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Abstract: The principal objective of this study is to employ non-destructive broadband dielectric
spectroscopy/impedance spectroscopy and machine learning techniques to estimate the moisture
content in FRP composites under hygrothermal aging. Here, classification and regression machine
learning models that can accurately predict the current moisture saturation state are developed using
the frequency domain dielectric response of the composite, in conjunction with the time domain
hygrothermal aging effect. First, to categorize the composites based on the present state of the
absorbed moisture supervised classification learning models (i.e., quadratic discriminant analysis
(QDA), support vector machine (SVM), and artificial neural network-based multilayer perceptron
(MLP) classifier) have been developed. Later, to accurately estimate the relative moisture absorption
from the dielectric data, supervised regression models (i.e., multiple linear regression (MLR), decision
tree regression (DTR), and multi-layer perceptron (MLP) regression) have been developed, which can
effectively estimate the relative moisture absorption from the dielectric response of the material with
an R¬2 value greater than 0.95. The physics behind the hygrothermal aging of the composites has
then been interpreted by comparing the model attributes to see which characteristics most strongly
influence the predictions.

Keywords: FRP composites; dielectric analysis; moisture absorption; machine learning

1. Introduction

Fiber-reinforced polymer (FRP) composites’ endless utilization in basic applications
of the aerospace industry, marine industry, civil infrastructures, and medical and energy
sectors has been sprouting, due to their high strength-to-weight ratio and ease of applica-
tion [1,2]. Based on the application, engineers have been able to modify the FRP composites’
mechanical properties by altering the manufacturing design and orientation of their princi-
pal components. However, FRP composites are susceptible to different internal damages
if exposed to certain environmental conditions, such as moisture, high temperature, UV,
etc. [3,4]. For example, increasingly, in the aviation sector, most of the crucial parts of the
aircraft are made from FRP composites [5], which, in their service life, are exposed to varied
moisture exposure. In the marine sector, vehicles are made from glass fiber-reinforced
polymer composites, which encounter water continuously and degrade the material in a
follow-through. The adverse effect of these water interactions with composites requires
intensive study, and feasible techniques must be developed to detect these phenomena for
maintenance purposes.

Moisture penetration depends primarily on the materials’ exposure period, according
to various studies performed on cured polymers and FRP composites. Fick’s law of mass
diffusion [6] theoretically explains this behavior. According to Fickian theory, the absorption
rate is high at the beginning of moisture exposure, progressively drops, and ultimately
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approaches saturation when the material can no longer absorb any more moisture. Not
all composites, however, follow the Fickian principle; instead, they tend to follow unique
patterns, depending on the constituents [7]. Moisture diffusion follows a similar pattern in
most FRP composites, except that the moisture content in the material continues to rise,
but at a slower pace. Pseudo-Fickian conduct is what this is known as. However, moisture
absorption in composites is a complex phenomenon that also depends on other factors,
including the material system, type and nature of the matrix and fiber, fiber morphology,
etc. [8].

In essence, the water molecules inside composite materials can remain in two different
forms—free or bound. Free water molecules remain in the polymer matrix between cracks,
voids, or manufacturing defects. The fiber–matrix interfacial region can also hold free water
molecules. These trapped water molecules can eventually be released if the desorption
conditions are met for the composite [9]. However, bound water molecules are chemically
trapped in the matrix. In FRP composites, the matrix consists of a resin (i.e., epoxy, etc.),
hardener (i.e., diamine, etc.), and other chemical constituents, depending on the manufac-
turer [10]. These chemical compounds primarily consist of, or can react to, hydrophilic
hydroxyl groups (-OH) or amine groups (-NH2), which attract polar water molecules and
create a hydrogen bond to trap the water molecules in the matrix [11]. Typically, in FRP
composites, the absorbed moisture amount is meager. Still, the corresponding adverse
effects are significant enough to cause different reversible and irreversible chemical changes,
such as hydrolysis, chain scission, oxidation, plasticization, micro-crack development, in-
terfacial debonding, etc. [12]. With desorption, the bound water molecules may or may
not reside in the matrix, but decreased mechanical properties cannot be restored fully [13].
Different absorption mechanisms contribute to the overall absorption scenario, including
diffusion, capillary effect, absorption through microcracks, manufacturing defects, fiber–
matrix interface, etc. Figure 1 shows the different moisture absorption mechanisms evident
in FRP composites.
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Figure 1. Schematic summary of different states of water molecules absorbed in FRP composites.

