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Abstract: A chemical foaming process of polylactic acid (PLA) was developed via the solid-state
processing methods of solid-state shear pulverization (SSSP) and cryogenic milling. Based on the
ability of solid-state processing to enhance the crystallization kinetics of PLA, chemical foaming
agents (CFA) are first compounded before foaming via compression molding. Specifically, the effects
of the pre-foaming solid-state processing method and CFA concentration were investigated. Density
reduction, mechanical properties, thermal behavior, and cell density of PLA foams are characterized.
Solid-state processing of PLA before foaming greatly increases the extent of PLA foaming by achieving
void fractions approximately twice that of the control foams. PLA’s improved ability to crystallize is
displayed through both dynamic mechanical analysis and differential scanning calorimetry. The solid-
state-processed foams display superior mechanical robustness and undergo low stress relaxation.
The cell density of the PLA foams also increases with solid-state processing, especially through
SSSP. Additionally, crosslinking of PLA during the pre-foaming processing step is found to result
in the greatest enhancement of crystallization but decreased void fraction and foam effectiveness.
Overall, SSSP and cryogenic milling show significant promise in improving chemical foaming in
alternative biopolymers.

Keywords: solid-state shear pulverization; cryogenic milling; polylactic acid; foams; processing;
semicrystalline polymers; compression molding

1. Introduction

Polymer foams have widespread valuable applications, including packaging, safety
padding, and insulation [1]. Polymer foams are created by incorporating pressurized gas
into a molten polymer and subsequently solidifying the polymer-gas composite. In the
case of semicrystalline polymers, gas is captured both by entanglement in the polymer
chains and by polymer crystallites [2–4]. Today, nearly all polymers in commercial foams
are derived from non-renewable fossil fuels and do not degrade easily [5]. Their ubiquitous
use can be an environmental challenge. In the pursuit of developing bio-based and/or
biodegradable polymers to replace petroleum-based polymers in foams, a variety of strate-
gies have been taken, ranging from plant-based materials to microorganism-produced
polymers [6–9]. One of the most studied bio-based polymers is polylactic acid (PLA), a
condensation polymer derived through the fermentation of sucrose from cornstarch into
lactic acid [10–12]. PLA, known to be more compostable than petroleum-based plastics
in accordance with ASTM D6691 [13,14], is becoming a prevalent sustainable material of
choice in biomedical, packaging, and additive manufacturing applications [11].

Polymer foams can be created through physical pressurized gas injection or by in-
corporating gas generated from chemical reactions. To date, most PLA-foaming studies
with high levels of success are limited to the former physical foaming method [2,15,16].
However, physical foaming tends to produce unevenly distributed foams with less ver-
satility in product shape than chemical foaming and can be expensive due to the need
for high-pressure gas sources and precision transport systems [17,18]. Chemical foaming,
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which uses small molecular additives known as chemical foaming agents (CFAs) that break
down into gas when heated above their activation temperature [2,19], can circumvent the
physical foaming concerns and enable a thoroughly consistent, in situ foam through com-
mon polymer processing methods, such as extrusion, injection molding, and compression
molding [3]. However, the limited success of chemical foaming of PLA has been reported
to date [18,20,21].

Creating an effective PLA foam is challenging partly due to PLA’s slow crystallization
kinetics, which allows the foaming gas to predominantly escape from the system rather
than being secured by PLA’s crystalizing chains as the temperature cools to shape a prod-
uct [2,22]. Additionally, PLA is shear-sensitive in the melt state, suffering from molecular,
viscosity, and physical property degradation compared to petroleum-based analogs [2].
Incorporating other polymers, such as polyethylene into a blend with PLA overcomes these
challenges, but significantly lessens the sustainable nature of the output [23]. Another
potential solution is crosslinking PLA chains via chemical crosslinking agents; however,
the crosslinking often still must be accompanied by blending PLA with another polymer
such as poly(butylene succinate) to achieve an adequate foam [24].

