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Abstract: A bioactive peptide has been successfully grafted onto nano-CuO impregnated Tencel
membranes by a simple and rapid method involving a series of textile processes, and an atmospheric
argon plasma treatment that requires no additional solvent or emulsifier. Surface morphology shows
an apparent change from smooth, slightly roughened, and stripped with increasing plasma treatment
time. The FT-IR characteristic peaks confirm the presence of the CuO nanoparticle and peptide on
the extremely hydrophilic Tencel membranes that exhibit a zero-degree contact angle. Prepared
nano-CuO/Tencel membranes with 90 s plasma treatment time exhibit excellent antimicrobial activity
against E. coli and S. aureus, and promote fibroblast cell viability with the assistance of a grafted
bioactive peptide layer on the membrane surface.
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1. Introduction

As we enter yet another era of global conflicts, wounds are an unfortunate and
an inevitable consequence from the ruthless battlefield. In such an event, immediate
medical attention becomes absolutely necessary to ease inextricable physiological pain
and emotional pain [1]. The high morbidity and mortality related to combat wounds
are mainly due to uncontrolled hemorrhage and bacterial infections. Hemostatic and
antibacterial characteristics, therefore, become a fundamental prerequisite for wound
dressing materials [2,3].

From outdated medical cotton gauze to highly sophisticated moisture-balanced dress-
ings, various types of dressings, including hydrogels [4,5], tissue adhesives [6–8], foams [9,10],
alginates [11,12], and silicone-based materials [13,14], have been investigated to determine
the optimum conditions in the wound healing processes [15,16]. Certain characteristics
are needed for improved healing processes, which includes moisture-control, air perme-
ability, exudate removal, antimicrobial, mechanical stability/elasticity, and biocompatibil-
ity/biodegradability [16]. In this study, Tencel, also known as lyocell, is used. It is known
as an environment-friendly regenerated cellulose fiber used in textile research to enhance
comfortable and breathable sensations [17,18]. It is also commonly adopted by the textile
industry as a preferred material for fabricating garments such as sportswear, underwear,
outerwear [18], and IoT-enabled smart clothing [19,20]. Over the past decade, extensive
studies on moisture-wicking [21], softness [22], and enhanced mechanical behaviors [23] in
Tencel have also opened up potential applications in wound dressings [24,25]. Tencel can
not only fulfill most of the characteristics mentioned in the prior description, it is also cost
effective, which makes production possible.

Tencel, however, has a drawback in its antimicrobial characteristics, which is usu-
ally expected in cellulose-based materials. In order to address this issue, researchers
with pharmaceutical knowledge would likely adopt the idea of using antibiotics, such as
ciprofloxacin [26], gentamicin [27], and mupirocin [28], as an antimicrobial additive. The
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incorporation of antibiotics can effectively deliver high concentrations of microbe-specific
substances to local infectious sites, as suggested by Ramasubbu et al. [29]. However, there
are cases where high amounts of antibiotics can cause long-lasting neurological dam-
ages [30]. Material scientists, on the other hand, are keener toward the use of different sorts
of nanoparticles, such as silver [31–34], gold [35–37], metal oxides [38–40], and other metal-
based compounds [41,42], to prevent bacterial infections and to overcome antimicrobial
resistance (AMR) caused by the overuse and misuse of antibiotics.

To further reinforce the biofunction of Tencel, a bioactive agent has been implemented,
as inspired by many studies on the strategic design of recent wound dressings [43]. It
is evident that bioactive agents can induce or stimulate re-epithelialization on wound
sites [44,45]. Although theoretical mechanisms are yet to be proven, many explanations
have shown a certain depth of correlation with cell regulation on migration [46] and
proliferation [47]. Other functions, such as anti-inflammatory from plant-based substances,
have also been reported to be a potent tactic on epithelialization [48–52]. Researchers also
attempted to alleviate the inflammatory response and support the healing process with
different types of vitamins [53–56].

An ultimate challenge in the process of adding antimicrobial or bioactive agents would
be the presence of more solvents or emulsifiers that could jeopardize the construction
of suitable biocompatible scaffolds, and sacrifice the intended functionalities in various
fabrication techniques. Eulálio et al. showed that the use of different organic acids has great
impact on the physicochemical properties of chitosan [57]. Electrospun polymer-titanium
dioxide nanocomposites, prepared by Ghosal et al., revealed the critical point for dispersion
of nanoparticles, polymer spinnability, and the suitable application in biomedicine [58].
In addition, Fahimirad et al. demonstrated the use ethanol, methanol, and acetic acid
for preparing multi-component, multi-layered structure membranes with antibacterial,
antioxidant activity, and cytotoxicity effects on human epidermal cells [59].

