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Abstract: While the Michael addition has been employed for more than 130 years for the synthesis of
a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved
has been generally less considered. First applied to medicinal chemistry, the reversible character
of the hetero-Michael reactions has recently been explored for the synthesis of Covalent Adaptable
Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction.
In these cross-linked networks, exchange reactions take place between two Michael adducts by
successive dissociation and association steps. In order to understand and precisely control the
exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the
Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on
these matters. This review presents the progress in the understanding of the thia-Michael reaction
over the years as well as the latest developments and plausible future directions to prepare CANs
based on this reaction. The potential of aza-Michael reaction for CANs application is highlighted in a
specific section with comparison with thia-Michael-based CANs.

Keywords: Michael; vitrimers; covalent adaptable network; thia-Michael

1. Introduction

The Michael addition was named after Arthur Michael (1853–1942) [1] who discov-
ered the addition reaction of sodiomalonate esters or sodioacetoacetate esters onto α,β-
unsaturated esters [2]. This reaction corresponds to a 1,4-conjugate addition of a stabilized
carbanion onto an electron-poor double bond such as α,β-unsaturated carbonyl compounds.
Other Michael additions based on the addition of an anion to activated alkenes have been
further developed by using other nucleophiles. Thia-, oxa- and aza-Michael reactions
correspond, respectively, to the polar 1,4-addition of a thiol, an alcohol and an amine
(Michael donor) onto double bonds activated by a conjugated electron-withdrawing group
(Michael acceptor) [3]. In contrast to the historical Michael reaction, these “hetero-Michael”
additions are potentially reversible under appropriate conditions.

Covalent adaptable networks (CANs) have gained a lot of interest from the scientific
community, as this polymer family represents a potentially sustainable solution for the
reduction of polymer wastes. Indeed, thermosets, which were originally designed to be
dimensionally stable and provide high mechanical and chemical resistance, cannot be easily
reprocessed [4]. CANs are composed of a 3D network structure in which some covalent
bonds show reversibility upon thermal stimulus, conferring self-healing, shape memory
and reprocessing properties to the material [5]. The first CANs, composed of disulfide bonds
and silyl ethers, have been developed decades ago [6,7] and recently re-evaluated [8,9].
Numerous exchange or reversible reactions such as Diels–Alder cycloaddition [10–13],
transesterification [14–17], transcarbamoylation [18–21] or transamidation [22,23] have
been employed to design and prepare CANs.

The exchange reactions are generally classified according to their mechanism, either
associative or dissociative [24]. Based on this mechanistic difference, vitrimers would corre-
spond to CANs having an associative exchange mechanism, whereas the exchange reaction
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will follow a dissociative mechanism in dissociative CANs. An associative exchange en-
sures a constant cross-link density, whereas a dissociative one generates a temporary loss of
network connectivity when the exchange takes place. Therefore, only associative networks
should show an Arrhenius behavior and therefore be considered as vitrimers (associative
CANs). Nevertheless, as highlighted by Dichtel and Elling [25], some dissociative CANs
based on oxime-enabled transcarbamoylation [26] and trans-N-alkylation [27] for instance
also showed this typical behavior. Hence, the major difference between associative and
dissociative CANs is often a decrease of the storage modulus with temperature as observed
in different studies on dissociative CANs [22,28].

Several review articles on CANs and vitrimers have been published in the last few
years, giving an overview of the chemistry and physics of these materials [24,29–31] or
focusing on specific exchange reactions such as the transesterification [32] or transcar-
bamoylation [33] for example. In this context, the Michael/retro-Michael equilibrium
appears as a new promising exchange reaction for CAN applications which has not yet
been reviewed, to the best of our knowledge. Hence, this review highlights the main
parameters influencing the Michael reaction rate and reversibility, and present an overview
of the Michael reaction-based CANs. This review is mainly focusing on the thia-Michael as
this reaction was the most evaluated one for CANs application. In comparison, aza-Michael
based CANs (described in Section 4.) have been less evaluated but represent a promising
way for further CAN development.