In academia and industrial research, different experimental techniques have been
used to monitor the moisture absorption behavior in FRP composites. The gravimetric
approach (GA) is one of the most prevalent techniques used for this purpose [14]. This
method has been used in almost all of the research carried out on the moisture absorption
of composites. However, this method is not applicable for structural health monitoring,
as it is only viable in laboratory-based studies. Other methods, including differential
scanning calorimetry (DSC), Fourier transform infrared (FTIR), etc., have also been utilized
in composite structures to detect the presence of moisture in composites [15]. However,
these all have their limitations [16]. For instance, DSC tests require a very small size of
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samples that may not represent the actual moisture state of a composite, and this is not
the non-destructive testing (NDT) method. FTIR, though an NDT, also focuses on a small
sample area and is often limited to a minimal depth of the sample under consideration.

With technology advancements, different NDT methods are being introduced that
focus on a different aspect of the material’s behavior to detect and monitor damages
and contribute towards a predictive maintenance approach [17,18]. Impedance/dielectric
spectroscopy is an NDE method that has been used in numerous sectors of structural health
monitoring, including material state characterization [19,20], polymer cure monitoring [21],
prepreg degradation [22,23], adhesive bonds [24,25], damage detection [26], etc. Broadband
dielectric spectroscopy (BbDS) is another practical approach for studying the interaction of
electromagnetic waves with materials at frequencies spanning from 10−6 to 1012 Hz. In the
form of various dielectric characteristics of the material under investigation, this dynamic
range can give information regarding molecular and dipolar perturbations, as well as
charge transport and polarization effects, as described in Figure 2. As water molecules are
dipoles in nature and create hydrogen bonds with the matrix component’s hydrophilic
groups, they alter the composite’s dielectric properties by imposing different polarizations.
This behavior can be detected, in terms of minute changes in dielectric properties, using
IS/BbDS.
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Das et al. used BBDS to qualitatively characterize the moisture absorption-caused
mechanical strength degradation in GFRP composites [16]. Figure 3 summarizes the results
of the referenced work, where it is evident that the change in real permittivity strongly
correlates with absorbed moisture with immersion time. This effect is most prominent
in the lower frequency region, indicating ionic and interfacial polarization involvement.
This explains the BBDS technique’s effectivity in qualitatively determining a composite’s
current moisture state. However, these findings are only a proof of concept. A data-driven
approach is required to explain this correlation further, where a prediction framework
would be created to predict the specific moisture state in a composite in the service.
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Recent advances in machine learning and artificial intelligence have paved the way
for researchers in academia and industry to predict the specific material behaviors from
sensor data and structural health monitoring [27–31]. Liu et al. incorporated the acoustic
emission technique and K-means clustering method to identify damage modes in wind
turbine blade composites [32,33]. Su et al. researched predicting FRP’s and concrete’s
interfacial bond strength using different regression learning models [34]. Baghaei et al.
used an artificial neural network to model open source data on FRP-to-concrete bonds to
assess the durability under moisture conditions [35].

This current work is a first that provides a comprehensive data driven analysis to
establish the connection between the moisture absorption in polymer composites and
the dielectric response of the material. This article presents a two-part study. Firstly,
quadratic discriminant analysis (QDA), support vector machines (SVM), and multilayer
perceptron (MLP) classification models, accompanied by principal component analysis
(PCA), were developed to classify the composites according to their current moisture state
using the dielectric data. Then, multiple linear regression (MLR), decision tree regression
(DTR), and multilayer perceptron (MLP) regression models were developed from dielectric
data. The proposed models deliver a framework to accurately predict relative moisture
absorption (M%) through a non-destructive technique, BbDS, which can be applied in
real-life structures to monitor the absorbed moisture state using dielectric state variables.

