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Abstract: We compute the exact root-mean-square end-to-end distance of the interacting self-avoiding
walk (ISAW) up to 27 steps on the simple cubic lattice. These data are used to construct a fixed
point equation to estimate the theta temperature of the collapse transition of the ISAW. With the
Bulirsch–Stoer extrapolation method, we obtain accurate results that can be compared with large-scale
long-chain simulations. The free parameter ω in extrapolation is precisely determined using a parity
property of the ISAW. The systematic improvement of this approach is feasible by adopting the
combination of exact enumeration and multicanonical simulations.

Keywords: collapse transition; interacting self-avoiding walks; exact enumeration; Bulirsch–Stoer
extrapolation

1. Introduction

With the rapid development of computer hardware and software, computational
approaches [1–3] are increasingly important in polymer science. Among various compu-
tational methods, exact enumeration is a very primitive technique. Almost four decades
passed since W.J.C. Orr [4] studied the equilibrium properties of a single polymer chain at
dilute solution by exact enumeration. In this paper, we show that exact enumeration can
already produce quantitative results as accurate as those of large-scale simulations. We
focus on the interacting self-avoiding walk (ISAW) on the simple cubic lattice [5–10]. The
ISAW model is a very basic polymer model that serves as the framework of most lattice
protein models [11,12].

An ISAW is a self-avoiding walk with attraction between monomers. The energy of an
ISAW chain is defined as m(-ε), where m is the number of nonconsecutive nearest-neighbor
contacts, and -ε is the attractive contact energy between two monomers. The canonical
partition function of a N-step ISAW is

ZN(x) = ∑
all ISAWconf.

e−E/kB T = ∑
all ISAWconf.

(eε/kB T)m =
M

∑
m=0

cm xm (1)

where x = eε/kB T , cm is the number of ISAW configurations with m contacts, and M is the
maximal number of contacts. Here, ε and kB can be set to 1 by adjusting the units. Another
important function related to the square of the end-to-end distance is defined as follows:

R2
N(x) =

M

∑
m=0

N2

∑
R2=1

R2 cm,R2 xm (2)

where R2 is the square end-to-end distance, cm,R2 is the number of ISAW configurations

with m contacts and square end-to-end distance R2, and cm,R2 satisfies ∑N2

R2=1 cm,R2 = cm.
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Both ZN(x) and R2
N(x) are polynomials of x with positive integer coefficients. The root-

mean-square end-to-end distance at a certain temperature can be expressed as follows:

RN(T) =

√
R2

N(e
1/T)

ZN(e1/T)
(3)

Two examples of the normalized end-to-end function RN(T)/
√

N are shown in
Figure 1. Both of them are increasing functions, and the slope of the function with larger N
is also larger around the intersection point.
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Figure 1. Curves of RN(T) defined in Equation (3) and normalized by
√

N with N = 26 (blue) and
N = 16 (orange).

A polymer chain with attraction between monomers undergoes a collapse transition
at theta temperature Tθ . RN(T) has different scaling behaviors at different temperature
regions [13]:

Nνsaw , T > Tθ

RN(T) ∼ Nνθ f (Nφ(T − Tθ)), T ∼ Tθ

N1/d, T < Tθ

(4)

In three dimensions, νθ and φ can be determined by the mean-field theory to both be
1/2. νsaw can be determined with great accuracy by simulation to be 0.587597(7) [14].

The precise estimation of the theta temperature of the ISAW on the simple cubic
lattice came from large-scale simulations [15–20]. P. Grassberger [17] proposed the well-
known pruned-enriched Rosenbluth method (PERM) on the basis of the Rosenbluth–
Rosenbluth method and the idea of enrichment. For free chains with N = 10,000, the
best estimate of the theta temperature was 3.717(3). The recursive sampling algorithm
used by P. Grassberger and R. Hegger [15] was a previous version, and the estimated theta
temperature was 3.721(6) with N = 5000. H. Frauenkron and P. Grassberger [18] used
the PERM to simulate polymer solutions with N = 2048 and obtained an estimated theta
temperature of 3.717(2). T. Vogel et al. [20] used the new PERM with simple sampling up
to N = 32,000 and performed a scaling analysis to obtain an estimate of 3.72(1). The above
are all chain-growth methods. Tesi et al. [16] used two Markov chain-sampling methods,
the multiple Markov chain method and umbrella sampling, to obtain an estimated theta
temperature of 3.62(8) with N = 1600. Yan et al. [19] used the expanded grand-canonical
ensemble simulation for polymer solutions with N = 16,000 and obtained an estimate of
3.71(1). In general, Monte Carlo methods must be able to generate unbiased samples and
overcome the trapping problems. Exact enumeration, in contrast, is much clearer and
simpler. The only challenge with exact enumeration is how to count the total number
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of larger systems. This is more of a computational problem than a theoretical problem.
The solution to this problem benefits directly from the rapid development of computer
hardware and software.

