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Abstract: The electric vehicle and energy storage markets have grown rapidly in recent years.
Thermal runaway caused by malfunctioning Li-ion batteries is an urgent issue with many causes
(e.g., mechanical, electrical, and thermal abuse). The most common cause of thermal runaway is the
formation of an internal short circuit because of damage to the separator. There has been significant
effort to improve the design of separators, but to our knowledge, only inorganic nanoparticle coatings
are used in commercial Li-ion batteries. Here, hybrid organic/inorganic coating layers are synthesized
in a pilot-scale process that was developed from a crosslinkable polyamide-imide synthesis technique.
The fabrication process is optimized to achieve reproducible hybrid organic/inorganic coating layers
that are thin (≤4 µm), permeable (≤250 s/100 cc), and thermally stable beyond 150 ◦C. The hybrid
coating layer is applied to mini-18650 Li-ion cells to show that the discharge capacity did not change
at low discharge rates, and the retention capacity after 500 cycles was better than that of the reference
cells used for comparison. This work demonstrates that a novel hybrid coating layer has the potential
to improve the stability of commercial Li-ion batteries.

Keywords: crosslinkable polyamide-imide; hybrid organic/inorganic coating; pilot-scale; mini-18650
Li-ion cell; thermal stability

1. Introduction

Li-ion batteries play a crucial role in modern daily life as a robust portable power
source with high energy density [1], small memory effect [2], and long lifespan [3]. Con-
sumer use of “smart” devices has increased substantially as battery energy density increases,
at a rate of 5.5 Wh kg−1 per year [4], and the availability of large batteries capable of storing
60 kWh has contributed to the growth of environmentally friendly electric vehicles [5].
Furthermore, smart grids reduce carbon emissions by generating electricity from solar,
wind, geothermal, and tidal energy sources and storing it in and supplying it from energy
storage systems [6]. Development of the next generation rechargeable batteries, such as Zn
based batteries [7–9], has been raising expectations for far safer and much more advanced
energy storage devices that contribute to smarter and cleaner lives.

Li-ion batteries are an integrated component in a wide range of technologies; however,
malfunctioning batteries are susceptible to thermal runaway, which presents a significant
risk to users and their property. Thermal runaway can be caused by mechanical, electric,
and thermal abuse [10]. Mechanical abuse typically results in deformation, while electrical
abuse encourages the growth of dendrites and elevated temperatures, which can cause
thermal damage. Any damage to the battery separators can result in electrical short circuits,
which are the most direct cause of thermal runaway [11]. Once an internal short circuit is
formed, exothermic reactions, such as solid electrolyte interface decomposition, separator
disintegration, and redox reactions between the cathode and anode are initiated, the battery
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temperature increases rapidly [12,13]. Therefore, it is important that improvements be made
to separator designs to prevent or delay damage and improve the safety of Li-ion batteries.

Research efforts have been focused on the development of advanced separators that ad-
dress the aforementioned issues. These include: separators fabricated from phase-changing
thermoregulating coaxial fibers [14], flame-retardant coaxial fibers [15], and an electro-
chemically active silica sandwich [16]. Among the technologies that have been explored,
separators coated with inorganic nanoparticles are of particular interest as they are low-cost
and simple to process, both of which are attractive properties for commercial production.
Electrochemically inactive inorganic materials, such as SiO2 [17–19], Al2O3 [20–22], and
AlOOH [23–25], have been used to improve the thermal and mechanical performance of
separators, and increase their wettability at the interface with the electrolyte. Polyvinyl
alcohol [24], polyvinylidene hexafluoropropylene [21], and polyurethane acrylate [26] have
been used as binders. Most studies concluded that inorganic nanoparticle-coated sepa-
rators have superior electrolyte wettability [20], thermally stability [17], and improved
electrochemical performances [18], but research has focused on their use in single coin
cells and small pouch cells. Therefore, there is a need to develop inorganic nanoparticle
separators suitable for the fabrication of large-scale Li-ion batteries. Furthermore, the
inorganic nanoparticles and organic components must be thermally stable. In this work, we
design a thermally stable organic crosslinked polyamide-imide component and optimize a
pilot-scale process to apply a hybrid organic/inorganic coating to a polyolefin separator.
The consequences of applying the hybrid layer are thoroughly evaluated by testing its
electrochemical performance in mini-18650 Li-ion cells.