In previous studies, an alternative processing method called solid-state shear pul-
verization (SSSP) has shown promising results in increasing the crystallization kinetics of
PLA [25–27], which is considered key for better control of the foam cell structure [2]. SSSP
is a form of twin screw extrusion conducted under chilled conditions, and it has previ-
ously been used to modify homopolymers [28,29], compatibilize polymer blends [30–32],
disperse additives [33,34], and create nanocomposites [35–39]. The foci of SSSP have been
at the forefront of polymer sustainability, ranging from mechanical recycling [40,41] and
natural fiber/renewable feedstock composites [42–44], to PLA/starch blends [45] and PLA
crystallinity studies [25,26]. Specifically, the mechanochemistry of SSSP leads to scission
and imperfections in PLA chains, which increase the material’s rate of nucleation and
growth [25]. Another solid-state processing method called cryogenic milling (cryomilling),
has also been employed alongside SSSP [46–48] and has contributed to previous sustainable
PLA processing research [49,50].

This is the first study in the literature to use SSSP and cryomilling to facilitate the
chemical foaming of PLA, aiming to develop a more sustainable biopolymer foam. PLA
foams are prepared by first incorporating a CFA with neat polymer pellets via a solid-
state process, and subsequently compression-molding it into a specimen. These SSSP
and cryomill techniques are compared to a control prepared via manual blending. An
additional set of crosslinked PLA foams processed through cryomilling is introduced to
investigate the combination of crosslinking and solid-state processing. Void fractions for
the different sets of PLA foams are first measured. The foam morphology characterization
through scanning electron microscopy (SEM) imaging is followed by thermal analysis of
the foams via differential scanning calorimetry (DSC) and mechanical property evaluation
with static compression testing and dynamic mechanical analysis (DMA). The processing-
structure-property relationships of pre-foaming solid-state compounding of the CFA and
the biopolymer are explored.

2. Materials and Methods
2.1. Materials

The PLA material used in this study was Ingeo Biopolymer 2003D with an L-lactide to
D-lactide ratio of 96/4, supplied by NatureWorks, LLC [51]. This extrusion grade material is
reported by the manufacturer to have a density of 1.24 g/cm3, a melt flow rate of 6 g/10 min
at 210 ◦C, tensile yield strength of 60 MPa, and a heat distortion temperature of 55 ◦C [51].
Due to PLA’s hygroscopic nature, it was dried for at least 2 h at 90 ◦C in a Moretto XD1
Dryer before all procedures.

The CFA used for this study was an azodicarbonamide (ADCA)-based CFA custom
formulated by Avient Corporation. This CFA came in viscous liquid form and its formula-
tion consisted of 54 wt% ADCA with the remainder being carrier, active, surfactant, and
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clay thickener. This ADCA CFA activates and releases nitrogen (N2), carbon monoxide
(CO), and ammonia (NH3) in an exothermic event [18]. The activation temperature of
approximately 205 ◦C, determined via in-house thermogravimetric analysis testing, is
key, as the activation temperature is higher than PLA’s measured melting point of around
170 ◦C; the higher activation temperature ensures that the PLA is molten and able to con-
tain and dissolve the gas [52]. The crosslinking agents used in the final portion of this
study were triallyl isocyanurate (TAIC) and dicumyl peroxide (DCP) [53], purchased from
Sigma Aldrich.

2.2. Pre-Foaming Processing Methods

Both SSSP and cryomilling were used as the primary processing methods for com-
pounding CFA with PLA before foaming. PLA pellets manually blended with CFA were
designated as the third control formulation, modeling a traditional process where polymer
pellets and additives were directly fed into a molding machine without any solid-state
preprocessing step. The fourth formulation of crosslinked PLA was prepared by first
crosslinking PLA through single-screw melt extrusion followed by cryomill-compounding
with CFA. For the balance of this paper, the SSSP-processed foam set will be referred
to as SP, the cryomill-processed set as CM, the melt blended control set as CT, and the
crosslinked/cryomill-processed set as XL. For each of the four sets of pre-foam processing
modes, a CFA content parametric study was carried out to determine the relationships
between the weight percentage of CFA and the physical properties of the resulting foams.
The nominal concentrations of CFA for the six series tested were 0.5 wt%, 1.0 wt%, 2.0 wt%,
3.5 wt%, 5.0 wt%, and 6.5 wt%.

