benzothiadiazole unit of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-
cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) as shown
in Figure 9d [139]. Although polymorphisms of several D-A conjugated polymers have
been reported, the reason for these polymorphisms is not yet very clear. The formation of
polymorphs could be related to the nucleation process because the crystal structure seems
to be clear when the nuclei have formed.
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Figure 9. (a) UV-vis spectra of D-PDPP4T-HD dissolved in CF and TCB mixtures. (b) Schematic
illustration and properties of the two polymorphs, which were adapted from reference [136] with
permission from Copyright 2019 Nature Publishing Group. (c) UV-vis spectra of PNDI films melt-
annealed at different temperatures, which were adapted from reference [137] with permission from
Copyright 2014 Wiley. (d) The structural models of PCPDTBT and F-PCPDTBT crystals, which were
adapted from reference [139] with permission from Copyright 2015 American Chemical Society.

5. The Crystal Morphology

When the growth process ends, the crystal morphology of D-A conjugated polymers
in the film is then clear. According to size and shape, our group divided the crystal
morphology into four types [117]. The first type was the locally ordered structures, and
the lb value were less than Le. If the lb value was larger than Le and less than several
microns, they were called fibrils. On the other hand, the crystals were called nanowires if
the lb value was larger than several microns. In some cases, the fibrils, or nanowires, were
branched, and they were called rhizoid crystals, as shown in Figure 6. We discussed them
in this section.

5.1. Locally Ordered Structures

During the crystallization process, locally ordered structures may form in three situ-
ations. In the first case, the nucleation rate is very fast, and there are too many nuclei in
the solution. The growth process is suppressed, and, thus, the lb value is very small. In
the second case, the growth rate is very fast, and the polymer chains do not have enough
time to diffuse to the more stable growth front. The metastable crystals mainly grow along
the π-π stacking direction due to the strong intermolecular π-π interactions. The lπ-π value
could reach dozens of nanometers or even a few hundred nanometers, and this kind of
structure is also called lamellar or fibrillar morphology [141–144]. In the third case, the
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nuclei or aggregates are surrounded by amorphous aggregates, and, thus, the growth of
the crystals is hard. For example, the collapse process of a stiff polymer can result in an
inner ordered structure [101,104], but the further growth of such an ordered structure along
the backbone direction should be difficult.

The locally ordered structures can be directly observed using high-resolution transmis-
sion electron microscopy (HRTEM). Han et al., studied the effect of MW on the morphology
of drop-casted PNDI films as shown in Figure 10. The TEM images showed an irregular
lamellar morphology or homogeneous morphology, but the selected-area electron diffrac-
tion (SAED) patterns indicated that all of the films contained ordered structures. These
ordered structures could be observed from the HRTEM images. The crystal size in the
backbone direction was larger when the MW of PNDI was lower [141]. A lower MW
resulted in larger vD and vT values; thus, the polymer chains could diffuse easier to the
more stable growth front and accomplished the conformational transition process [117].
This could be the reason for the larger crystal size in the backbone direction.
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5.2. Fibrils

Fibrils are generally used to describe crystals with a high aspect ratio. The thickness
of conjugated polymer films, or blend films, is around 100 nm, so the crystal size in the
height direction is generally no more than dozens of nanometers. Fibril is a reasonable
name for these slender crystals observed in the TEM images. If the length of the crystals is
very long, the more relevant name nanowire is usually used. The difference between the
locally ordered structure, fibril and nanowire is whether the extended chains can arrange
freely in the crystals. Decreasing the vA value is beneficial for the diffusion process and the
conformational transition. The extended chains could then be arranged easier in the crystals,
and, thus, the crystal morphology could be adjusted. For example, Han et al., studied the
effect of evaporation speed on the crystal morphology of PDBT as shown in Figure 11a.
Decreasing the evaporation speed increased the crystallization time and resulted in a lower
vA value. They found that the film morphologies were fibrils or locally ordered structures
when the evaporation speed was fast, while they were nanowires when the evaporation
speed was slow [112]. The size of fibrils could be controlled by adjusting the density of the
nuclei. For example, Han et al., used the mixed solvent of ODCB and anisole (AS) as the
cosolvent and studied the effect of the cosolvent on the crystal morphology of PDPP. They
found that the fibril density decreased and the fibril size increased when the ratio of AS
increased as shown in Figure 11a [95].
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5.3. Nanowires

D-A conjugated polymer nanowires were first reported by Müllen et al., as shown in
Figure 12a. They used the solvent vapor-enhanced drop-casting (SVED) method to promote
the self-assembly of the cyclopentadithiophene-benzothiadiazole copolymer (CDT-BTZ).
The nanowires adopted an edge-on orientation, and the length direction was along the back-
bone. The width, height and length of CDT-BTZ nanowires were 300–600 nm, 80–150 nm
and 5–20 µm, respectively [145]. Later, Choi et al., prepared Poly[[2,5-bis(2-octyldodecyl)-
2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,20-(2,5-thiophene)bis-dith
ieno(3,2-b;20,30-d)thiophene]-5,50-diyl]] (PDTTDPP) through self-assembly in a dilute so-
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lution. The nanowires also adopted an edge-on orientation with the length direction along
the backbone as shown in Figure 12b [82]. They proposed that a more rigid and planar
backbone could promote intermolecular interactions to propel the self-assembly of polymer
chains, and, thus, it is beneficial for the formation of nanowires [80,82]. After that, Han
et al., prepared PDBT nanowires using a method named slow evaporation of the main
solvent (SEOMS). They proposed that decreasing the aggregate speeds of the molecules
was very important to prepare D-A conjugated polymer nanowires because the growth of
nanowires required that the polymer chains diffused to the growth front of the crystals [112].
According to the D-CT theory, the formation of nanowires required high vD/vA and vT/vA
values [117]. A more rigid and planar backbone resulted in a higher vT value. Decreasing
the aggregate speeds meant a lower vA value. Therefore, the views of both Choi et al. and
Han et al., are critical for the preparation of nanowires. Besides the edge-on orientation,
D-A conjugated polymer nanowires may also adopt a face-on orientation as shown in
Figure 12c. Wang et al., prepared two PDPP (named PDPP2TBDT and PDPP2TzBDT)
nanowires through an in situ drop-coating method. They found that PDPP2TBDT adopted
an edge-on orientation, while PDPP2TzBDT adopted a face-on orientation [81]. In addition,
the width and height of nanowires are generally less than 1 µm. If the width and height of
nanowires are larger than 1 µm, the crystals could be called microwires. For example, Pei
et al., prepared D-A conjugated polymer microwires by well controlling the nucleation and
growth processes [135,146].