2. Materials and Methods
2.1. Material Preparation and Aging

Test specimens were created in this study using epoxy/glass fiber prepregs (man-
ufacturer: Rock West Composites, Inc., San Diego, CA, USA). The reinforcement was
unidirectional E-glass fiber, and the matrix was Propreg 250F, an epoxy-based thermoset
resin. Three distinct unidirectional panels were created, each with four plies (Panel A),
eight plies (Panel B), and twelve plies (Panel C). In this technique, the sequentially stacked
prepregs were sandwiched between two aluminum plates with release film on both sides
and placed into the compression molding chamber. The laminates were cured at 135 ◦C for
90 min under 300 kPa pressure. The laminates were cut into 19 mm × 250 mm rectangular
coupons for aging and testing. The average thicknesses of Panels A, B, and C were 0.95 mm,
1.40 mm, and 1.95 mm, respectively.
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2.2. Experimental Techniques
2.2.1. Gravimetric Analysis

To begin, each dry sample was weighed using a precision scale with a 0.001 g accuracy
before being submerged in 70 ◦C distilled water to imitate high humidity and wetness.
The high temperature was used to accelerate the deterioration of the GFRP composite, in
accordance with the ASTM D5229 method BWEP [36]. At regular intervals, the samples
were weighed. To avoid the influence of surface water molecules, the samples were cleaned
with a lint-free cloth and high-pressure air each time they were taken from the water. Then,
using Equation (1), relative moisture absorption (M) was calculated.

M (%) =
Wt −Wo

Wo
× 100% (1)

where Wo is the initial mass of the dry sample, and Wt is the mass of moisture absorbed
sample. Moisture intake measurements were carried out until the samples reached a
saturated state, when the change in M was low and steady.

2.2.2. Impedance Spectroscopy (IS)/Broadband Dielectric Spectroscopy (BBDS)

Dielectric measurements were taken at regular intervals after weighing the samples in
their initial state and after aging. The dielectric data was collected using a Novocontrol®

broadband dielectric spectrometer (manufacturer: Novocontrol Technologies GmbH & Co.,
Montabaur, Germany) in this investigation. An alpha analyzer is used in this machine to
measure the complex dielectric value and impedance of the sample under examination as
a function of frequency. This procedure holds the sample between two copper electrodes
to ensure good contact (Figure 4). The experiments are conducted inside a faraday cage
to eliminate electromagnetic interference. This setup resembles a simple parallel plate
capacitor, since GFRP composites are dielectric. The analyzer applies a 1000 mV voltage
across the sample at varied frequencies to determine the material’s dielectric characteristics.
The measurements were obtained by a frequency sweep from 1 MHz to 1 Hz, with a scaling
factor of 1.8.
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2.3. Data Curation
2.3.1. Dataset Preparation

As a first step in developing ML models, the raw data from the equipment has to be
sorted. For the classification study, the moisture state of the samples was divided into three
classes in dataset A. Table 1 shows the classes and their definition, as used to generate the
dataset. Relative moisture absorption of 2.2% was taken as the limiting value, after what
saturation was observed from the experiments.
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Table 1. Definitions of classes used.

Class
Label Class Name Relative Moisture

Absorption (M%) Description

0 Dry 0% No moisture absorbed
1 Non-saturated 0% < M < 2.2% Moisture absorbed, but not saturated
2 Saturated M ≥ 2.2% Moisture saturated

Dielectric data was acquired from BBDS experiments, and M% was derived from
gravimetric measurements. From the frequency sweep of every single specimen at three
moisture states, real permittivity and dielectric relaxation strength (DRS) [20] values were
stored. The thickness of the corresponding specimens, the real permittivity at 30 frequencies,
and DRS were used as features for each data point, and they were labeled based on the
moisture state of the individual. For regression model development, the accurate M%
value was defined as the label for each observation in dataset B. In total, 228 sample
data points were stored to prepare parent dataset A for classification. On the other hand,
130 observations were stored in dataset B for regression, which were collected at regular
time intervals until saturation was achieved. The datasets were put into array X for features
and vector y for the labels. These matrices later have been divided into training and testing
sets using random splitting (80% for training, 20% for testing). The training datasets had
been divided into training and validation folds for K-fold cross-validation, as described in
Section 2.5. In summary, the structure of the datasets is shown in Table 2.

Table 2. Structure of the datasets.

Datum
Features (32), X Label, y

f1 f2 . . . . . . . . . . . . . . . . . . . . . . . . f30 DRS Thickness

1 x1,1 x1,2 . . . . . . . . . . . . . . . . . . . . . . . . x1,30 x1,31 x1,32 y1
: : : : : : : :
: : : : : : : :
n xn,1 xn,2 . . . . . . . . . . . . . . . . . . . . . . . . xn,30 xn,31 xn,32 yn