2. Thia-Michael Reaction

The thia-Michael addition is an intensively used reaction in industry for the synthesis
of food additives and surfactants, pesticides and pharmaceutical agents [34–38]. In recent
decades, the thia-Michael addition has found a new field of application in materials science.
Indeed, the simplicity of this addition reaction enables to easily synthesize a large range of
monomers [39] or dendrimers [40] and can also be used to perform surface modification [41].
Polymer networks synthesized via thia-Michael addition have been also explored. For
instance, thio-acrylate networks were prepared by using a thia-Michael addition followed
by the photopolymerization of an excess of acrylate functional groups [42]. Using a similar
idea, A. Lowe et al. performed sequential phosphine-catalyzed thia-Michael addition
followed by radical-mediated thiol−yne reaction to prepare polyfunctional materials [43].
The thia-Michael addition has also been used to cross-link acrylated epoxidized soybean
oil in order to obtain partially bio-based networks [44]. Recently, some dynamic covalent
networks (CANs) have been designed on the basis of the reversibility of the thia-Michael
addition (Scheme 1) [45,46]. For the following discussion, the term “thia-Michael addition”
refers only to the addition step, whereas the term “thia-Michael equilibrium” refers to
the overall thia-Michael reaction (elimination/addition). Finally, the term “thia-Michael
exchange” refers to the reaction between a Michael adduct and a Michael donor or acceptor.
The thia-Michael exchange, which is focused on in this review, is of course dependent on a
few critical parameters such as the promotor or catalyst, the solvent and the structure of
the reagents (thiol and Michael acceptor).

Influence of the promotor/catalyst: Thia-Michael additions are generally catalyzed with
weak Brønsted bases such as triethylamine or by Lewis bases such as phosphines (nucleophile-
initiation) [47,48]. Bowman et al., studied these two mechanisms [49] and established
that, in both cases, the addition takes place in three steps. First, a thiolate is formed by
reaction of the thiol either with the base or with an anion generated from the nucleophilic
catalyst and the Michael acceptor. Then, this thiolate adds to the acceptor to generate
a negatively charged addition product. Finally, a proton exchange occurs between this
addition product and either a new thiol function or the protonated base to form the final
Michael adduct (Scheme 2) [49]. For the nucleophile-initiated thia-Michael addition, a
zwitterionic intermediate is generally formed from the attack of the Lewis base onto the
Michael acceptor. Subsequently, the thiol is deprotonated by the zwitterionic intermediate
leading to the formation of the thiolate anion and a phosphonium ester. After addition of
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the thiolate onto the Michael acceptor, a proton exchange occurs with a new thiol, leading
to a new thiolate and therefore to a propagation of the reaction. In this case, the nucleophile
is only used as an initiator of the reaction. For the base-catalyzed mechanism, the thiolate
anion is obtained in one step by acid-base reaction. In this case, the base and the unreacted
thiol can both perform proton exchange with the negatively charged addition product,
whereas in the nucleophile-initiated thia-Michael addition only the thiol species participate
to this exchange. The base-catalyzed rate is negatively impacted by the presence of the
protonated base in the system as it slows down the formation of new thiolate. Therefore, the
nucleophile-initiated thia-Michael addition generally proceeds faster and requires lower
catalyst loadings compared to the base-catalyzed pathway [50].
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Influence of the solvent: The solvent used for a chemical reaction is generally chosen
to solubilize the reactants and catalysts and to minimize side reactions [3]. However,
solvent characteristics also play a role in the reaction kinetics. For instance, the thiol-
acrylate reaction catalyzed by triethylamine was accelerated in a polar medium such as
dimethyl sulfoxide (DMSO), propylene carbonate and N-ethyl urethane compared to the
neat reaction [51]. Du Prez et al. investigated the Michael addition of thiol with maleimide,
acrylate and vinyl sulfone and the NEt3-catalyzed thiol–iso(thio)cyanate reactions in DMF
and in chloroform [52]. Overall, they observed higher reaction rates in polar aprotic solvents
such as DMF and DMSO, which favor the formation of thiolates through a stabilization
of this negatively charged species due to their high dielectric constants [53]. Therefore,
solvents promoting the formation of thiolates (initiation) should be chosen to promote the
thia-Michael addition. This effect was particularly visible in the case of base-catalyzed
reactions for which initial deprotonation is the limiting step of the mechanism. Similarly,
addition reaction rates are increased in high pH solution as thiolate anions are easily formed
under these conditions [54].