2. Method

The computational methods used in this paper are the exact enumeration algorithm
to count the total number of ISAW configurations, and the Bulirsch–Stoer algorithm to
extrapolate the finite-size data.

2.1. Exact Enumeration

To determine cm and cm,R2 in Equations (1) and (2), we used a direct counting algorithm
that we developed [10] to exhaustively enumerate all configurations of an ISAW chain on
the simple cubic lattice. The original goal of this algorithm was to generate enough typical
sequences for the 27-mers [21] to study the relationship between protein sequences and
structures. Using this algorithm to count all configurations (not just the ground states) of a
protein sequence with 27 monomers on the simple cubic lattice now only takes the order of
days. The algorithm includes not only direct counting but also reduction in the degrees of
freedom in the beginning and final stages. These procedures lead to a significant reduction
in computation time.

In the following, we explain some details of the counting process. Figure 2 shows
all 22 representative configurations of a four-step ISAW on the simple cubic lattice. The
convention is the first monomer being placed at the origin and the second monomer at
(1, 0, 0), which fixes the first direction (the darker bond in every configuration). The third
monomer has four or five possible directions to choose from, and so on. The three numbers
above each configuration in Figure 2 are the number of contacts m, the square end-to-end
distance R2, and degeneracy coming from the symmetry of the next direction taken. If the
numbers are 0, 10, and 4, variable c0,10 would be incremented by 4 in the program.

Figure 2. All configurations of a 4-step ISAW on the simple cubic lattice.

Let us consider the six configurations in the last row of Figure 2 as an example. They
are configurations with one contact, and they contribute to the coefficients of the linear
terms in Z4(x) and R2

4(x). c1 = 4 + 4 + 8 + 8 + 4 + 4 = 32. c1,2 = 8 + 8 + 4 + 4 = 24.
c1,4 = 4 + 4 = 8. The coefficient ∑R2 R2 c1,R2 = 2× 24 + 4× 8 = 80. The final results
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are Z4(x) = 32x + 89 and R2
4(x) = 80x + 592. The root-mean-square end-to-end distance

is thus

R4(T) =

√
80e1/T + 592
32e1/T + 89

(5)

The direct counting algorithm has the advantage of easily integrating different ideas
and techniques. One straightforward parallel implementation for this direct counting
algorithm runs 22 jobs with 22 initial configurations shown in Figure 2. The number of jobs
can be flexibly adjusted by choosing a different number of initial configurations depending
on how many computer cores are available. Lastly, all results are collected and summed up
to be the exact coefficients of ZN(x) and R2

N(x). All counting jobs can be completed within
a few weeks using a small PC cluster.

2.2. Bulirsch–Stoer Extrapolation

The Bulirsch–Stoer algorithm [22–25] may be the most powerful extrapolation method
in existence. Its idea was borrowed from recursive algorithms such as the Richardson and
Neville algorithms, but the result is much more general. In this subsection, we briefly
introduce the Bulirsch–Stoer algorithm and explain how to use its main formula. The
detailed derivation and proof can be found in [25].