2.3.2. Feature Scaling

As a general practice in machine learning, feature scaling was implemented in the
parent dataset. Some of the classification algorithms (PCA, SVM) implemented in this
study are distance-based computations. In this study, dielectric values at a lower frequency
range have a broad range of values over the moisture absorption phases. If the features are
not scaled, these particular features will govern the distance. Hence, the model output will
not be the true picture of the dataset. So, Z-score standardization was selected as the feature
scaling procedure in the classification algorithms. In standardization, the feature values
are centered on the mean value (µ), with a unit standard deviation (σ). In this case, the
mean of a specific attribute becomes zero, and the resultant distribution has a unit standard
deviation. The formula of standardization is shown in Equation (2). On the other hand,
for regression algorithms, the corresponding parent dataset was scaled using min–max
normalization, as shown in Equation (3).

z =
(x − µ)

σ
(2)

x′ = x − min(x)
max(x)− min(x)

(3)
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2.4. Predictive Models

This section describes the theoretical aspects of the ML models used in this work.

2.4.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a dimensionality reduction technique widely
used in machine learning to transform a large number of features into a few principal
components (PCs), which represent most, if not all, of the information of the parent dataset.
PCA transforms the inter-correlated quantitative features to linearly uncorrelated multivari-
ate data, which helps reduce or eliminate the curse of dimensionality [38]. Reducing feature
size using PCA also increases the dataset’s interpretability, and the computational cost of
model development is reduced significantly. Mathematically, each principal component is
a linear combination of all standardized input features, which can be written as shown in
Equation (4).

PCn= ϕ1nx1 +ϕ2nx2 + . . . +ϕpnxp (4)

where ϕ1n, . . . , ϕpn are the loading of the nth PC.
To find the PCs, at first, the covariance matrix of the input data set is calculated as

COV =
1
n
× Xt × X (5)

Then, the eigenvectors and eigenvalues of the COV matrix are found and ordered in a
descending form. Each eigenvector and eigenvalue here depict the loading and variance of
the corresponding PC, respectively. To reduce dimensionality, first k PCs can be selected, of
which cumulative variance can largely represent the character of the parent dataset. In this
study, PCA was performed on the whole dataset before dividing it into folds using K-fold
CV, so that the dataset was uniformly transformed.

2.4.2. Quadratic Discriminant Analysis (QDA)

Discriminant analysis (DA) is a technique that transforms input features into a lower
dimensional space and maximizes the ratio of inter-class and intra-class variance to gain
maximum class separability. Though DA can be used to classify, as well as to reduce,
dimensions, in this study, DA is used to classify the training folds and evaluate classification
accuracy. In DA, a decision boundary is developed that separates different classes. Based
on the type of decision boundaries, two different methods of DA are used, i.e., linear
discriminant analysis (LDA) and quadratic discriminant analysis (QDA). In this study, a
QDA model is developed to classify the observations based on their moisture state. As the
name suggests, QDA provides a quadratic decision boundary to classify the observations.
QDA is derived from simple probabilistic models, and class prediction can be acquired
using Bayes’ rule. Here, the likelihood of a data vector (class conditional density) can be
denoted by P(X|y = k), and the prior probability for class k (where k = 1, 2, . . . , K) can be
denoted as πk. Using this information, from Bayes’ rule, the posterior probability of a class
being assigned to a data vector can be defined as follows

P(y = k|X = x) =
P(X|y = k) × π k

∑K
l=1 (P(X|y = l ) × πl)

(6)

Here, the likelihood is modeled as a multivariate Gaussian distribution, as shown in
Equation (7).

P(X|y = k) =
1

(2π)
K
2 |∑k|

1
2

exp(−1
2
(x − µk)

t ∑
k

−1(x − µk)) (7)

In QDA, the log of the posterior, namely discriminant function (DF, δk(x)), is calculated
to find the decision boundary between two classes using Equation (8). In this case, the
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algorithm does not assume the same covariance (∑k) for all classes as LDA. From the DFs,
a class for an observation is predicted using Equation (9).