2. Experimental
2.1. Crosslinkable Polyamide-Imide Preparation

Hexafluoroisopropylidene-bis-phthalic anhydride (6-FDA; Sigma-Aldrich, Burlington,
MA, USA), toluene diisocyanate (TDI; Sigma-Aldrich, Burlington, MA, USA), fumaric
acid (FA; Sigma-Aldrich, Burlington, MA, USA), and pentaerythritol triacrylate (PETA;
Sigma-Aldrich, Burlington, MA, USA) were used as monomers to design a crosslinkable
polyamide-imide (PAX). 6-FDA, FA, and TDI were polymerized at a monomer ratio of
0.9:0.1:1.1 in dimethylacetamide (DMAc; Sigma-Aldrich, Burlington, MA, USA) 100 ◦C for
1 h. The monomer content in DMAc was 60 wt %. 6-FDA was used to ensure solubility in
acetone, and FA and TDI were selected to promote dimensional stability in the electrolyte
solution and crosslinking. To improve crosslinking, the residual-NCO group was capped
with PETA at a monomer ratio of 6-FDA + FA + TDI:PETA of 1:1, at 70 ◦C for 1 h. The PAIX
was characterized using gel permeation chromatography (GPC; Waters Co., Ltd., Milford,
MA, USA) and thermogravimetric analysis (TGA; Discovery TGA; TA Instruments, New
Castle, DE, USA).

2.2. Polyethylene Separator Coating

A 12-µm-thick polyethylene separator was used as a substrate, with a Gurley number
of 120 s/100 cc. The following hybrid organic/inorganic layers with various compositions
were deposited on the substrate to determine the adhesion and permeability (Gurley num-
ber): polyurethane acrylate, polyvinylidene fluoride (PVdF), Al2O3 nanoparticles = 0.8, 0.2,
2.0; PAIX, PVdF, Al2O3 nanoparticles = 1.0, 0, 2.0; PAIX, PVdF, Al2O3 nanoparticles = 0.9, 0.1,
2.0; PAIX, PVdF, Al2O3 nanoparticles = 0.8, 0.2, 2.0; PAIX, PVdF, Al2O3 nanoparticles = 0.7,
0.3, 2.0; PAIX, PVdF, Al2O3 nanoparticles = 0.8, 0.2, 3.0; and PAIX, PVdF, Al2O3 nanopar-
ticles = 0.7, 0.3, 3.0. The adhesion strengths of the hybrid coating layers were evaluated
by the 180◦ peel test between the hybrid coating layer and the 3 M adhesive tape (Scotch
Magic tape, 18 mm. 3 M) adhered to their surface using a Universal Testing Machine (In-
stron 3343, Instron, Norwood, MA, USA). Changes in permeability as a result of humidity
and nonsolvent effects were examined. Gurley numbers were measured by the JIS P8117
method (Testing Method for Air Permeability of Paper and Paperboard [27]) using a Digital
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Oken Type Air-Permeability tester (EGO-1-55-1MR, Asahi Seiko Co., Ltd., Osaka, Japan).
All coatings were applied and tested using pilot-scale techniques.

2.3. Thermal and Electrochemical Characterization

The thermal characteristics of separators coated with ceramic or hybrid organic/inorganic
layers were tested by heating the separators at 200 ◦C for 10 min. Coated separators were
then assembled into a cylindrical battery pack filled with electrolyte and heated to 150 ◦C for
1 h to further evaluate their thermal behavior. Cylindrical mini-18650 cells were assembled
in a dry-room, and the rate and cycling performance of the hybrid coated separators
were examined. A Li(Ni, Co, Al)O2 (NCA) and Li(Ni, Co, Mn)O2 (NCM) mixed cathode
(NCA/NCM/carbon black/PVdF = 96/1.8/2.2 by weight, loading level = 40.73 mg cm−2)
and graphite anode (graphite/styrene-butadiene rubber (SBR)/carboxymethylcellulose
(CMC) = 97.5/1.5/1.0 by weight, loading level = 20.50 mg cm−2), provided by Samsung SDI
(South Korea) were used in the electrochemical performance tests. The cathode and anode
were cut into 54 mm× 130 mm and 58 mm× 160 mm pieces, respectively. The separator
was 60 mm wide. The liquid electrolyte comprised 1.15 M LiPF6 in ethylene carbonate (EC),
ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) (EC/EMC/DMC 2/4/4 by
volume; PANAX ETEC Co., Busan, Korea) with 1% lithium difluorophosphate (MP1), and
1.5% vinyl chloride (VC) additives. Galvanostatic rate and cycling tests were conducted in
the range 3.0–4.25 V under constant current-constant voltage charging and constant current
discharging modes (WonATech, Seoul, Korea). The direct current internal resistance (DCIR)
of as-assembled cells and cells that had been cycled 100 times was measured. Charge
and discharge rates were tested at current density C-rates between 0.1 and 5C. In the
cycling tests, the cells were charged to 4.25 V at 1C with a 0.2C current cut-off, and then
discharged to 3.0 V at 1C. The cells were left to stabilize for 10 min after charging and
15 min after discharging.