In this paper, the data of the finite-size theta temperature of the ISAW needs to be
extrapolated. Suppose its finite-size scaling behavior can be described by power-law functions:

T(N) = Tθ + a1N−φ + a2N−ω2 + a3N−ω3 + . . . (6)

where N is the number of steps of the ISAW chain, φ is the leading exponent, 0 < φ <
ω2 < ω3 < . . . , and T(N) is the finite-size scaling function. We may first consider the
approximation that φ = ω, ω2 = 2ω, ω3 = 3ω, . . . . Define h = N−ω, then T(h) =
Tθ + a1h + a2h2 + . . . becomes a polynomial function, to which the Neville algorithm can
be applied. Below, we use five data points, {(hi, T(hi))}, i = 0, . . . , 4, as an example to
illustrate explicitly the basic procedures of the Neville and Bulirsch–Stoer algorithms, while
general formulas are also provided. First, a triangular 5× 5 matrix

(
Ti,j
)

is prepared, and
its first column is filled with {T(hi)}, i = 0, . . . , 4:

T0,0 = T(h0) T0,1 T0,2 T0,3 T0,4
T1,0 = T(h1) T1,1 T1,2 T1,3 0
T2,0 = T(h2) T2,1 T2,2 0 0
T3,0 = T(h3) T3,1 0 0 0
T4,0 = T(h4) 0 0 0 0


This matrix can also be expressed as a lower triangular matrix. In this case, the

indices in the formulas need a little adjustment. The elements of the second column are
then defined as the first-degree Lagrangian polynomials for the data in the first column.
For example,

T0,1 =
h− h1

h0 − h1
T0,0 +

h− h0

h1 − h0
T1,0 (7)

T0,1 obviously passes through (h0, T(h0)) and (h1, T(h1)). Neville noticed that the
formula of the same form can be used in the third column. For example,

T0,2 =
h− h2

h0 − h2
T0,1 +

h− h0

h2 − h0
T1,1 (8)

T0,2 can be shown by straightforward algebra to be the second-degree Lagrangian
polynomial passing through (h0, T(h0)), (h1, T(h1)), and (h2, T(h2)). The same is true for
all following columns. Thus, the general formula is:



Polymers 2022, 14, 4536 5 of 13

Ti,j =
h− hi+j

hi − hi+j
Ti,j−1 +

h− hi
hi+j − hi

Ti+1,j−1

=Ti+1,j−1 +
Ti+1,j−1 − Ti,j−1(

h−hi
h−hi+j

)
− 1

(9)

Equation (9) is the main formula of the Neville algorithm. The final output for this
five-point example is T0,4, the fourth-degree Lagrange polynomial passing through all five
data points. It is an extrapolation function that can be used to approximate the finite-size
scaling function T(h). Neville showed that the Lagrangian polynomials can be generated in
such an iterated way. The Neville algorithm is very efficient in evaluating function values
for interpolation or extrapolation.

Bulirsch and Stoer inserted an additional term: (1− (Ti+1,j−1 − Ti,j−1)/(Ti+1,j−1 −
Ti,j−2)), in the denominator in Equation (9):

Ti,j = Ti+1,j−1 +
Ti+1,j−1 − Ti,j−1(

h−hi
h−hi+j

)(
1− Ti+1,j−1−Ti,j−1

Ti+1,j−1−Ti,j−2

)
− 1

(10)

The appearance of Ti,j−2 requires {Ti,−1}, i = 0, . . . , 4 to be defined first. They can be
set to zero in the beginning. The effect of the additional term is that T0,4 now becomes a
rational function P(h)/Q(h), where both P(h) and Q(h) are polynomials. This rational
function also passes through all the data points and is another extrapolation function that
can be used to approximate the finite-size scaling function T(h). Since T(h) is actually
not a polynomial, it is expected that the more general rational functions are more suitable
to model T(h) than polynomials. Our extrapolation results also show that the Bulirsch–
Stoer algorithm is always more accurate than the Neville algorithm. More details on the
properties of such rational functions appearing in Bulirsch–Stoer extrapolation can be
found in [25].

In Equation (6), Tθ is reached as N → ∞, or h→ 0. Substituting h = 0 and hi = N−ω
i

into Equation (10),

Ti,j = Ti+1,j−1 +
Ti+1,j−1 − Ti,j−1(Ni+j

Ni

)ω(
1− Ti+1,j−1−Ti,j−1

Ti+1,j−1−Ti,j−2

)
− 1

(11)

Equation (11) is the main formula used in this paper to extrapolate the finite-size
theta temperatures. Now T0,4 is the extrapolation estimation of the theta temperature with
five data points. T0,3 and T1,3 are also the estimations of the theta temperature but with only
four data points used. They are less accurate than T0,4, while their difference can serve as
an estimate of the error of T0,4. A simple argument is as follows. Suppose T0,3 = Tθ ± σ0,3,
T1,3 = Tθ ± σ1,3, and T0,4 = Tθ ± σ0,4, where σ0,3, σ1,3, and σ0,4 are the statistical errors of