For foam set SP, CFA was compounded with PLA pellets through SSSP. The SSSP
processing method is based on a KraussMaffei Berstorff ZE25-UTX intermeshing, co-
rotating twin screw extruder with a screw diameter of 25 mm and the length-to-diameter
ratio of 34. The extruder barrels were chilled to low temperatures using a circulation of
−12 ◦C-ethylene glycol/water solution, provided by Budzar Industries BWA-AC10 chiller.
Figure 1 outlines the screw configuration, taken from a previous study [25], which employed
a balance of harsh and mild screw elements to disperse the CFA additives while preventing
premature polymer decomposition during the SSSP process. PLA pellets were manually
coated in the liquid CFA and fed into the SSSP barrel using a Brabender Technologie
Volumetric RotoTube feeder with the assistance of pressurized air through the center of
the feeder hopper to ensure a continuous flow of 50 g/h. The SSSP screw speed was set
to 200 rpm based on a previous parametric study on SSSP processing-structure-property
relationships [54].
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For foam set CM, the cryomill processing method achieved a similar low-temperature
mechanochemical compounding effect as SSSP, in a batch setting [55]. Each cryomill run
was composed of a 12-g total sample of PLA with CFA, run through a SPEX SamplePrep
6870 Freezer/Mill. The cryomill procedure started with a 15-min cooldown period followed
by 5 cycles of 4 min of pulverization and 4 min of cooldown between each cycle. After the
final cycle, the sample contents were thawed to room temperature and stored.
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For control foam set CT, PLA pellets were manually blended with CFA with a 20-g total
sample size in a glass container. This mixture was prepared and stored at room temperature.

Foam set XL followed a two-step preparation process. The first part involved melt-
compounding PLA pellets with 0.1 wt% TAIC and 0.1 wt% DCP crosslinking agents through
a Killion Model KLB075 single-screw extruder. The screw speed was set to 15 RPM, and an
extruder temperature of 180 ◦C was used because that is above both the melting temperature
of PLA and the activation temperature of the crosslinking agents. The crosslinked polymer
extrudate was cooled to ambient temperature and pelletized. The second step was to
compound the crosslinked PLA with CFA in a cryomill in the same manner as foam set CM.

2.3. Compression Molding Foaming Process

After the four pre-foaming preparation methods were completed, the foaming proce-
dure was carried out in a consistent fashion using compression molding. A 5.0 g sample of
each formulation was added into a custom, cylindrical stainless steel mold with a 7.6 cm
inner diameter and 6.4 cm height. The mold was loaded into an automated Carver Auto-
Four 30-15 HC Press. Under an initial 5 MPa of pressure, the sample was pressed at 220 ◦C
and held isothermally for 8 min; during this process, pressure increase was observed inside
the mold as CFA activated between 190–210 ◦C. The pressure was released, and the mold
was cooled at an average rate of approximately 10 ◦C/min on a steel cooling surface with
convective air cooling from two AC Infinity Model AI-MPF120P2 dual fans. After at least
20 min of cooling and resting, the foam sample was removed from the mold and stored.

2.4. Foam Analysis Methods

The density reduction measurements of the foam samples were conducted following
the ASTM D792 standard using an OHAUS Density Determination Kit and Adventurer
Model AX324 scale. The density of the sample was first calculated as:

ρ f oam =
A

A − B
(ρ0 − ρL) + ρL (1)

where A is the weight of the sample in air, B is the weight of the sample in water, air density
(ρL) equals 0.00119 g/cm3, and water density (ρ0) equals 0.997 g/cm3 at 25 ◦C. The void
fraction (φ) of the foam samples, which is the volume expansion ratio of the material caused
by foaming [21,56], was then calculated using the following equation:

φ =
Vvoid

Vsample
= 1 −

ρ f oam

ρPLA
(2)

In Equation (2), ρ f oam is the density of the foam sample calculated via Equation (1),
PLA density (ρPLA) equals 1.24 g/cm3, Vvoid represents the volume taken up by gas cells
inside the sample, and Vsample is the overall volume of the sample.