δk(x)= −
1
2

log

(
∑
k

)
− 1

2
(x − µk)

t ∑
k

−1(x − µk)+ log πk (8)

G(x) = argmaxk δk(x) (9)

2.4.3. Support Vector Machine (SVM)

Support vector machine (SVM) [39] is a supervised discriminative classifier algorithm
that, given a training dataset, outputs an optimal hyperplane between different classes.
Contrary to QDA, SVM is a non-probabilistic binary linear classifier, which transforms
training data to high-dimensional space and performs linear regression (Equation (10)) to
find the boundary and maximize the distance between two classes [35]. Testing data is then
mapped into the same space, and the corresponding class is predicted based on which side
of the decision boundary the data resides.

f(x) = φ(x)tω+ β (10)

where φ(x) is a transformation matrix that maps the input to the high-dimensional space,
and β is the model bias. Given the training vector xi ∈ R, i = 1, . . . , n in two classes and vec-
tor y ∈ {1.− 1}n, SVM findsω and β, such that the prediction given by sign

(
φ(x)tω+ β

)
is correct for most samples. In this procedure, SVM solves a convex optimizing prob-
lem [35],

min
ω,β,ζ

1
2
ωtω+ C

n

∑
i=1
ζi (11)

where ζi are the slack variables, and C is the penalty term, namely the inverse regularization
parameter, that controls the strength of the penalty applied to a prediction when a sample is
misclassified or falls within the decision margins. Then, SVM utilizes a set of mathematical
functions called a kernel. The kernel takes the input data and transforms it into a required
form. Different SVM algorithms utilize different types of kernel functions, including linear,
non-linear, radial basis function (RBF), sigmoid, etc. Finally, SVM predicts the class using
the decision function defined in Equation (12).

f(x,α) =
n

∑
i=1∈SV

yiαiK(xi, x)+β (12)

where αi are the Lagrangian coefficients from the dual problem solution, and K is the kernel
used. Unlike QDA, SVM has a few hyperparameters like C, kernel, and decision boundary
shape, which can be changed to tune SVM predictions.

SVM is a memory-efficient algorithm that uses a bunch of training points, namely
support vectors, to develop decision boundaries. Though SVM is a binary classification
technique, this can also be used for a multiclass dataset, such as the dataset of this study. In
this case, SVM was applied to test data in a combination of two classes from a number of
classes and classifies the data to the class that appeared the most in the combinations. This
is called one-vs-one (ovo) calculation. On the other hand, If K SVMs are applied each time,
comparing the Kth class to the remaining K-1 classes, the class that is predicted the most is
assigned to the test vector. This is called one-vs-rest (ovr) classification.

2.4.4. Multi-Layer Perceptron (MLP)

In this work, a fully connected, feed-forward artificial neural network (ANN), named
multilayer perceptron (MLP) model, has been developed for classification and regression
studies to predict the current moisture state in the composite. MLP is a supervised learning
algorithm with at least three sequential layers, i.e., the input layer, hidden layer, and output
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layer. Each layer provides a set of output vectors that work as the input vector of the next
layer. Figure 5 shows a simple MLP structure. The input layer consists of the raw input
data with n features (also known as neurons/nodes).
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There can be more than one hidden layer based on the application. In MLP, each
neuron in the hidden layer transforms the values from the previous layer with a weighted
linear summation w1x1 + w2x2 + . . . + wnxn, followed by a non-linear activation function.
In a neural network, an activation function describes how the weighted sum of the input
is turned into an output from a node or nodes in a layer. There are different activation
functions used in MLP applications, i.e., logistic sigmoid function, hyperbolic tangent
function, and rectified linear unit function (relu). All hidden layers typically use the same
activation function. The output layer is simply the label (for classification) or the numerical
target value (for regression), which it receives from the last hidden layer and transforms
into proper output.

2.4.5. Multiple Linear Regression (MLR)

MLR is an extension of simple linear regression, which is used to predict the output
of a variable (y ∈ Rm × 1), which is dependent on two or more independent variables or
features (Xm,n ∈ Rm × n). Equation (13) shows the MLR model, where ω1, . . . ,ωn are the
weights associated with corresponding feature vector Xn, andω0 is the y-intercept for x0
= 1. The outputs from the model, f(Xm), are compared with the true y values to calculate
the residual sum of squares (RSS) value using Equation (14). The weight vector ω is then
achieved by minimizing the RSS value through Equation (15).

f(X m) = x0ω0+xm,1ω1+ . . . + xm,nωn= ω0+ω
TXm (13)

RSS(ω) =
m

∑
i=1

(y i − f(Xi))
2 (14)

ω =
(

XTX
)−1

XTy (15)