T0,3, T1,3, and T0,4. (T0,3 − T1,3) can be expressed as 0±
√

σ2
0,3 + σ2

1,3. Its range is larger

than ±σ0,4, since both σ0,3 and σ1,3 are larger than σ0,4. Thus, |T0,3 − T1,3| can roughly play
the role of σ0,4. Although there are actually no statistics for Ti,j, this error estimation is
appropriate for most testing examples where the answers are known. The premise is that
T0,3, T1,3, and T0,4 should be close to each other to indicate that the extrapolation values
have entered a stable region. In this paper, we adopt the following definition of the error
of T0,j:

ε0,j ≡ |T0,j−1 − T1,j−1| (12)

In Equation (11), ω is a free parameter. ω does not need to be equal to φ, but it won’t
be very different either. Each ω is associated with an extrapolation function that passes
through all the data points. A different ω results in a different extrapolation value. It
is, thus, very important to choose ω carefully. A reasonable choice of ω is the one that
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minimizes the error defined in Equation (12). In this paper, we use the parity property of
the ISAW on the simple cubic lattice to more precisely determine ω.

3. Result

On the basis of Equation (4), the solution T∗ of the following equation is an estimation
of theta temperature Tθ :

RN(T∗)√
N

=
RN′(T∗)√

N′
(13)

The choice of N and N′ should be both odd or both even. The random walks on the
square or simple cubic lattice are naturally divided into two groups, namely, random walks
with the even number of steps and the odd number of steps. On the simple cubic lattice,
even-step walks only stop at the point (i, j, k) with even (i + j + k), and odd-step walks
only stop at the point with odd (i + j + k). For this reason, random walks with the same
parity are more similar to each other. When N and N′ are closer, the two walks would also
be more similar, and Equation (13) would give more accurate estimations. Our numerical
results confirmed this expectation. Therefore, we only discuss the case of N − N′ = 2 in
this paper. Equation (13) becomes

RN+1(T∗(N))√
N + 1

=
RN−1(T∗(N))√

N − 1
(14)

We generated square end-to-end functions R2
N(x) for 10 ≤ N ≤ 27 (listed in Appendix A),

and used them and Equation (14) to calculate T∗(N). The results were divided into two
groups according to parity and are listed in Table 1. Figure 3 also shows that the data
points were clearly divided into two groups. The two lines passing through the data
points are seventh-degree Lagrangian polynomials. They will merge as N → ∞. The
estimation of the theta temperature could be reasonably set as (TI + TI I )/2 ≡ (T∗(Nodd →
∞) + T∗(Neven → ∞))/2. Its error is defined as

√
ε2

I
+ ε2

I I
/2, where εI and εI I are errors of

TI and TI I (Equation (12)) in the Bulirsch–Stoer extrapolation method. Two extrapolations
need to be performed here, and the chosen ω needs to make both εI and εI I smaller. Since
there are two constraints, the extrapolation value would be less biased.

To determine an optimal ω, a wide range of ω is scanned first to find the region with
small errors. The adjacent area is then zoomed in until the results do not change. Table 2
lists the estimations and errors of the theta temperature in the range of 0.814 ≤ ω ≤ 0.825.
The error is minimal as ω = 0.820, so the best estimation was Tθ = 3.709(2). This result
is consistent with the long-chain results of large-scale simulations [15–20]. We also used
the Neville algorithm (Equation (9)) instead of the Bulirsch–Stoer algorithm to extrapolate
the same data. The best estimation was Tθ = 3.501(4) with ω = 1.404. For all data that we
examined, the results of the Bulirsch-Stoer algorithm were always better than the results
of the Neville algorithm. Extrapolation with rational functions is expected to be better
than extrapolation with polynomials unless the finite-size scaling function is inherently
a polynomial.

Table 1. Estimation of the theta temperature T∗(N) determined by Equation (14).