Scanning electron microscopy (SEM) was conducted using a Hitachi SU 5000 Field
Emission Scanning Electron Microscope. Surfaces of cryogenically fractured PLA foam
samples were sputter-coated with gold using a Denton Desk IV. SEM images were taken
under a high vacuum with an electron beam voltage of 3.0 kV and at a magnification of
×70. These SEM images were used to quantitatively compare the gas cell distribution in
samples using the software program ImageJ [57]. The cell density (NC), defined as the
number of cells per volume of non-foamed base PLA material, was calculated for each SEM
micrograph following Equation (3):

NC = (
n ∗ M2

A
)

3
2 ∗ 1

1 − φ
(3)

In Equation (3), φ is the void fraction, n is the number of cells counted in each mi-
crograph image, A is the cross-sectional area of the foam in the image, and M is the
magnification factor of the image.
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Differential scanning calorimetry (DSC) was performed on foam samples using a TA
Instruments Q2000, calibrated with indium. A standard heat-cool-reheat run between 0 ◦C
and 220 ◦C was programmed with a ramp rate of 10 ◦C/min.

Dynamic mechanical analysis (DMA) was conducted in a compression mode where
a 12.7 mm diameter cylindrical cut-out of each foam sample was placed on a custom
stainless-steel platform and subjected to oscillatory compressive stress by a cylindrical
steel plunger. The compression deformation mode was chosen because it most closely
resembles the mechanical strain a polymer foam material would undergo in applications
such as packaging. Each compression DMA run was conducted at an oscillation frequency
of 1 Hz in a dynamic temperature ramp mode between −20 ◦C and 170 ◦C. Additionally,
static compression and stress relaxation runs for each sample were conducted at room
temperature. The compression strain rate was 0.003/s and the initial static load for stress
relaxation was set at 200 kPa [58].

3. Results and Discussion
3.1. Density Reduction

Density reduction measurements were conducted on the compression-molded samples
to obtain average φ values, which are presented as a function of CFA concentration in
Figure 2. As the CFA content increased, the void fraction increased for all samples up
to a maximum plateau value. The plateau in each set indicates that there is an upper
limit to the number of gas cells that a compression-molded PLA foam can successfully
contain upon foam expansion, even as an increasing amount of gas is released inside the
polymer melt. The different plateau values shown in Figure 2 for each of the four sets
reveal that the solid-state processing of PLA before foaming makes a significant difference
to the maximum void fraction a foam sample can achieve with compression molding.
The manually blended control set CT reached a void fraction plateau of about 35% at
a relatively low CFA concentration of 1.0 wt%, whereas the SSSP and cryomill sets (SP
and CM, respectively) reached void fraction plateaus of approximately 70% at a CFA
concentration of 5.0 wt%.
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crosslinked/cryomilled (XL) PLA foam samples.

Polymer foaming technology often employs crosslinking to effectively capture gas
cells and impart prototypical slow recovery foam behavior [59,60]. This study included a
crosslinked analog of set CM to investigate the combination of crosslinking and cryogenic
milling. Figure 2 reveals that the crosslinked foam set XL resulted in significantly lower
void fraction values than set CM. PLA is a relatively brittle polymer at room temperature,
and crosslinking may have constrained the chains of the material to such a great extent
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that fewer gas cells could be contained, as the XL set reached a void fraction plateau of
approximately 30%.