2.4.6. Decision Tree Regression (DTR)

DTR is a very popular supervised learning method that was proposed by Breiman
et al. [40]. DTR trains a model in the form of a tree to predict data and generate relevant
continuous output by observing the features of an object. A decision tree has three types
of nodes, i.e., root, interior, and leaf nodes. The root node represents the whole training
sample, split into further nodes, namely the interior nodes. They provide the information
from the features from the dataset, and their branches explain the decision conditions that
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generate the leaf nodes representing the outcome. A test data point in a DTR model starts at
the root and progresses through the interior nodes, satisfying decision rules until it reaches
a certain leaf. Finally, the average value of that leaf is selected as the output. Figure 6 shows
a simple decision tree with depth 3.
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2.5. Hyperparameter Tuning and Cross-Validation

Most ML models have certain hyperparameters which the user may adjust before
training the model, in contrast to model parameters, which are learned during model
training and cannot be altered arbitrarily. These hyperparameters govern the accuracy of
prediction and computational cost. In this work, the grid search (GS) technique has been
used to tune the hyperparameters. GS reads a dictionary of predefined hyperparameters
and reports back the best model evaluation parameter by developing and testing different
models using a different combination of the given hyperparameters.

In this work, dataset A is limited to 228 observations, and dataset B is limited to
130 observations. So, a resampling procedure, named K-fold cross-validation, is used to
evaluate the skill of the implemented machine learning models. In this method, the parent
dataset is divided into two sets, the training and testing sets, and then the training set is
split into K folds after shuffling the data points randomly. Then, for the K iteration, the
Kth group is defined as the validation dataset, and the rest of the (K-1) datasets are used
for training. The respective model is fitted to the training dataset in each iteration and
evaluated using the validation dataset. The evaluation parameters are then retained, and
the model is discarded. After the K iterations, an average evaluation score of all models is
returned, which summarizes the model’s skill on the whole dataset. In this method, each
sample data point is allowed to be used in the validation dataset once and used to train the
model K-1 times. In this study, GS and K-fold cross-validation are combined (Figure 7). For
each combination of hyperparameters from GS, K-fold cross-validation has been performed
to find the most accurate combination of hyperparameters to develop the model. Then, the
model is used to predict the outcomes of the previously held test dataset.
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2.6. Prediction Parameter Definitions

In this section the following parameters have been reported for the developed models
to evaluate and compare the performance of the models on test dataset.

• Classification accuracy

Accuracy =
number of correctly predicted data points

total data points in the test dataset
(16)

• Precision

Precision =
number of correctly predicted positive instances

number of total positive predictions
(17)

• Recall

Recall =
number of correctly predicted positive instances

number of total relavent instances
(18)

• F1-Score

F1− Score = 2 × Precision× Recall
Precision + Recall

(19)

• Coefficient of determination: R2 score

R2= 1 − ∑i(true value− predicted value)2

∑i(true value−mean)2 (20)



Polymers 2022, 14, 4403 12 of 23

• Mean squared error (MSE)

MSE =
1

number of samples (N)

N

∑
i=1

(true value− predicted value)2 (21)

• Mean absolute error (MAE)

MAE =
1

number of samples (N)

N

∑
i=1
|true value− predicted value| (22)

3. Model Development and Discussion
3.1. Classification Algorithms
3.1.1. Dimensionality and Multicollinearity Reduction

The first important thing to develop a machine learning model is to understand the
dataset and feature characteristics. Figure 8 shows the correlation matrix of the features and
the label for the classification dataset. Correlation is a statistical parameter that represents
to which extent multiple variables fluctuate in tandem [41]. A high correlation between
the independent and dependent variables implies that the independent variable has high
significance in governing the output. However, a high correlation between two different
independent variables implies that the two variables are redundant, which is undesired in
ML model development. This leads to computational inefficiency and memory wastage.
Here, columns indexed by from 0 to 31 are the features, and the column with index
32 contains the labels. From Figure 8, it can be seen that the correlation between the features
and labels are high enough (>0.5), from a statistics point of view. However, the thickness
feature (index 31) is not very well-correlated (0.011 < 0.5) with the data labels. This means,
unlike the dielectric permittivity features, the thickness feature does not affect the output
labels significantly.
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Figure 8 also indicates that the features are inter-correlated. This phenomenon is called
data multicollinearity (DM) [42]. This correlation between the ‘independent’ features can
cause a problem in ML model development and provide unreliable, erroneous data, as they
are supposed to be ‘independent’. Because of DM, coefficients for one variable can change
significantly because of other independent variables, and it can cause the coefficients to be
very sensitive to small changes in the model. PCA has been implemented in the dataset to
eliminate this multicollinearity problem. PCA resolves this problem by transforming inter-
correlated multivariate data to linearly uncorrelated multivariate data. PCA also reduces
the dimension, which, in turn, saves computational costs. Figure 9 shows the explained
variance ratio for 32 principal components (PCs). The first three PCs’ cumulative explained
variance ratios were nearly 1.0, which implies that these three PCs are enough to describe
the information provided by the entire dataset. Thus, PCA reduces the dimension from
32 to 3, which reduces the required computational time for the classification and regression
models. After PCA transformation, the correlation matrix for the updated dataset was
acquired (Figure 10), where it was clearly visible that there was no correlation between
the features. Moreover, PC-1 itself had the maximum correlation with the output 0.69,
implying the most significant PC on the output. PC-2 and PC-3 had correlation coefficients
of 0.33 and 0.30, which, though less than 0.5, have also been used in this study to develop
the models to the highest accuracy possible.
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3.1.2. Performance Evaluation