Nodd + 1/Nodd − 1 T∗(Nodd) Neven + 1/Neven − 1 T∗(Neven)

12/10 2.3826 13/11 2.3710
14/12 2.4961 15/13 2.4889
16/14 2.5904 17/15 2.5860
18/16 2.6697 19/17 2.6670
20/18 2.7375 21/19 2.7358
22/20 2.7962 23/21 2.7951
24/22 2.8474 25/23 2.8468
26/24 2.8926 27/25 2.8923
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Figure 3. T∗(N) determined by Equation (14) for odd and even N. The two lines that pass through
eight odd data points and eight even data points are seventh-degree Lagrangian polynomial graphs.

Table 2. Extrapolation with different ω for the data listed in Table 1, where TI = T∗(Nodd → ∞),

TI I = T∗(Neven → ∞) and error =
√

ε2
I
+ ε2

I I
/2.

ω TI TI I (TI + TI I )/2 Error

0.814 3.7164 3.7053 3.7109 0.00212
0.815 3.7160 3.7051 3.7106 0.00206
0.816 3.7156 3.7048 3.7102 0.00201
0.817 3.7152 3.7046 3.7099 0.00196
0.818 3.7148 3.7043 3.7096 0.00191
0.819 3.7144 3.7041 3.7093 0.00187
0.820 3.7140 3.7038 3.7089 0.00184
0.821 3.7136 3.7036 3.7086 0.00185
0.822 3.7132 3.7033 3.7083 0.00193
0.823 3.7128 3.7031 3.7080 0.00212
0.824 3.7124 3.7029 3.7076 0.00246
0.825 3.7120 3.7026 3.7073 0.00304

We also considered a correction term predicted by the field-theoretic renormalization
group calculation [26]:

RN+1(T∗(N)√
(N + 1)(1− 37

363 log(N+1) )
=

RN−1(T∗(N)√
(N − 1)(1− 37

363 log(N−1) )
(15)

This correction term is small and may not agree with the simulations [15,17]. We
followed the same procedure as above to calculate T∗(N) with Equation (15), and list the
results in Table 3 for comparison.

Table 3. The estimation of theta temperature T∗(N) determined by Equation (15).

Nodd + 1/Nodd − 1 T∗(Nodd) Neven + 1/Neven − 1 T∗(Neven)

12/10 2.5421 13/11 2.5112
14/12 2.6345 15/13 2.6137
16/14 2.7135 17/15 2.6989
18/16 2.7811 19/17 2.7705
20/18 2.8396 21/19 2.8316
22/20 2.8907 23/21 2.8845
24/22 2.9356 25/23 2.9307
26/24 2.9754 27/25 2.9715
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The best estimation from the data in Table 3 was Tθ = 3.713(2) with ω = 0.8617. Since
T∗(N) listed in Table 3 was closer to the value of the “real” Tθ than those in Table 1, the
extrapolation result seemed to be also improved.

We may use the same procedure to calculate other quantities. For example, we can
verify the value of the crossing exponent φ in Equation (4) in the following way.

d logRN
dT

∣∣∣∣
Tθ

∼ Nφ (16)

φ(N) =
log
(

d logRN+1
dT

∣∣
Tθ

/ d logRN−1
dT

∣∣
Tθ

)
log((N + 1)/(N − 1))

(17)

Equation (17) is a ratio method. We took 3.713 as the value of Tθ . The results are
listed in Table 4. The best estimation of φ was 0.531(9) with ω = 1.76, while the exact
value is 1/2. This result is not as accurate as that of theta temperature estimation. The
correction term seems to be important when computing critical exponents. We have tried
to include a correction term and obtained much more accurate φ results. However, since
this paper mainly regards the efficiency of direct computation, we do not discuss the effect
of correction further.

Table 4. The estimation of crossing exponent φ(N) determined by Equation (17).

Nodd + 1/Nodd − 1 φ(Nodd) Neven + 1/Neven − 1 φ(Neven)

12/10 0.8944 13/11 0.8107
14/12 0.8350 15/13 0.7753
16/14 0.7936 17/15 0.7485
18/16 0.7628 19/17 0.7271
20/18 0.7387 21/19 0.7097
22/20 0.7192 23/21 0.6951
24/22 0.7032 25/23 0.6826
26/24 0.6896 27/25 0.6719