3.2. Foam Morphology

The cross-sectional gas cell morphology was evaluated with SEM, for different con-
centrations of CFA across four pre-foaming processing methods. Figure 3 displays how
the four processing methods resulted in different gas cell shapes and size distributions,
in a representative comparison of the 6.5 wt% CFA loading series. The non-crosslinked,
solid-state-processed foams in Figure 3(SP) and Figure 3(CM) showed similarly high areas
of coverage by closed cells. The SP samples displayed smaller gas cells than the CM samples
across different CFA concentrations despite similar cell area coverage and φ values from an
earlier analysis. When comparing the SP and CM samples to the CT sample in Figure 3,
it appears the control foam also exhibited closed cells. However, cell area coverage in CT
foams was lower than those of the solid-state-processed foams, revealing one major reason
why the control foams had lower void fraction values. In addition, the cells in the CT
foams were concentrated in clusters around the sample rather than distributed evenly, for
example, clustering at the top of Figure 3(CT).
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Figure 3. SEM images of SSSP-processed (SP), cryomilled (CM), manually blended control (CT), and
crosslinked/cryomilled (XL) PLA foams with 6.5 wt% CFA.

A combination of the results so far indicates that PLA compounded with CFA in
SP and CM methods were able to be compression-molded into consistent and physically
expanded foams, containing a greater amount of gas in closed cells, compared to the CT
foams. One explanation is that the mechanochemical modification of the PLA chains
enabled enhanced crystallization kinetics [25], leading to a higher effect in trapping gas in
closed cells upon solidification. Another explanation is that the intimate and homogeneous
mixing in SSSP and cryomilling increased the CFA distribution and its contact level with
PLA prior to the foaming process [36,37,42,47].

The crosslinked foams, such as shown in Figure 3(XL), displayed cross-sectional
morphology significantly different from the other sets in that open cells were formed
instead of closed cells. Open cell structure is a common characteristic of polymer foams
with high void fractions [61]. Despite the apparent network structure and moderate open
cell concentration, the XL foams did not expand in the mold as much as the SP and CM
foams. This indicates that the crosslinking agents made the material too strong and tough
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to be able to contain as much gas as the other foams, contributing to its significantly lower
φ values [62].

Quantitatively, the cell density for each foam was calculated using Equation (3). The
average NC values are plotted as a function of CFA concentration in Figure 4. For a given
CFA concentration, the cell density values generally reflect the visual trends observed in
the SEM images. However, the standard deviation ranges overlap for many data points
in Figure 4, and therefore we refrain from making definitive remarks but rather provide
general observed trends.
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Both sets of solid-state-processed foams displayed greater cell density than the CT and
XL foam sets in most cases, confirming the enhanced ability of the pre-foaming solid-state
processing to generate and capture the gas in closed cells. The SP foams tended to have
greater gas cell density than CM foams, particularly at low CFA concentrations. At higher
CFA content, the CM set began to achieve similarly high NC values as the SP set. Perhaps
the shearing nature of SSSP is more conducive to dispersing CFA than impact-based
cryomilling at low concentrations. As CFA concentration increases, this nuanced difference
becomes less relevant because the amount of gas being released is high and the effect
of enhanced solidification rate dominates the level of CFA dispersion in these materials.
The XL samples experienced the most inconsistent trend, with the majority of NC values
remaining low except for high jumps observed for 3.5–6.5 wt% CFA. The inconsistency
of the XL foam results can be attributed to the open-cell nature of the crosslinked foams
causing less consistent cell formation compared to the other closed cell foams.

Lastly, it might be expected that the plateauing trend of φ in Figure 2 would correspond
to a similarly plateauing trend of cell density in Figure 4. This may be occurring for the
SP and CT sets but is not the case for the CM set. Perhaps the fine powder nature of CM
formulations after cryomilling enabled gas cell formation more consistent with CFA content
than other sets. In contrast, the XL samples showed a delayed increase in cell density
while φ is relatively steady in Figure 3. Further investigation on the relationship between φ
and cell density is warranted, but one definitive takeaway is that consistent PLA foams
with practical density reduction are reliably achievable with CFA concentrations at around
5–6.5 wt%. These CFA loadings are considerably higher than a typical industry polymer
foam CFA concentration of around 1.0 wt% [63].