5.4. Rhizoid Crystals

Branched fibrils first caught our group’s attention in 2021 [113]. We found that the mor-
phology of pure PDQT films showed a branched fibril structure as shown in Figure 6a. The
branched fibrils were regarded as dendritic crystals or dendritic fibrils at that time [113].
However, the formation of dendritic crystals happens through a diffusion-limited ag-
gregation mechanism, which could not be used to explain the formation of branched
fibrils [147–149]. We proposed that secondary nucleation might occur in the cilia of the
fibril surface, and, thus, the branched structure was formed [113]. In fact, the nanowires of
high-MW DPPBTSPE reported by Choi et al., also showed a branched structure as shown
in Figure 6b [80]. However, this branched structure has received little attention. Our
group named branched fibrils and nanowires as rhizoid crystals, and the D-CT theory
could be used to explain the formation of rhizoid crystals as shown in Figure 13. Chain
A diffuses to the growth front of the crystal, but it has not completed the conformational
transition process. At the same time, chain B diffuses to the growth front and prevents the
conformational transition of chain A. Then, the uncrystallized part of chain A may act as a
new nucleus in the following growth process. As a result, a branched structure is formed.
To accomplish the above processes, the crystallization conditions should satisfy vD � vA
≈ vT [117].



Polymers 2022, 14, 4612 22 of 29

Polymers 2022, 14, x FOR PEER REVIEW 22 of 30 
 

 

PDPP2TBDT and PDPP2TzBDT) nanowires through an in situ drop-coating method. They 
found that PDPP2TBDT adopted an edge-on orientation, while PDPP2TzBDT adopted a 
face-on orientation [81]. In addition, the width and height of nanowires are generally less 
than 1 μm. If the width and height of nanowires are larger than 1 μm, the crystals could 
be called microwires. For example, Pei et al. prepared D-A conjugated polymer mi-
crowires by well controlling the nucleation and growth processes [135,146]. 

 
Figure 12. (a) Scanning electron microscopy (SEM) image of CDT-BTZ nanowires and schematic 
illustration of the backbone organization in the nanowires, which were adapted from reference [145] 
with permission from Copyright 2012 Wiley. (b) SEM image of PDTTDPP nanowires and schematic 
illustration of the proposed orientation of polymer chains in the nanowires, which were adapted 
from reference [82] with permission from Copyright 2013 Wiley. (c) Optical microscope (OM) 

Figure 12. (a) Scanning electron microscopy (SEM) image of CDT-BTZ nanowires and schematic
illustration of the backbone organization in the nanowires, which were adapted from reference [145]
with permission from Copyright 2012 Wiley. (b) SEM image of PDTTDPP nanowires and schematic
illustration of the proposed orientation of polymer chains in the nanowires, which were adapted from
reference [82] with permission from Copyright 2013 Wiley. (c) Optical microscope (OM) images of the
nanowires of the two PDPPs and schematic illustration of the molecular packing in the nanowires,
which were adapted from reference [81] with permission from Copyright 2015 Wiley.
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6. Conclusions and Outlook

We attempted to achieve a clearer understanding of the crystallization of D-A con-
jugated polymers in this review. First, the features of D-A conjugated polymers are the
origin of their distinctive crystallization characteristics: (1) the geometrical regularity of the
molecular structure determines the crystallizability of D-A conjugated polymers; (2) the
strong backbone rigidity results in a typical extended chain conformation in the crystals;
(3) the anisotropic interchain interactions result in a typical orthorhombic crystal unit cell,
and the strong intermolecular π-π stacking interactions may manipulate the crystallization
process; and (4) the alkyl side chains may self-crystallize or affect the crystallinity of the
backbones. Then, the chain conformation in the solution as well as the nucleation and
growth processes are key factors affecting the crystallization process. In solution, short-
range ordered aggregates may act as nuclei, while unimer conformations are critical for the
growth process, as they can reach the growth front of small crystals to form larger crystals.
Adjusting the relative content of short-range ordered aggregates is a good way to control
the nucleation process. In the growth process, the growth of crystals is connected to the
vD, vA and vT values. Finally, the formation of multilevel structures in D-A conjugated
polymer films largely depends on the crystallization process. The nucleation process and
the orientation of the nuclei on the substrate are critical for the crystal structure. The
resulting crystal morphology is a combined effect of the nucleation and growth processes.

Although many crystallization characteristics of D-A conjugated polymers can be
well understood, the crystallization mechanism of D-A conjugated polymers is still not
very clear. On the one hand, it is a challenge to describe the nucleation process. Although
experimental results show that many factors, such as temperature, concentration and
solvent additives, affect the nucleation process, a theoretical description of the nucleation
process is absent. On the other hand, a quantitative description of the growth process is
also a challenge. Therefore, further work is needed to better understand the crystallization
of D-A conjugated polymers.
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