4. Discussion

The longest ISAW chain used in the calculation of this paper is the 27-step walk. The
total number of its configurations is huge: 431,645,810,810,533,429 ∼ 4× 1017. From such
a large number and others, we obtained an accurate estimate of the theta temperature
of ISAW on the simple cubic lattice. Nevertheless, a 27-step ISAW is very short in three
dimensions. The finite-size effect should be obvious. There are two reasons why short
chains can still give accurate results. The first reason is the careful determination of the free
parameter ω in the Bulirsch–Stoer algorithm. For ISAWs on the simple cubic lattice, we
could just take advantage of their natural division into odd and even groups. There are two
constraints on the choice of ω, resulting in more stable and accurate extrapolation results.
This experience may be extended to other problems where data points are not smooth. The
way of classifying the data points and combining the extrapolation results could work.
If only one series of data is extrapolated, unless the data points are very smooth, the ω
corresponding to the minimal error does not necessarily produce extrapolation values very
close to the true answer.

Another reason is that Equation (13) may be regarded as a fixed-point equation of the
real-space renormalization group transformation for the coarse-graining process, where
each N-step segment of the ISAW is replaced by a N′-step segment (N′ < N). In this view,
N and N′ are the block sizes of the transformation and not the length of the whole ISAW
chain. The finite-size effect could, therefore, be less obvious. Equation (13) can be rewritten
as the equation to transform T to T′: RN′(T′)/

√
N′ = RN(T)/

√
N, which will drive the

temperature away from the intersectional temperature T∗. Figure 1 shows this feature: if
T > T∗, T′ is larger than T, and T < T∗, T′ is smaller than T. A simple explanation is that,
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if T > T∗, RN′(T)/
√

N′ ∼ N′νsaw−1/2 < Nνsaw−1/2 ∼ RN(T)/
√

N, so T′ needs to be larger
to balance the transformation equation. A similar logic could be used for the case of T < T∗.
Only in the critical region around T∗, T′ ≈ T, and the normalized end-to-end distances
of the two ISAW segments with length N and N′ are approximately the same. The larger
and closer N and N′ are, the more similar these two segments are, and the transformation
equation is more accurate, so that T∗ is closer to Tθ . Traditional real-space renormalization
approaches for polymer models usually focus on the variable fugacity, e.g., [27]. The above
scenario of the real-space renormalization along the ISAW chain is only for the variable
temperature and can be developed in more detail. It is also similar to phenomenological
renormalization, e.g., [28], in which the correlation length plays the same role as RN(T)
and can be calculated by the transfer matrix method.

The number of configurations of an N-step ISAW grows exponentially with N, e.g., µN

with µ ∼ 4.7 for the simple cubic lattice. From 27 to 30 steps, the number of configurations
is increased by about 100 times. To go further, the degree of freedom of the problem must
be reduced in some way. The transfer matrix technique is efficient for the counting problem
of the two-dimensional ISAW [29,30], but difficult to extend to the three-dimensional case.
Matrix methods have been used in polymer science for many years, e.g., [31,32], and
deserve further development. The length-doubling method [33,34] reduces the degree
of freedom by counting and saving the information of two short walks and then joining
them to form a longer walk. It is very feasible for us to use this approach because we
had developed a counting algorithm with a similar idea [35]. We counted the number
of graphs in the percolation and Potts models by dividing the graphs into two parts (or
several layers) and then combining the two parts of the data to obtain the complete result.
This algorithm was used to study the partition function zeros of the Potts model on the
self-dual lattices [36].

We can push to the limit the size of the system that can be exactly enumerated to
obtain more accurate results. However, this direction may become very technical. A
more practical approach is to perform the multicanonical simulation [37,38] to count the
configurations of longer chains. The multicanonical simulation accumulates the density of
states during Monte Carlo sampling and is very different from the Metropolis algorithm, in
which sampling is just for averaging. This approach can be called Monte Carlo counting,
corresponding to exact counting. Among multicanonical methods, the Wang–Landau
algorithm [39] is commonly used because of its concise steps and high efficiency. It has
been applied to polymer simulations of various systems, including the ISAW [40]. We
have tried to combine the data of medium-length chains by Wang–Landau sampling with
the data of short chains by exact enumeration. Although the numbers of configurations
from the Wang–Landau method are approximate, they carry information about the longer
chains and would stabilize the extrapolation curve around the medium-length region.
Therefore, the data from the Wang–Landau method would certainly improve the accuracy
of exact enumeration. If there is no need to reach the limit, the total computation time spent
on exact enumeration and Wang–Landau sampling together could still be less than that
of large-scale simulations. This approach of combining exact counting and Monte Carlo
counting might become a practical and general technique in computational science.