Herein, the fabrication, characterization, and biological properties of peptide-coated
nano-CuO/Tencel membranes for potential application in treating wounds are reported.
The effects of atmospheric argon plasma treatment time on bioactive peptide coating on
Tencel fibers are also evaluated. The prepared samples were characterized by scanning
electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, contact angle
measurement, and a variety of in vitro cell assays and antimicrobial assessments against
skin-infection-related bacteria: Gram-negative E. coli and Gram-positive S. aureus.

2. Materials and Methods
2.1. Materials

Tencel® fibers (purchased from Asiatic Fiber Corporation, Taipei, Taiwan) and highly
concentrated 800-ppm proprietary bioactive peptide (acquired from Taiwan Goodwill
Murray Peptide Technologies, Inc., Taipei, Taiwan) were used as received without further
purification. Copper oxide nanoparticles were prepared by a green and rapid synthesis
method, described in our previous work, such that zero hazardous substances were used
or generated from the synthesis process [60].

2.2. Membranes Fabrication

A schematic illustration of the peptide coated nano-CuO/Tencel membrane fabri-
cation is shown in Figure 1. Tencel fibers underwent a series of fiber processing from
blending, carding, and needle-punching to produce a nonwoven Tencel sheet (basis weight:
100 g/m2) [61]. The nonwoven sheet was then immersed in deionized water with 4 wt.%
copper oxide nanoparticle suspension, for optimal particle adhesion and an antimicrobial
effect, onto Tencel fiber surface, followed by drying at room temperature for 4 h. A modified
atmospheric pressure plasma jet system with a voltage of 45 kV, argon flow rate of 5 SLM,
and a peptide injection flow rate of 0.05 L/min was used to coat bioactive peptide onto
the nano-CuO/Tencel surface, where the tip of the plasma jet was placed 2 cm above the
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Tencel sheet. The peptide treatment time was set at 0, 30, 60, 90, and 120 s. The samples
were kept in a desiccator up to three days before performing characterizations.
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Figure 1. Schematic of the fabrication sequence of peptide-coated nano-CuO/Tencel.

2.3. Scanning Electron Microscopy (SEM)

The surface morphology of the fabricated nano-CuO/Tencel with bioactive peptide
coating was characterized. The samples were sputter-coated with gold, and viewed under a
Hitachi (S-3400N, Tokyo, Japan) scanning electron microscope (SEM) at an accelerating volt-
age between 5 and 20 kV, and mounted with energy dispersive X-ray analysis (EDX) in the
Precision Instruments Support Center, Feng Chia University. Micrographs were collected
at magnification of 1k× and 5k× using secondary electrons and backscattered electrons.

2.4. Fourier-Transform Infrared Spectroscopy (FT-IR)

Transmission Fourier-transform infrared (FT-IR) spectroscopic measurements were
performed on a Fourier-transform infrared spectrophotometer (Thermo Nicolet iS5 FTIR,
Waltham, MA, USA) in National Cheng Kung University. All the FT-IR measurements were
repeated three times for each sample, and are well reproducible.

2.5. Contact Angle Measurements

The contact angle was measured using a static method and direct measurement of
the tangent angle, θ, at the three-phase contact point on a sessile drop profile, using high-
resolution photographs of pure water drops and a graphic processing software supplied
by the manufacturer of the contact angle meter (CAM-100, Creating Nano Technologies
Inc., Tainan, Taiwan). When θ is higher than 90◦, the surface is hydrophobic, whereas it is
hydrophilic when the angle is less than 90◦.

2.6. Cytotoxicity Evaluation

L929 standard fibroblasts (ATCC cell line) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) and supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin. Cells were maintained at 37 ◦C in a humidified incubator with 5%
CO2 for 24 h, until about 80% confluence was obtained. Cell counts were standardized.

The prepared membranes (n = 3) were placed into 24-well tissue culture polystyrene
plates without further treatment. After UV irradiation sterilization, cells were seeded at
a density of 1 × 105 cells/cm2 in each well plate. Cellular viability was assessed using a
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay taken after 24 h.
The culture medium was discarded, followed by washing with PBS twice and incubation
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with MTT solution at 37 ◦C for 4 h. The formazan crystals were dissolved in dimethyl
sulfoxide (DMSO), and optical activity was measured at 570 nm with an ELISA reader.