3. Results and Discussion

A separator coated with a hybrid organic/inorganic layer was placed between an NCA
cathode and graphite anode; the hybrid layer was in contact with the cathode, as shown in
Figure 1. The hybrid layer comprised inorganic Al2O3 nanoparticles, organic PAIX, and
a PVdF binder. The inorganic-coated polyolefin is inexpensive (<$1 m−2), dimensionally
stable, and highly wettable in carbonate electrolyte, whereas the polymer-coated separator is flexible,
forms intimate contact with the electrode, and has better electrolyte uptake [28–32]. However, the
inorganic-coated polyolefin is brittle after thermal treatment, and the polymer coating is
less robust against mechanical failure modes. Therefore, the hybrid organic/inorganic
coating was designed to exploit the advantages and compensate for the disadvantages of
each layer component.

A schematic of the PAIX synthesis process is presented in Figure 2. First, 6-FDA, TDI,
and FA monomers were polymerized in DMAc at 100 ◦C for 1 h; then, PETA was added
as a multifunctional crosslinker [33,34]. It is important that the components are soluble to
ensure processibility; 6-FDA was crosslinked with the TDI using an isocyanate-anhydride
reaction [35] so that it was soluble in acetone. The acrylamides, formed from the addition
of isocyanate and alcohol [35], were crosslinked with acrylates so that the product was
stable in the carbonate electrolyte. After the hybrid organic/inorganic layer was cast on
the polyolefin separator, a crosslinking process was initiated using benzoyl peroxide (BPO;
10 wt % with respect to the PAIX content) and left to react overnight at 100 ◦C.
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Figure 2. Schematic of PAIX synthesis. 6-FDA, FA, and TDI monomers were polymerized in DMAc
at 100 ◦C for 1 h, and PETA was used as a multifunctional terminal.

The pilot-scale PAIX synthesis process was repeated three times to determine the
reproducibility, and its macromolecular properties were studied using GPC and TGA as
shown in Figure 3. The PAIX was dissolved in DMF in preparation for GPC testing. As
shown in Figure 3a, the number (Mn) and weight (Mw) of the average molecular weights
were approximately 19,325 and 34,940, respectively. The inter-sample molecular weights
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differed by <1.1%. The polydispersity index (PDI), defined as Mw/Mn, was approximately
1.8, which agrees with the PDI of previous polyamide-imide synthesis works [36]. Therefore,
we concluded that the pilot-scale polymerization produced a product of reasonable quality.
TGA was used to assess the thermal stability, as shown in Figure 3b. The TGA tests were
conducted under a nitrogen blanket between 25 and 700 ◦C at a ramp rate of 5 ◦C per
minute. Significant weight loss was observed above 400 ◦C, which coincides with the
polyamide-imide decomposition temperature [37]. These results show that the pilot-scale
PAIX synthesis was reproducible and thermally stable, and suitable for use as the organic
component of the hybrid organic/inorganic coating.
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The optimal hybrid coating recipe was analyzed, and the results are presented in
Table 1. ASTM test D726 [38,39] was used to measure the permeability of a 12-µm-thick
polyethylene separator, which yielded a Gurley number of 120 s/100 cc. The polyethylene
separator was coated with a range of test slurries. A mixture of polyurethane acrylate
and PVdF was applied to produce an organic reference coating, which is referred to as
acrylate in Table 1. The Gurley number of the acrylate sample was 1770 s/100 cc, which is
more than 14 times greater than that of the untreated separator material. PAIX 100% was
used to create a second organic reference coating, referred to as PAIX12 in Table 1. The
Gurley number of the PAIX12 sample was 226 s/100 cc, which is less than twice that of the
untreated separator material. The PAIX-polyethylene and acrylate-polyethylene adhesion
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forces were 49.2 and 193.2 gf cm−1, respectively. Commercial cell standards require that the
adhesion force between the coating layer and substrate exceed 100 gf cm−1; thus, a PVdF
binder was used to increase the PAIX coating adhesion without significantly increasing
the permeability.