In summary, we used exact enumeration and Bulirsch–Stoer extrapolation to obtain
an accurate estimate of the theta temperature of the ISAW on the simple cubic lattice. The
systematic improvement of this approach by increasing the chain length is achievable.
Research in this direction is in progress.
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Appendix A

Square end-to-end distance function R2
N(x) was used in the calculation of this paper.

ZN(x) can be found in [8–10] and references therein. The convention adopted in these
references was Zn(x), where n is the number of monomers, i.e., n = N + 1.

R2
10(x) = 2400x7 + 19248x6 + 93872x5 + 413192x4 + 1481904x3 + 3900024x2 + 8155040x + 10627300

R2
11(x) = 1576x9 + 60704x7 + 224980x6 + 1021784x5 + 3351332x4 + 10256736x3 + 23633256x2

+ 43562608x + 49569849

R2
12(x) = 16416x9 + 104512x8 + 633696x7 + 2545088x6 + 8501040x5 + 25078688x4 + 66255936x3

+ 136926368x2 + 226106208x + 228218912

R2
13(x) = 70832x10 + 233976x9 + 1651200x8 + 6655072x7 + 22621780x6 + 64631184x5 + 173180832x4

+ 406624624x3 + 765359388x2 + 1146376744x + 1039365077

R2
14(x) = 126240x11 + 770880x10 + 4287040x9 + 16977136x8 + 61503008x7 + 174549448x6 + 463709872x5

+ 1124687768x4 + 2397976592x3 + 4155302672x2 + 5700564608x + 4690177508

R2
15(x) = 61888x13 + 130256x12 + 2803328x11 + 11100208x10 + 47660636x9 + 161488660x8

+ 490203648x7 + 1270912460x6 + 3127566712x5 + 6973585084x4 + 13685618032x3

+ 22019032264x2 + 27886729240x + 20998484289

R2
16(x) = 86496x14 + 584352x13 + 6835616x12 + 31893952x11 + 132509024x10 + 442014976x9

+ 1348809664x8 + 3602285520x7 + 8811068576x6 + 20090484976x5 + 41678485424x4

+ 76017644448x3 + 114317397088x2 + 134529227632x + 93373103808

R2
17(x) = 59824x16 + 3654432x14 + 16444272x13 + 95878120x12 + 372284152x11 + 1262660332x10

+ 3760878904x9 + 10200682256x8 + 25303393620x7 + 58144426336x6 + 124206995660x5

+ 241559023440x4 + 412635057324x3 + 583175382496x2 + 641202383920x + 412726821809

R2
18(x) = 526080x16 + 9127264x15 + 47511072x14 + 274455648x13 + 1050334736x12

+ 3636975824x11 + 10704576752x10 + 29166261984x9 + 72815986408x8

+ 170368948064x7 + 368862169528x6 + 743990812816x5 + 1364475982032x4

+ 2196186178352x3 + 2930156906688x2 + 3024187489584x + 1814756487380

R2
19(x) = 5089568x17 + 20407688x16 + 167264872x15 + 790107600x14 + 3110776832x13

+ 10457227652x12 + 31269943372x11 + 84353385216x10 + 211763826268x9 + 498888884332x8

+ 1102327917932x7 + 2266179194088x6 + 4337209671764x5 + 7539106381076x4

+ 11490123782816x3 + 14527782144164x2 + 14131957951628x + 7942249264057

R2
20(x) = 11639984x18 + 65635904x17 + 507007872x16 + 2267416192x15 + 9239143104x14

+ 30415994464x13 + 91479528480x12 + 247319350256x11 + 622324223312x10

+ 1470521522480x9 + 3290722609424x8 + 6905473586320x7 + 13547868240384x6

+ 24705002669024x5 + 40869785392608x4 + 59219137485824x3

+ 71188679473136x2 + 65499250792128x + 34614203852528

R2
21(x) = 5345856x20 + 25080712x19 + 290885416x18 + 1506724320x17 + 7079603104x16