2.7. Antimicrobial Assay

The inhibitory effects of copper-tailored membranes on the bacterial growth were estimated
by means of turbidity measurements. The reference bacterial broth (3 × 108 bacteria/mL) was
used as a standard sample. Selected membranes (1 cm × 1 cm) were cultured in E. coli
(six-fold serial dilution) and S. aureus (four-fold serial dilution) bacterial broth at room
temperature for 24 h. The optical density (OD) of all solutions was measured with an
UV/VIS spectrophotometer (JASCO V-550) at 620 nm.

3. Results and Discussion
3.1. Surface Morphology of Nano-CuO/Tencel Membranes

The surface morphology of the prepared Tencel fibers were studied by SEM. This
technique enabled us to examine the effect of plasma treatment on a single fiber in the
fabrication sequence. Plasma treatment resulted in extensive changes of the Tencel surface
morphology. Figure 2 shows SEM images of pristine Tencel, CuO-coated Tencel, and
peptide-included CuO/Tencel fibers with different plasma treatment times. Pristine Tencel
fibers appear to have a smooth fiber surface with an average diameter around 18 µm
(Figure 2a). As shown in Figure 2b–g it is revealed that fiber diameters ranging from
15–22 µm are observed in Tencel fibers impregnated with CuO particulate, whereas no
significant change in fiber diameter is observed for peptide-coated fibers (Figure 2c–g).
Apparent CuO nanocrystals can be seen in Figure 2b (indicated with an arrow), with the
inset showing elemental values in percentage. No noticeable change is observed when
increasing the argon plasma treatment time from 0 to 60 s (Figure 2c–e); however, a slightly
roughened surface morphology becomes visible with 90 s exposure time (Figure 2f). When
plasma exposure time is further extended to 120 s, severe stripping on the fiber surface is
detected in Figure 2g, where evidence of partial deterioration is clearly seen in the close-up
view (Figure 2h). The observed surface changes and stripped fibers are the consequence of
sample ablation during plasma treatment [62–64]. The fibers create a greater surface area
in comparison to the smooth surface of pristine Tencel fibers. As reported by Lewis et al.,
larger surface area is responsible for superior hemostatic properties [65].

3.2. FT-IR Analysis of Nano-CuO/Tencel Membranes

The FT-IR spectra for nano-CuO/Tencel membranes with different plasma exposure
times were recorded in the range of 4000–400 cm−1. As shown in Figure 3, the FT-IR
spectra of Tencel fabric show distinctive peaks, including O-H stretching at 3399 cm−1, C-H
stretching at 2985 cm−1, O-H bending at 1633 cm−1, CH2 bending at 1427 cm−1, and the
C-H bending at 1387 cm−1 [66]. These peaks are the characteristic peaks of cellulose. The
observed peaks at 453, 494, and 609 cm−1 (in dashed circle) correspond to the characteristic
stretching vibrations in CuO [67]. It is observed that such IR feature is not particularly
distinctive when peptide is added. Generally speaking, the absorbance in the amide region
has a strong correlation to the amino side chain in collagen or peptide [68,69]. It is assumed
that the absorbance of 1635 cm−1 mainly arises from amide contribution [70]. This spectral
feature is particularly obvious in the Tencel+CuO+Peptide_30s-90s samples. In samples
treated with plasma, the band at 1749 cm−1 corresponds to -C=O in -COOH. The presence
of carboxyl groups in these spectra is the result of plasma treatment [71]. According to the
results, the amino groups of the peptide forms the Schiff-base structure onto the Tencel
fiber surface, which aligns with the IR absorbance at 1635 cm−1 (Figure 4) [72]. As the fibers
are progressively etched (Tencel+CuO+Peptide_120s), the amide I and -C=O bands become
reduced or diminished. In addition, the strong absorption bands between 3500–4000 cm−1

and 1624 cm−1 (overlapped with O-H bending) are allocated to the presence of water
molecules that are absorbed on the high surface-to-volume ratio nanostructures [73,74].
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3.3. Cytotoxicity and Contact Angle Measurements of Nano-CuO/Tencel Membranes