Table 1. Coating recipes tested and corresponding Gurley numbers.

Sample Code Solid Content
(wt %)

Organic to Al2O3
Ratio

Organic Content (wt %) Gurley Number
(s/ 100 cc)PAIX Polyurethane Acrylate PVdF

Acrylate 10 1/2 0 80 20 1770
PAIX12 10 1/2 100 0 0 226

PAIX1291 10 1/2 90 0 10 582
PAIX1282 10 1/2 80 0 20 820
PAIX1382 10 1/3 80 0 20 326

PAIX1373-12 12 1/3 70 0 30 278

PVdF binder was added to PAIX to produce PAIX1291 and PAIX1282 with adhesion
forces of 206.1 and 226.4 gf cm−1, respectively, but the Gurley numbers increased to 582 and
820 s/100 cc, respectively. The Gurley number was reduced by decreasing the organic:Al2O3
ratio from 1/2 to 1/3. Consequently, the Gurley number of PAIX1382 was 326 s/100 cc with
an adhesion force of 104.8 gf cm−1. Finally, the recipe was tuned by adding more PVdF
binder and increasing the solid content to 12 wt %, to produce PAIX1373-12 with a Gurley
number of 278 s/100 cc.

Nonsolvent additives were introduced into the optimized PAIX1373-12 recipe to
increase the permeability, as shown in Table 2. The coating thickness and density, and the
organic:Al2O3 and PAIX:PVdF ratios, were precisely controlled, and the phase separation
effect was used to decrease the coating density by adding distilled water at concentrations
of 1 and 2 wt % to produce PAIX_DI1 and PAIX_DI2, respectively. Although PAIX_DI1
and PAIX_DI2 were thicker coatings, the Gurley number decreased to 260 and 245 s/100 cc,
respectively. The density was decreased further (2.04 g cc−1) by adding ethylene glycol
at a concentration of 3 wt % to produce PAIX_EG3 with a Gurley number of 207 s/100 cc,
which also mitigated the phase separation and improved the coating uniformity. The
morphologies of PAIX_DI1 and PAIX_EG3 are given in Figure 4. Low-magnification SEM
images of PAIX_DI1 and PAIX_EG3 suggest that the coating surfaces are uniform, but high-
magnification images reveal the surface roughness that is introduced by phase separation.
The surface of PAIX_DI1, shown in Figure 4b, was significantly rougher than the surface of
PAIX_EG3, shown in Figure 4d. As presented in Figure 4e, the PAIX_DI1 and PAIX_EG3
surfaces featured an average of 2.27 and 3.00 peaks per unit micrometer, respectively.
Therefore, we concluded that ethylene glycol was the best nonsolvent to form a highly
permeable hybrid organic/inorganic coating layer.

Table 2. Summary of the hybrid coating layer properties with the addition of nonsolvents.

Sample Code Solid Content
(wt %)

Organic to Al2O3
Ratio

PAIX to PVdF
Ratio Density (g cc−1) Thickness (µm) Gurley Number

(s/100 cc)

PAIX1373-12

12 1/3 7/3

2.15 2.500 278
PAIX_DI1 1.84 3.000 260
PAIX_DI2 1.48 3.875 245
PAIX_EG3 2.04 4.000 207
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Figure 4. Hybrid organic/inorganic coating morphologies. (a) Low- and (b) high-magnification SEM
images of a PAIX-PVdF-Al2O3 layer with a 1 wt % distilled water additive (PAIX_DI1). (c) Low-
and (d) high-magnification SEM images of a PAIX-PVdF-Al2O3 layer with a 3 wt % ethylene glycol
additive (PAIX_EG3). (e) Surface roughness of the PAIX_DI1 and PAIX_EG3 samples.