Influence of the substrate structures: The thiol basicity and the electron deficiency of the
Michael acceptor as well as the steric hindrance of the reactants influence the thia-Michael
addition. The influence of the bulkiness of the substituents has been largely studied for
the aza- and carbon-Michael additions, leading to the intuitive conclusion that the reaction
rate decreases as the α- and β-substituents size increases [55,56]. Recently, Bowman et al.,
highlighted a similar behavior for thia-Michael additions with alkyl thiol. Indeed, when
the steric hindrance of the thiol increases, the addition rate decreases. However, when mer-
captopropionates were used, the addition of a methyl substituent in α-position of the thiol
increased slightly the reaction rate, leading to the opposite conclusion [57]. Nonetheless, as
previously reported, the rate-limiting step is different between the addition of alkyl thiols
or mercaptopropionates [58]. Due to their respective basicity and nucleophilic characters,
the addition of alkyl thiols is rate-limited by the proton exchange step whereas the mer-
captopropionate reactions are limited by the thiolate addition step. Thus, the decrease of
the deprotonation rate induced by the higher electron-density of substituted alkyl thiols,
added to their increased steric hindrance, results in a reduction of the overall reaction
rate [59]. In contrast, the addition rate of mercaptopropionates is directly dependent on
the thiol nucleophilicity and the most-electron-rich thiolate (α-methylmercatopropionate)
adds faster onto the double bond. In this study, it was also demonstrated through a com-
parison between vinyl sulfone, fumarate and acrylate that the more electron-deficient the
acceptor, the higher the addition rate. Tirelli et al. also showed that thia-Michael addition
rate was higher for acrylates than for acrylamides, thus highlighting the electronegativity
dependence of this reaction [60].

The thia-Michael addition is highly efficient, rapid and more selective than the radical-
mediated thiol-ene reactions [61]. Indeed, the thiol-ene reaction involves the formation of
a thiyl radical that directly adds onto the carbon-carbon double bond, yielding a carbon-
centered radical intermediate. In a second step, an hydrogen transfer occurs with a second
thiol molecule to form the thiol-ene addition product and a new thiyl radical [53]. Secondary
products are mainly formed through the homopolymerization of alkene radicals generated
during the reaction [62,63]. In contrast to the radical-initiated thiol-ene reaction, the thia-
Michael addition can be performed under neat conditions and at low temperature, with a
higher tolerance to functionality [50].

In summary, the thia-Michael addition can be considered as a performant “click” reac-
tion that can be used in organic synthesis, surface modification and polymer chemistry [64].

3. Thia-Michael Equilibrium and Exchange Kinetics

The reversible character of the thia-Michael addition was evidenced for the first time
in 1931 by B. Nicolet [65] who demonstrated the reversibility of the addition of thioglycolic
acid on benzalacetophenone (Scheme 3). The thia-Michael adducts dissociated when placed
in a basic medium composed of sodium hydroxide or sodium carbonate.
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The dissociation phenomenon was then specifically evaluated by C. Allen and W.
Humphlett [66,67]. The dissociation of thia-Michael adducts was monitored 2 min after
dissolution in water or in ethanol with and without sodium hydroxide at different tem-
peratures. The influence of the groups present on the acceptor or on the thiol was also
examined in these articles (Scheme 4). They demonstrated that the elimination reaction
was favored as the electron withdrawing ability of the X group increased by enhancing the
acidity of the α-hydrogen of the alkene function, as suggested by the order of dissociation
observed in this study (ketone > nitrile > amide > acid). In contrast, the correlation between
the structure of the thiol and the thia-Michael reversibility was however not obvious from
these studies.
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In 1968, Holmes et al. [68] observed the fast reaction of dually activated Michael
acceptors with butanethiol. In this study, a cyano group is associated with another electron-
withdrawing group on the α-position of the acceptor, leading to a fast addition reaction.
However, the thia-Michael adducts could not be isolated due to the high reversibility of
the reaction [69,70]. The dynamic character of the thia-Michael equilibrium is therefore
largely influenced by the EWG placed in the α-position. This perspective has notably found
applications in medicinal chemistry. The thia-Michael equilibrium indeed served as an
application of the concept of reversible covalent inhibition, enabling the development of
protein inhibitors with long-lasting, but not permanent action [71]. This principle was
specifically introduced by Taunton et al. who designed reversible Michael acceptors as
cysteine-targeting inhibitors [70,72]. They highlighted the influence of a second EWG on
α-cyano Michael acceptor with kinetic and computational analyses of the thia-Michael
equilibrium (Scheme 5). The presence of a methylthiazole group placed in the α-position
of the acrylonitrile had a strong promoting impact on the reversibility of the thia-Michael
addition, similar to the one observed with an α-amide group. This study also demonstrated
that the presence of a phenyl group at the β-position did not have a significant effect on the
reaction reversibility.