After data sorting and data curation, the K-fold cross-validation technique was
adopted in the training set. However, the number of folds to have maximum accuracy and
minimum variance needs to be determined through a K-fold sensitivity analysis. In this
study, the parent dataset was run through multiple iterations by changing the number of
folds to find the optimum value for K for this dataset. Through this analysis, it was found
that, for K = 9, each model shows the maximum accuracy with minimum variance. Hence,
K = 9 was selected for the cross-validation of the models.

In this study, the composite specimens were divided into three classes, on the basis
of their relative moisture absorption (M%). The real permittivity values in 30 frequencies,
DRS value, and thickness were the 32 features that were transformed into three PCs. Then,
the dataset was randomly divided into two sets: the training set (80%) and the testing set
(20%). The training dataset was cross-validated for different hyperparameters of different
models using a 9-fold validation technique. In this study, the hyperparameters for the SVM
and MLP classifiers were determined through a tuning process. QDA does not need any
tuning, as QDA does not have any hyperparameters. The optimal hyperparameters of
these algorithms have been tabulated in Table 3. There are three hyperparameters to tune
for SVM to get a balance of more accuracy and computational cost and avoid overfitting,
i.e., inverse regularization parameter (C), kernel function, and decision function shape. C
in SVM dictates the penalty of misclassification and the width of the margin. A high C
means a low margin, which ensures a high penalty for misclassification and vice versa. An
increase in C also decreases the bias and increases the variance. Seemingly, a high C value
may perform well in the training set, but in unseen test data, it may not perform well, as a
high C can overfit the data. So, a C value must be tuned in such a way that an optimum
value is obtained for a bias–variance trade-off. In this study, radial basis function (RBF) [43]
was selected as the kernel function after tuning the related hyperparameters. RBF mostly
performs well when the features have a non-linear relationship with the output label, as a
decision function shape one-vs-one approach was selected.
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Table 3. Tuned hyperparameters for classification models.

Model Parameter Value

SVM
Inverse regularization parameter (C) 5

Kernel function RBF (radial basis function)
Decision function shape ‘ovo’ (one-vs-one)

MLP
Hidden layer sizes (10)
Activation function Logistic
Maximum iteration 500

On the other hand, for the MLP classifier, the activation function and number of hidden
layers and sizes were most crucial for an accurate, yet less computationally exhaustive,
analysis. In this work, a logistic function was used as the activation function. Here, a
number of hidden layers and sizes were obtained using a grid search.

For performance validation, the three models, QDA, SVM, and MLP, were developed
on the parent dataset, and PCA transformed the dataset to find the mean accuracy of the
specific models for the 9-fold, cross-validated and test dataset.

The summary of the mean validation and test accuracies for the three algorithms is
shown in Table 4. By reducing dimensions and eliminating multicollinearity using PCA,
it can be seen that the mean accuracy of the validation sets for all three models increases.
However, QDA performs way better when PCA is used beforehand on the dataset, as
multicollinearity is resolved. Without using PCA, the accuracy was only 67.3% (the lowest
of them all), but using PCA, the mean accuracy climbed to 96.17%. Furthermore, the use of
PCA has a similarly significant effect on the prediction accuracy of the test dataset, in terms
of applying QDA. With PCA, QDA shows a 10.88% increase in prediction accuracy, which is
similar to the more sophisticated ML model SVM’s accuracy. However, using PCA does not
have an effect on the SVM and MLP classifier’s prediction accuracy. It means that the effect
of high dimensionality and multicollinearity does not significantly affect SVM and MLP.
Nevertheless, it reduced computational costs for SVM significantly (50%), and for MLP, in
a reduced manner (6.84%). So, the use of PCA is particularly important when the dataset is
comparatively larger and more complex. Not to mention, the overall comparison implies
that MLP shows a better accuracy (97.83%) in predicting the current moisture state of the
composite from dielectric permittivity than SVM (93.48%). However, the runtime for MLP
is almost 70 times higher than SVM. This is due to the complex interlayer computations,
which take much more time than the SVM algorithm.