An effective wound dressing material must be non-cytotoxic to the relevant cell
to maintain viability at the wound site. To reveal the cyto-compatibility of the tested
membranes, the cell viability of the L929 fibroblastic cells was investigated. The L929
cell line is one of the most frequently used lines in material/cell interaction research, and
has been previously used for cytotoxicity testing for many polymeric scaffolds [75–77].
The cytotoxicity and wettability of the prepared membranes are summarized in Figure 5.
Tencel is extremely hydrophilic, and the high wetting behavior is primarily attributed to
the -OH group from the cellulose-based structure (blue circles in Figure 5) [73]. Moreover,
Tencel fibers pose no adverse effect on fibroblastic cells, such that the cell viability is very
similar to that of the control sample. In Tencel+CuO, CuO nanoparticles appear to have
a high cytotoxicity, whereas peptide-added samples appear to have little or no cytotoxic
effect. Others also demonstrated a similar outcome that copper(II) complex or copper oxide
nanoparticles have toxicity against L929 mouse fibroblast, A549 human lung cancer cells,
or to DNA from reactive oxygen species (ROS), which enables us to comprehend apoptosis
induction or an anti-proliferation effect of CuO in Tencel membranes [78–80]. Fibroblasts
(NIH/3T3) induced with bioactive peptide show a faster gap closure rate (Figure A1A),
whereas the quantitative result reveals a slower cell migration without peptide treatment
(square curve) compared to peptide-treated cells (circle curve). A significant split in wound
area difference is seen at 6 h, and reaches its maximum at around 13 h where the wound area
is almost closed (Figure A1B). The assessment, however, was not performed on the peptide-
CuO/Tencel samples because of technical limitations. The effects of the peptide-grafted
Tencel samples on cell viability can be associated and explained by the degree of peptide
adhesion from plasma treatment according to the IR results from Tencel+CuO+Peptide_30s-
90s samples.

3.4. Antimicrobial Activity

One of the pivotal factors to accelerate wound healing is the ability to impede microbial
infections [81,82]. Therefore, copper oxide nanoparticles were introduced as an inorganic
antimicrobial agent. The antimicrobial behaviors of the devised nano-CuO/Tencel mem-
branes against E. coli and S. aureus were evaluated as optical density (OD) measurements,
as presented in Figure 6. The antimicrobial nature of copper oxides is also clearly ob-
served against both Gram-positive and -negative bacterial strains [83]. For both bacterial
solutions exposed to nano-CuO-coated Tencel surfaces, the absorbance readings are re-
duced, indicating that these surfaces can inhibit bacteria growth in a liquid medium. The
inhibitory action is more obvious for Gram-negative bacteria, as the overall absorbance
in Gram-positive bacteria is much higher. The results suggest an electrostatic interac-
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tion between positively charged copper ions that disrupts the membrane integrity of the
Gram-negative bacteria [84]. As expected from the cytotoxicity test, the presence of peptide
also shows similar patterns for plasma-treated samples in the antimicrobial results. As
peptide is being applied onto the nano-CuO/Tencel fibers, argon ions are initiating reac-
tive species for reaction and etching newly established bonds simultaneously [85]. Thus,
the absorbance readings for both bacteria begin to decline at 90 s plasma treatment time,
mainly because of the competing result of grafting and removing of peptide that leads to
the protrusion of copper oxide for antimicrobial activity. The stripped fibers at 120 s of
plasma treatment time ultimately deteriorated, and demonstrated unstable and inconsistent
antimicrobial capability.
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Appendix A 

Figure 6. Absorbance, as measured at 620 nm, of E. coli (left) and S. aureus (right) bacterial broth
exposed to various membranes.

4. Conclusions

An innovative method to graft bioactive peptide onto nano-CuO/Tencel membranes
has been proposed. The results have revealed that membranes remain high fiber surface
integrity between 30 and 60 s of plasma treatment time. Though slight roughness is
observed at 90 s that etches off peptide partially to promote antimicrobial activity against
E. coli and S. aureus, cell viability with fibroblastic cells is still maintained. Ongoing
experiments, including peptide adhesion on the fiber surface, and its cellular response
mechanism, shall be carefully investigated for future publication.
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Figure A1. Analysis of NIH/3T3 fibroblastic cell migration by in vitro wound-healing assay. (A) 

Time-lapse microscopy images of wound closure of untreated (without peptide) and treated with 

peptide NIH/3T3 fibroblasts at 0, 12, and 24 h after culture insert removal. (B) Quantification of the 

wounded area during 24 h by untreated (square curve) and treated with peptide (circle curve) 

NIH/3T3 fibroblasts, presented in relative units (r.u.). 
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Figure A1. Analysis of NIH/3T3 fibroblastic cell migration by in vitro wound-healing assay. (A) Time-
lapse microscopy images of wound closure of untreated (without peptide) and treated with peptide
NIH/3T3 fibroblasts at 0, 12, and 24 h after culture insert removal. (B) Quantification of the wounded
area during 24 h by untreated (square curve) and treated with peptide (circle curve) NIH/3T3
fibroblasts, presented in relative units (r.u.).
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