In 2016, Houk et al. also investigated the influence of an additional α-EWG and
of a β-substituent by DFT calculations [73]. They demonstrated that an α-EWG lowers
the energy barrier for the thiol addition but also makes the addition reaction thermody-
namically less favorable. The presence of an aryl or of a branched alkyl group on the
β-carbon led to a rapidly reversible thia-Michael addition. The equilibrium of the thiol
addition with benzalcyanoacetate-based Michael acceptors was specifically assessed by
Herbert et al. [74]. The equilibrium constants were determined at room temperature for a
series of benzalcyanoacetate and were highly dependent of the electron-withdrawing/-
donating ability of the substituent placed on the para-position of the β-phenyl ring. Hence,
as the electron-withdrawing ability increased, the equilibrium shifted preferentially to the
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associated state. By performing NMR in temperature, the authors demonstrated also that
the equilibrium shifted to the dissociative state as the temperature increased.
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In conclusion of these first studies, three major parameters must be considered to
control thia-Michael equilibrium: the α-EWG group, the stimulus used to activate the retro
thia-Michael, and to a lesser extent the β-carbon substituents (Scheme 6). Indeed, even if
the thermal stimulus is the most common one, increase of the pH value or the presence
of a base in the reaction medium also favor the retro-thia-Michael addition. For instance,
thermodynamic and kinetic analyses of the thia-Michael equilibrium of glutathione onto
helenalin derivatives were performed at different pH values [75,76]. It was demonstrated
that the addition reaction proceeded rapidly and was reversible at basic pH, and that
oppositely the reaction was slow and irreversible at low pH. The Michael addition of
thiols onto 5-methylene pyrrolones has also been described as reversible in an alkali buffer
(pH 9.5) and exchange reaction with other thiols was observed at 7.5 pH [77].
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The existence of the thia-Michael equilibrium offers the possibility to use this reaction
in dynamic exchange chemistry. Indeed, under appropriate conditions, the thia-Michael
adduct dissociates and the free thiol generated can react onto another acceptor present in
the system. Some articles describe the use of the thia-Michael addition/elimination as the
exchange reaction at work in CANs and highlighted the dynamic character of the reaction
via kinetic analyses on model molecules. Konkolewicz et al. in a first article on this topic
published in 2016 [45], studied the reversibility of the thia-Michael addition on ketone-,
acrylate- and aldehyde-derived thia-Michael adducts, respectively TM-VK, TM-HEA and
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TM-VA. At 90 ◦C, the evolution over time of a DMF solution of a thia-Michael adduct
with an exchangeable acceptor was monitored by NMR. Equilibrium composition was
independent of the starting materials, for instance, TM-VK/VA (1:1) mixture reached the
same equilibrium (VA/TM-VA = 70/30) as TM-VA/VK (1:1) mixture, which confirms the
presence of a dynamic equilibrium between thia-Michael adducts (Scheme 7). This kinetic
study also allowed to confirm a stability order [66]. Indeed, TM-HEA was the most stable
adduct followed by TM-VA while the less stable adduct was TM-VK.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

addition of thiols onto 5-methylene pyrrolones has also been described as reversible in an 
alkali buffer (pH 9.5) and exchange reaction with other thiols was observed at 7.5 pH [77]. 

 
Scheme 6. Parameters influencing thia-Michael equilibrium applications. 

The existence of the thia-Michael equilibrium offers the possibility to use this reaction 
in dynamic exchange chemistry. Indeed, under appropriate conditions, the thia-Michael 
adduct dissociates and the free thiol generated can react onto another acceptor present in 
the system. Some articles describe the use of the thia-Michael addition/elimination as the 
exchange reaction at work in CANs and highlighted the dynamic character of the reaction 
via kinetic analyses on model molecules. Konkolewicz et al. in a first article on this topic 
published in 2016 [45], studied the reversibility of the thia-Michael addition on ketone-, 
acrylate- and aldehyde-derived thia-Michael adducts, respectively TM-VK, TM-HEA and 
TM-VA. At 90 °C, the evolution over time of a DMF solution of a thia-Michael adduct with 
an exchangeable acceptor was monitored by NMR. Equilibrium composition was inde-
pendent of the starting materials, for instance, TM-VK/VA (1:1) mixture reached the same 
equilibrium (VA/TM-VA = 70/30) as TM-VA/VK (1:1) mixture, which confirms the pres-
ence of a dynamic equilibrium between thia-Michael adducts (Scheme 7). This kinetic 
study also allowed to confirm a stability order [66]. Indeed, TM-HEA was the most stable 
adduct followed by TM-VA while the less stable adduct was TM-VK.  