Polyolefin becomes deformable below 180 ◦C [40–42] so it is important that the hybrid
coating protects the separator. The thermal durability of the PAIX coating was tested
using dry and wet thermal exposure tests, as shown in Figure 5. The hybrid polyurethane
acrylate/Al2O3 (organic:Al2O3 ratio of 1/8 and Gurley number of 145 s/100 cc)—coated
reference separator was severely damaged by the dry exposure test, as shown in Figure 5a,
and the separator coated with PAIX/Al2O3 was preserved without shrinkage after the
same test, as shown in Figure 5b. The yellow color visible in the images was a result of
imidization during thermal exposure. Separator samples were immersed in an electrolyte
solution at 150 ◦C for 1 h and then disassembled and photographed, as shown in Figure 5c.
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The separator coated with polyurethane acrylate/Al2O3 shrank significantly during the
test, whereas the hybrid PAIX/Al2O3 coating resisted deformation during exposure to
the same conditions. The enhanced thermal properties of the hybrid PAIX/Al2O3 layer
were clearly demonstrated by these tests, which show that the hybrid coating was more
thermally robust than the untreated and acrylate-coated separators.
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(c) disassembled acrylate- (top) and hybrid PAIX/Al2O3-coated (second to fifth) separators after
immersion in an electrolyte solution at 150 ◦C for 1 h.

The electrochemical performance of the separator with a hybrid organic/inorganic
layer was tested by incorporating it into cylindrical mini-18650 cell assemblies. As shown
in Figure 6a, the average DCIR of the as-assembled reference cell with an acrylate-coated
separator was 117.6 mΩ and the DCIR of the separator with a hybrid PAIX coating was
128.6 mΩ. The impedance of the PAIX-based cell was greater than that of the reference
cell because of its relatively low permeability. However, the structural stability of the
PAIX-based separator meant that the DCIR value increased by < 1.7 mΩ after 100 charge
cycles, whereas the reference cell DCIR increased by 4 mΩ. Figure 6b shows that the
discharge capacity of the cells was similar at lower rates (≤ 0.5C), but the capacity of the
PAIX cell was lower than that of the reference cell at higher discharge rates. At 1.0, 3.0,
and 5.0C, the PAIX cell discharge capacity was 94.9%, 89.0%, and 81.5% of the reference
cell capacity, respectively. This is because of the higher DCIR of the PAIX cells. Figure 6c,d
present the cycling performance of the reference and PAIX cells, respectively. The cells
were cycled 500 times each at 1.0C, after which the better cyclability of the PAIX cell
was clear. The discharge capacities of the reference and PAIX cells after 500 cycles were
416.3 and 425.5 mAh, respectively, which were 77.0% and 78.6% of the initial discharge
capacities, respectively. These tests suggest that although the hybrid PAIX/Al2O3 coating
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worsens electrolyte permeability, the negative effects are less significant at low current
densities, and the performance improves over many cycles. Based on the material properties
and electrochemical performances, it was summarized as follows: i) the electrochemical
performances of the PAIX cells at low rates (≤ 0.5C) were comparable to the that of the
reference cell, ii) the discharge capacities of the PAIX cells at high rates were inferior
to the reference cells due to the lower permeability, and iii) the discharge capacities of
the PAIX cells after 500 cycles were higher than that of the reference cells owing to the
improved structural stability. Therefore, we conclude that a separator coated with a hybrid
PAIX/Al2O3 layer has a minor negative impact on the cell rate performance, but improves
the thermal stability at high temperatures even when the cell is filled with electrolyte.
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4. Conclusions

A pilot-scale method for synthesizing a hybrid organic/inorganic coating was de-
veloped from a crosslinkable polymer synthesis technique and optimized. Multistep
polymerization was used to successfully synthesize a reproducible, thermally stable PAIX
with high thermal decomposition temperatures. The PAIX and PVdF ratio, organic to Al2O3
ratio, solid content, and nonsolvent additive concentration were controlled and optimized
to produce a thin (≤4 µm), permeable (≤250 s/100 cc), and thermally stable (>150 ◦C)
hybrid coating. The reduced permeability owing to the hybrid coating layer caused the
DCIR to increase, and the discharge capacity to decrease at high rates (>1.0 C). However, in
comparison with reference cells, mini-18560 cells that incorporated the hybrid separator
coating showed the same discharge capacity at low rates and better cycling retention after
500 charge cycles. Therefore, we conclude that a polyolefin separator coated with a hybrid
organic PAIX and inorganic Al2O3 layer provides a pathway to more thermally stable
commercial Li-ion batteries with few electrochemical performance sacrifices.
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