3.3. Differential Scanning Calorimetry

We turned to thermal characterization by DSC to examine the PLA crystal development
that occurred in the compression-molded foams. Figure 5 compares the thermograms of
the first heat of as-compression-molded foam samples of the 6.5 wt% CFA concentration
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grouping. The key thermal events occurring during the first heat curves are the glass
transition at Tg = 60 ◦C, cold crystallization at Tcc = 100 ◦C, and melting at Tm = 150 ◦C.
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The thermogram shape of the XL foams at Tg is a typical step change expected for
reversible glass transition whereas the CT, CM, and SP foams record a Tg overshoot peak
in their thermograms at ~60 ◦C. These overshoots were caused by the devitrification of
additional mobile amorphous phase PLA in the sample after cooling during the foaming
process [25]. The reasoning behind this will be explained later in this section.

Significant cold crystallization exotherms occurred beginning at ~100 ◦C for the SP and
CM foams. Conversely, the CT samples displayed only a shallow cold crystallization peak,
and the peak shifted to a higher temperature range than the solid-state-processed samples.
The XL samples showed no cold crystallization. These findings indicate that solid-state-
processed foams show a higher potential to crystallize whereas the CT and XL samples
either have a lower capacity to crystallize or have already crystallized to their full extent
before 100 ◦C. The melt peak characteristics reveal more about which of these is occurring.
Clear differences can immediately be seen between the different melting endotherms at
Tm ~150 ◦C. The melting peaks for the solid-state-processed samples were much larger
than for the CT sample. This indicates that the solid-state-processed samples underwent
a significant level of total crystallization prior to melting, whereas the CT samples were
less able to crystallize comprehensively, resulting in a small melting peak. The double peak
nature of the SP sample melt peaks has been attributed to reflecting the recrystallization
and reorganization process in a previous study [25]. Despite the XL samples also displaying
little evidence of cold crystallization, they still had large melting peaks, indicating that any
crystallization in the XL foams happened during the initial foaming process rather than the
DSC’s first heat run. These contrastive thermogram features between SP, CM, CT, and XL
samples were observed at all CFA concentrations.

The differences in the relative latent heat of melting (∆Hm) vs. cold crystallization
(∆Hcc) are worth further investigating. Table 1 lists the two latent heats from the first
heat thermograms, and further calculates the effective latent heat of “melt crystallization”
(∆Hmc) during the respective foaming process, i.e., the measure of the extent that the PLA
was able to crystallize during the cooling step of the compression molding after the CFA
has been activated [25]. This value was calculated by subtracting ∆Hcc from ∆Hm. Table 1
reveals that in every case, ∆Hmc, ∆Hcc, and ∆Hm are all greater for the SP and CM samples
than for the CT samples. The ∆Hmc values for SP and CM foams were recorded in the
range of 5.0–8.5 J/g, compared to 0.5–3.0 J/g for CT foams. While there appears to be no
significant correlation between CFA concentration and enthalpy values, the higher ranges
in SP and CM confirm substantial PLA crystallite development during their cooling process
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in the compression mold, which led to more effective containment of chemically induced
gas in the foams.

Table 1. Crystallization characteristics extrapolated from DSC first heat curves, with the top number
in each cell being ∆Hm, the middle, subtracted number being ∆Hcc, and the resulting number (shaded)
being ∆Hmc. Note: all values are reported in J/g.

Processing
Type

Enthalpy
Type (J/g)

Concentration of CFA (Nominal wt%)
0.5 wt% 1.0 wt% 2.0 wt% 3.5 wt% 5.0 wt% 6.5 wt%