HO

S

O

O

S

HO

O

H

H

O

HO

S

O O

H

O

S

HO

H

O

TM-VK VA TM-VK VA

1 eq 1 eq 1 eq 1 eq

0.7 eq

0.7 eq

0.3 eq
0.3 eq

DMF 90 °CDMF 90 °C

 
Scheme 7. Thia-Michael exchange between 4-hexen-3-one (VK) and 2-hexen-1-al (VA) and their ad-
ducts with 2-mercapoethanol (TM-VK and TM-VA, respectively). 
Scheme 7. Thia-Michael exchange between 4-hexen-3-one (VK) and 2-hexen-1-al (VA) and their
adducts with 2-mercapoethanol (TM-VK and TM-VA, respectively).

Chakma et al. studied the dynamic exchange of N-methylmaleimide thia-Michael
adducts at 90 ◦C in DMF by NMR kinetic analyses [78]. In this study, two thiols were in
competition for the addition onto N-methylmaleimide. The equilibrium was reached after
8 h and composed of approximately 50% of the thio-phenol adduct (TP-MM) and 50%
of the 2-mercaptoethanol adduct (ME-MM), regardless of the starting mixtures (TP mm
exchanging with free 2-mercapoethanol (ME) or ME mm exchanging with free thiophenol
(TP)). There was therefore negligible energy difference between these two adducts, confirm-
ing the previous statement that the thiol substituent has only a minor impact on the adduct
stability. This dynamic exchange was used to prepare degradable hydrogels containing
reversible maleimide thia-Michael adduct [79,80]. In the presence of a competitive thiol
(glutathione), the exchange reaction took place and degraded the hydrogels, permitting the
release of an encapsulated compound.

Zhang et al. studied the 1,6-conjugated addition exchange between 2,6-di-tert-butyl-
7-phenyl-p-quinone methide (pQM) and thiol nucleophiles [81]. The dynamic character
of this vinylogous Michael reaction was evaluated via kinetic analyses of a mixture of
a pQM thia-Michael adduct with a competitive thiol (Scheme 8). At room temperature,
the pQM thia-Michael adduct was stable in the presence of another free thiol. However,
when a thermal stimulus (120 ◦C) was applied to this mixture, the thia-Michael exchange
reaction took place. After 4 h of reaction, an equilibrium state–once again independent on
the starting materials—composed of 37% of thiophenol-pQM adduct (TP-pQM) and 63%
of 2-mercaptoethanol-pQM adduct (ME-pQM) was reached. This study thus demonstrated
the existence of a dynamic equilibrium for this 1,6-conjugated thiol addition.
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The thia-Michael reversibility has been explored under different conditions and for
different kind of thia-Michael adducts, providing insight into the thia-Michael dynamic
exchange. Nevertheless, it should be noted that kinetic exchange studies were mainly
performed in the presence of a competitive thiol. It could be thus interesting for future
studies to look at the exchange of a thia-Michael adduct with a Michael acceptor and
a Michael donor. Indeed, these data could bring more information about the reactions
involved in polymer networks. Moreover, a systematic study of not only the reversibility
but also the thia-Michael exchange rate according to the nature of the substituents on
the Michael acceptors and donors would be of great help. In conclusion, despite some
remaining grey areas in the knowledge of the Michael exchange, these results are promising
enough to consider thia-Michael exchange as a valuable reaction for dynamic material
chemistry application.