+ 27568255400x15 + 91164610648x14 + 270059662696x13 + 733051434432x12

+ 1847459865932x11 + 4375541386376x10 + 9847545657688x9 + 20987383612124x8

+ 42098460788708x7 + 79085417264008x6 + 137902810558716x5 + 217880054860396x4

+ 301173099741060x3 + 345209458064260x2 + 301363357830060x + 150290986646877
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R2
22(x) = 14547872x21 + 69055152x20 + 919643968x19 + 4562201232x18 + 21709174272x17

+ 82149673648x16 + 273625614720x15 + 805758842656x14 + 2187658338032x13 + 5518095100440x12

+ 13137281565552x11 + 29647727014584x10 + 63811855323824x9 + 130183534083144x8

+ 250645098373808x7 + 452192377800560x6 + 756259374539232x5 + 1144524804204400x4

+ 1513637339689536x3 + 1658421352720080x2 + 1377501603623040x + 650334446479452

R2
23(x) = 9266008x23 + 21596592x22 + 448526104x21 + 2884104384x20 + 15336968872x19

+ 67818998120x18 + 253485242488x17 + 831705797144x16 + 2439956739948x15

+ 6598820480576x14 + 16634417823736x13 + 39675706324196x12 + 89928227622800x11

+ 194612460134000x10 + 401859023378792x9 + 788438707633360x8 + 1461344582133568x7

+ 2538572309058668x6 + 4082531612066208x5 + 5933463106054116x4 + 7526552803854528x3

+ 7900349393711252x2 + 6259165196120000x + 2805435842133989

R2
24(x) = 16352800x24 + 80984384x23 + 1593580608x22 + 8563164992x21 + 49481490336x20

+ 209128258432x19 + 780553489664x18 + 2534712442464x17 + 7427244572256x16

+ 20018378150080x15 + 50545406056048x14 + 120517158487296x13 + 274250565071952x12

+ 596443605380944x11 + 1241847578536336x10 + 2470286333452336x9 + 4675590805599856x8

+ 8364173069180016x7 + 14021592964921728x6 + 21731748892337248x5 + 30399267731003712x4

+ 37067489321787104x3 + 37349651746541568x2 + 28288135205527104x + 12068183577568336

R2
25(x) = 13121920x26 + 884160640x24 + 5129076752x23 + 31258322544x22 + 163448687184x21

+ 673847529408x20 + 2448076436168x19 + 7870806586528x18 + 22879203785480x17

+ 61395715879008x16 + 154754196481972x15 + 369113099563228x14 + 840831639236328x13

+ 1836165518028176x12 + 3848304176192976x11 + 7732457069559076x10 + 14866687805810788x9

+ 27211686368050264x8 + 47088065652534764x7 + 76324076542627132x6

+ 114226197524214276x5 + 154090893839516976x4 + 180963718118934524x3

+ 175352170716287904x2 + 127221758063682128x + 51780184823512125

R2
26(x) = 4248992x28 + 97321664x26 + 2935299616x25 + 16031112768x24 + 107345361344x23

+ 515765014656x22 + 2146804896608x21 + 7657995466208x20 + 24447054721696x19

+ 70731281782176x18 + 189406512789664x17 + 476321990810096x16 + 1137098075502304x15

+ 2592711929684592x14 + 5677359725456640x13 + 11960396049047784x12

+ 24230629589854688x11 + 47134110567515792x10 + 87800322914710832x9

+ 155747494426559096x8 + 261190652313599472x7 + 410032082562386528x6

+ 593574085868314640x5 + 773538638885231400x4 + 876451928289172336x3

+ 818055164868369352x2 + 569600084353206624x + 221644202765881572

R2
27(x) = 33298144x28 + 1640322304x27 + 9083937312x26 + 66242344904x25 + 379198633376x24

+ 1732710867064x23 + 7010937195440x22 + 24505702193136x21 + 77097754182576x20

+ 221358499474104x19 + 589907536190040x18 + 1478844833406316x17 + 3526024950737956x16

+ 8043136026455016x15 + 17643778862079308x14 + 37298778187795760x13 + 76052804412338028x12

+ 149343565277026468x11 + 281932903925939520x10 + 509838659260734976x9

+ 878094236863577488x8 + 1429425403496844584x7 + 2176629333032060132x6

+ 3052538522347903156x5 + 3848922745756731876x4 + 4213944967774614108x3

+ 3794250917230376224x2 + 2539731773644946096x + 946672152353459593
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