∆Hm 15.5 16.1 17.2 15.7 17.1 14.0
∆Hcc 10.0 9.0 9.6 8.3 9.2 8.0

SSSP
(SP) ∆Hmc 5.5 7.1 7.6 7.4 7.9 6.0

∆Hm 14.8 16.6 16.0 14.2 17.2 15.0
∆Hcc 6.7 8.8 7.5 7.8 12.0 8.6

Cryomill
(CM) ∆Hmc 8.1 7.8 8.5 6.4 5.2 6.4

∆Hm 3.1 5.3 5.2 5.5 4.4 4.7
∆Hcc 1.4 2.7 4.7 3.2 3.5 2.2

Control
(CT) ∆Hmc 1.7 2.6 0.5 2.3 0.9 2.5

∆Hm 17.4 19.0 16.5 20.5 16.4 17.7
∆Hcc 2.1 4.7 1.3 2.5 2.0 0.7

Crosslinked
(XL) ∆Hmc 15.3 14.3 15.2 18.0 14.4 17.0

Interestingly, the XL foams did not display large cold crystallization peaks but still
exhibited significantly large melting curves, suggesting that much of the crystallization
occurred during foam cooling, to an extent even larger than those of SP and CM samples.
Despite the significant crystallization enhancement caused by crosslinking, Section 3.1
showed how the XL foam void fraction values remain significantly lower than the non-
crosslinked analogs in the CM set. This suggests that while a moderate amount of crystal-
lization during foaming is desirable, exemplified by solid-state processing cases, excessive
crystallization inhibits foaming by over-stiffening the PLA matrix. A similar inhibition
of PLA foaming by excessive crystallinity has also previously been observed in physical
foaming contexts [62,64].

3.4. Dynamic Mechanical Analysis Results

Temperature ramp DMA was conducted to observe the mechanical properties of the
foams as a function of temperature, as well as to verify the crystallization behavior that was
inferred from the DSC study above. We first focus on the changes in storage modulus (E’)
in Figure 6 based on a representative set. The 6.5 wt% CFA samples were selected because
their substantial density reductions provided the highest contrast of DMA curves between
the four contrastive foam samples within the series. The same thermal transition events
and relative E’ position trends were observed in other series of CFA concentrations. We
limit the following discussion to qualitative comparisons.

The stiffness of the PLA foams remained relatively constant from room temperature
up to the Tg ~60 ◦C, above which the foams lose stiffness as their chains become mobile.
Note that the relative E’ positions of the four samples switch between the pre- and post-Tg
plateaus in Figure 6. In the region between glass and cold crystallization temperatures,
the SP and CM samples exhibited lower E’ values. With higher void fraction and cell
density, the two solid-state-processed foams displayed a suppressed solid-like behavior,
especially because their crystallinity during this region was only modest. In contrast, the
XL sample did not experience a drastic decrease in stiffness after Tg, as it was supported by
the crosslinks and significant crystallinity that had already developed.
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The 100–120 ◦C region corresponds to cold crystallization. A gradual modulus re-
covery correlates with the increasing number of developing crystals, as the crystalline
phase is stiffer than the amorphous component above the Tg [65]. Figure 6 reveals that the
solid-state-processed SP and CM samples experienced significant cold crystallization, to a
level higher than any CT stiffness value and even surpassing their own original E’, having
raised their crystalline potential [25]. On the other hand, the CT and XL samples showed
little to no cold crystallization, corroborating the DSC results.

Often, one of the most valuable properties of foam material is its ability to absorb
energy [66,67]. The tan δ plot of the temperature ramp DMA can be used to observe the
material damping factor of the samples [68,69]. The higher the value of tan δ at a given
temperature, the more the material will absorb energy [68]. Figure 7 compares tan δ curves
between the 1.0 wt% and 6.5 wt% CFA series of the four foam sets. A major peak in tan δ at
Tg associated with PLA devitrification was observed in each sample, as expected from a
previous study on compression DMA of polymer foams [70]. The height of the tan δ peak
varied slightly depending on the pre-foaming processing method. The most noticeable
difference was between the XL foams and the SP, CM, and CT foams, which suggests that
the XL foams remained too rigid through the Tg and deviated from a typical foam behavior
in its mechanical response to the oscillatory motion. A peak height difference was also
observed between the 6.5 wt% and 1.0 wt% samples of a given foam set. The fact that the
higher CFA content foams constantly displayed a higher damping factor in the SP, CM,
and CT sets confirms the effectiveness of employing higher CFA loading in preparing PLA
foams. Again, the XL foams did not follow the same trend because their foam structure
and rigidity properties are fundamentally different from the other sets.