4. Thia-Michael Exchange in CANs

Two main methods of synthesis have been developed to insert thia-Michael adducts
in CANs (Scheme 9). In the first method, the thia-Michael addition was used as the
cross-linking reaction. For instance, linear polymer chains possessing pendant thiols
functions and prepared by RAFT polymerization were crosslinked by reaction with a
di-maleimide in dioxane at room temperature [78]. Miller et al., used the thia-Michael base-
catalyzed addition as the cross-linking reaction, with a tetravalent thiol-terminated PEG
added onto a tetravalent cyano-acrylate-terminated PEG to form a CAN [82]. The second
method consists of using monomers already containing reversible thia-Michael adducts
to form a 3D network. The most common approach in that case was to synthesize di-
acrylate monomers by thia-Michael addition and copolymerize them with mono-functional
acrylates by conventional radical polymerization leading to the formation of a cross-linked
network [45,46,83,84]. Another approach used a pQM thia-Michael adduct terminated with
two alcohol functions which was copolymerized with other diols and triols by reaction
with a diisocyanate [81].

Stress/strain experiment is the usual test employed to test the reshapability of thia-
Michael based CANs. The stress and strain at break are measured on an initial sample,
which is then cut in two pieces, self-healed by pH or thermal treatment before being re-
analyzed. The sample is considered as healed when a high strain and stress recovery
is observed and when the break occurs at a different place that the initial cut [84]. The
temperature of curing is usually kept under 100 ◦C, as it was previously demonstrated by
Raman spectroscopy that free thiol are thermally unstable (elimination of H2S) above this
temperature [85]. The conditions of curing reported in the various studies published so far
are shown in Figure 1.
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Rheological experiments (creep, stress relaxations and frequency sweep) were also
performed to evaluate the flow of the material. Surprisingly, for thia-Michael-based CAN
studies, only few articles report stress relaxation or creep experiments at different tempera-
tures whereas, as mentioned in the introduction, even if the thia-Michael exchange follows
a dissociative mechanism, an Arrhenius behavior could be observed. For instance, complete
relaxation data on thiol-quinone methide CAN allowed the determination of an activation
energy of 86 kJ.mol−1 for this specific exchange [81]. In addition, creep and relaxation
experiments performed at room temperature demonstrated that the synthesized materials
were mechanically stable at this temperature and that almost no exchange occurred under
these conditions [46,78].

Some observations can be made on these studies. Konkolewicz et al., noticed that the
self-healing properties were reduced when the material cross-link density increased. Two
hypothesis were proposed to explain this observation [45]. First, as it was also noticed on
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polymers synthesized by RAFT polymerization [78], an increase of cross-linking could lead
to a decrease of chain mobility, inducing a reduction of the material reprocessing ability.
The second hypothesis is related to the specific composition of this network (Figure 2):
indeed, for a lower cross-link density, more free alcohol wase present in the network. Ac-
cording to the authors, the presence of these hydroxyl functions could facilitate self-healing
because of existing supramolecular interactions between the two materials parts during
reprocessing [45]. The time/temperature dependence observed for some of the presented
CANs can also be highlighted. Indeed, similar recovery results were obtained for samples
treated at 100 ◦C for 48 h and samples treated at 120 ◦C for 8 h [84]. Finally, it can be noted
that thia-Michael exchange can be coupled with another exchange reaction. For instance,
heat and light responsive materials were synthesized by coupling thia-Michael acrylate
adducts with coumarin adducts [83] which can undergo photoreversible dimerization [86].
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Figure 2. Example of a CAN based on thia-Michael exchange. (Adapted from Ref. [45], copyright
2022, with permission of American Chemical Society).

The existence of an equilibrium for benzalcyanoacetate-adducts at room temperature
inhibits the formation of a fully cured network at room temperature. However, Herbert et al.
demonstrated that, by tuning the electronic characteristics of the substituent placed on the
para-position of the β-phenyl ring, it was possible to modify the final conversion of the thia-
Michael addition [74]. Hence, in presence of nitro groups, thiols functions were converted
up to 92% whereas in presence of methoxy groups the conversion was only of 24%. The
extent of thia-Michael linkages influences directly the mechanical properties of the initial
material. Under thermal stimulus, the dissociation of the thia-Michael linkages can reach
such an extent that, above a temperature which depends on the group used, the system
loses connectivity and flows. Such materials can find applications as pressure-sensitive/hot
melt adhesives [87].

The thia-Michal exchange is therefore a promising reaction for the development of
CANs, as the exchange rate can be tuned by introducing groups with specific electronic
characteristics. Moreover, the insertion of dynamic thia-Michael linkages can easily be
performed since the thia-Michael addition constitutes an efficient polymerization reaction.
The applicability of these CANs has not yet been thoroughly assessed but materials of this
type could be used for composite preparation [88]. Indeed, a resin composed of thia-Michael
bond could be depolymerized in the presence of an adequate Michael donor/acceptor.
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Moreover, the thia-Michael click chemistry could be adapted to the preparation of films
which could demonstrate healing behavior under the appropriate stimulus.