A second, shallower, and broader tan δ peak appeared around 100 ◦C most distinctly in
the solid-state-processed samples. The CT foams showed a continuously gradual increase
without peaking, while the XL foams did not show any evidence of a significant second
peak. As discussed above with E’ transitions, the SP, CM, and CT samples developed more
liquid-like and damping behaviors above their devitrification points. This typical and
desired foam property caused tan δ to remain high until cold crystallization occurs in the
respective sample, at which point stiff solid-like behavior returns and lowers the damping
factor. The CT curve continued to display high tan δ due to a lack of cold crystallization. The
XL foams were already stiff and crystalline before Tg, causing the tan δ curve to remain low.
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wt% and 6.5 wt% CFA.

3.5. Static Compression Testing

As polymer foams are likely used in practical applications at ambient temperatures,
room-temperature static compression tests were carried out to determine the stress-strain
relationships and stress relaxation tendencies. Based on the representative foam set of
6.5 wt% CFA, Figure 8a reveals that the SP and CM samples both displayed stress-strain
relationships with higher slopes than the CT set. The solid-state-processed PLA foam
samples were significantly stiffer and more mechanically robust than manually blended
foam samples at room temperature, due to their higher as-molded crystallinity, as observed
earlier by the ∆Hmc values. The stiffness difference may also reflect that in the foam
morphology, as Section 3.2 established that the solid-state-processed samples displayed
higher cell density and more spatially consistent closed cell structure. The XL samples
exhibited high stiffness because of their enhanced crystallinity through crosslinking and
cryomilling; crosslinking has previously been shown to make PLA stiffer [53]. However, the
XL sample’s stress-strain curve had a lower slope than the SSSP and cryomill stress-strain
plots perhaps due to the open-cell nature of the crosslinked foam [71].
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Figure 8. Results from the static compression testing displaying the (a) stress-stain curves (truncated
at a compressive stress of 200 kPa) and (b) stress relaxation curves of the four foam samples with
6.5 wt% CFA at room temperature.

The stress relaxation results in Figure 8b reveal that SP and CM foams relaxed to a
lesser extent than CT foams when subject to a constant initial static load of 200 kPa. In the
context of static loading, foams that undergo less stress relaxation are better able to retain
their initial shape after being compressed to some reasonable deformation level, enabling
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sustainable usage in various applications. For certain packaging applications, an ideal foam
can be defined as one that continuously applies a consistent force on an object [72], which
the solid-state-processed foams exhibit. While the XL foams had high crystalline properties,
their open cell foam structure nonetheless caused significant stress relaxation to occur.

4. Conclusions

An effective PLA chemical foaming method has been established through solid-state
processing, via either SSSP or cryomilling, followed by compression molding. Solid-
state-processing PLA achieved foams with void fraction values approximately double
those of the control foams (70% versus 35%) and consistently higher cell density. Though
unusual, a relatively high CFA loading of around 6 wt% is recommended with solid-state
processing, as increasing CFA concentration resulted in a corresponding increase in void
fraction up until a plateau value. DSC and DMA findings indicated that the shearing and
pulverization effects of solid-state processing resulted in enhanced melt crystallization
and cold crystallization enthalpies. Additionally, solid-state-processed foams proved more
robust and displayed less stress relaxation than crosslinked and control foam sets, enabling
better reusability for sustainable applications. The crosslinked foams, which were also solid-
state processed, achieved the highest level of melt crystallization but achieved low void
fraction values (~30%) and inconsistent cell density, disproving that combining solid-state
processing and crosslinking is an effective strategy for PLA foam development.

In the future, a better understanding of the optimal compression molding foaming
heating and cooling rates should be established to ensure the most effective foaming
method for PLA foams. One potential route is an in-depth investigation into the interplay
between foaming and crystallization at different solidification rates. The chemical foaming
method developed in this study complements existing physical foaming methods for PLA
and contributes toward the widespread application of sustainable foams in our society.
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