5. Perspectives on the Development of Aza-Michael Exchange Reactions in CANs

This review initially aimed at highlighting the recent advances made on thia-Michael
exchange in CANs. However, Du Prez et al., recently demonstrated that aza-Michael
exchange was also possible under thermal stimulus [89]. Just like the thia-Michael ex-
change, the reversible character of the aza-Michael reaction was first highlighted on model
molecules. This catalyst-free exchange was studied by reacting the addition product of
N-methylbutylamine onto 2-ethylhexyl acrylate with a different acrylate (2-ethylhexyl
3-(buty)methylamino)propanoate) in DMF at temperature ranging from 100 to 160 ◦C. It
was observed that aza-Michael exchange rate was relatively slow compared to transesteri-
fication. The authors claimed that it is necessary to reach a high temperature to observe
the dissociation of the aza-Michael adduct. This preliminary kinetic analysis was followed
by the synthesis of CANs by mixing commercial di-amines and multifunctional acrylates.
The reprocessing temperature (180 ◦C) of these CANs was much higher than the one used
in CANs based on thiol-acrylate exchange, indicating a higher stability of the C–N bond
compared to the C–S one. One noticeable difference between thia and aza-Michael CANs
results from the Michael addition itself. Indeed, the aza-Michael can occur twice in the
presence of a primary amine function leading to the formation of a tertiary amine which
can then catalyze the exchange reactions in the network (including the Michael exchanges).

The combination of aza-Michael exchange with transesterification was also evaluated
in this initial article [89]. This work was then extended by our group in a study showing
the enhanced reactivity of a β-hydroxyamine and its potential for the synthesis of dual
covalent adaptable networks [90]. In these networks the presence of ester and hydroxyl
functions allowed to perform transesterification as well as aza-Michael exchange. The
possibility of having these concomitant exchange reactions enables to access CANs with
lower reshaping temperature compared to their non-hydroxylated counterparts in which
only an aza-Michael exchange could take place (Scheme 10). The combination of two
exchange reactions was also recently performed by synthesizing CANs based on aza-
Michael and vinylogous urethane exchange [91]. Coupling the aza-Michael exchange with
a faster exchange reaction is one way to improve the reprocessing properties of these
materials. The combination of multiple exchange reactions could also be a concept to
develop with the thia-Michael exchange, especially since exchangeable disulphide bonds
can be easily obtained from the thiol function used for the thia-Michael exchange.
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Regarding the development of CANs only based on aza-Michael exchange, the possi-
bility of promoting this exchange thanks to an adequately placed, strongly electronegative
group, was appealing. Accordingly, it has been demonstrated at the molecular and material
scale that the introduction of a CF3 group in α-position of the ester enabled to highly
improve the aza-Michael exchange rate. Indeed, the inductive effects of the CF3 group
activates both the dissociation of the β-amino ester and the Michael addition of another
amine onto the acceptor [92].

These recent results on dynamic thia- and aza-Michael, shed a new light on many
thermoset materials which could be re-evaluated as CANs or for which depolymeriza-
tion or recycling pathway could be investigated. Indeed, thermosets mentioned in the
introduction [42,43] and featuring thia-Michael linkages could potentially show similar
reshaping and depolymerization properties as the materials described in the core of this
review [76,78,80–83]. Similarly, materials initially defined as thermosets synthesized by
aza-Michael could be revisited as CANs [93]. For instance, thermosets prepared from
bio-based resources by aza-Michael addition of amine cross-linkers on acrylated epoxi-
dized sucrose soyate [94], linseed oil [95], soybean or olive oils [96] could show dynamic
properties under thermal stimulus. Likewise, materials obtained by cross-linking of amine-
terminated poly(hydroxyurethane) with multifunctional acrylates could behave as CANs
under appropriate stimulus [97].

In conclusion, the introduction of the concept of exchange chemistry for thia- and
aza-Michael is a breakthrough in polymer chemistry as materials initially classified as
thermosets may easily gain reprocessing/recycling properties under appropriate conditions.
This work paves the way for a further and wider application of Michael exchange reaction
in materials chemistry.
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