Table 4. Performance summary for validation and test set.

Model
Validation Set Test Set

Without PCA With PCA Change Without PCA With PCA Change

QDA 67.3% 96.17%
+28.87%

82.6% 93.48% +10.88%
Min. 45.0%
Max 80.95%

Min. 90.48%
Max 100.00% Runtime: 0.001 s Runtime:

0.00099 s −1%

SVM
92.77% 93.89%

+1.12%
93.48% 93.48% +0%

Min. 85.00%
Max 100.00%

Min. 85.00%
Max 100.00% Runtime: 0.002 s Runtime: 0.001 s −50%

MLP
98.33% 98.90%

+0.0.57%
97.83% 97.83% 0%

Min. 95.00%
Max 100.00%

Min. 95.00%
Max 100.00% Runtime: 0.73 s Runtime: 0.68 s −6.84%

Figure 11 shows the confusion matrices for the developed models applied to a testing
dataset to predict whether the individual samples were either dry (label 0) or moisture
absorbed but not saturated (label 1) or moisture saturated (label 2). Table 5 further tabulates
the class-wise precision, recall, and F1 scores. It can be seen from Figure 11 and Table 5 that
all of the three models can predict the dry state, with 100% of accuracy (F1 score 1.00 for
class 0). However, they get confused with the saturated and non-saturated states. MLP
does quite a good job having only one wrong prediction (F1 score 0.98 for class 1 and
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0.95 for class 2), while SVM and QDA (with PCA) share similar results, having more wrong
outputs (F1 score 0.93 for class 1 and 0.84 for class 2).
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Table 5. Test data classification report summary for QDA (with PCA), SVM, and MLP classifiers.

Model Class Precision Recall F1-Score

QDA (with PCA)
0 1.00 1.00 1.00
1 0.87 1.00 0.93
2 1.00 0.73 0.84

SVM (without
PCA)

0 1.00 1.00 1.00
1 0.87 1.00 0.93
2 1.00 0.73 0.84

MLP (without
PCA)

0 1.00 1.00 1.00
1 0.95 1.00 0.98
2 1.00 0.91 0.95

Here, to conclude, SVM, MLP, and QDA (along with PCA) provide versatile models
that can accurately predict the composite’s moisture state from the dielectric parameters,
even if the features are intercorrelated. However, MLP’s computational cost is significantly
higher than the other models. It makes SVM and QDA (with PCA) the best-performing
models in this study.

3.2. Regression Algorithms
Development and Performance Evaluation

This section reports the accuracy and efficiency of the regression models used in this
study. Regression study is particularly important, in the context of classification algorithms,
which can only separate specimens, in terms of the amount of moisture present in the
specimen, whereas regression can predict a continuous quantity. Three different models
have been developed in this study—MLR, DTR, and MLP regressors. These models have
been compared here, in terms of their performance indicators, such as the R2 value (defined
in A.1). These models can predict the numerical values of relative moisture absorption
(M%) from the dielectric permittivity data. At first, dataset B was normalized and divided
into two sets randomly, namely the training set (80%) and the testing set (20%). The models
were validated using the K-fold cross-validation technique. A K-fold sensitivity analysis
for the regression models was also performed, and the value of K was selected as 10 for its
high R2 value and low variance. The results of the respective models are discussed in the
next part.
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Multiple linear regression (MLR) has no hyperparameters to tune. However, the
output can vary, depending on how many features it uses. For example, a feature that
has no correlation with the output can actually do more harm to the model, rather than
developing it. So, the recursive feature elimination (RFE) technique was adapted to find
which features in the training folds were most effective in predicting the target. At first,
RFE fits the MLR model with all of the features and ranks the importance of the features.
In the next step, RFE discards the least important features and re-fits the model to evaluate
the performance. This step is performed until a desired number of features is reached.
In this work, RFE was performed to fit and test the MLR model, with 1–32 features in
different subsets. The results are shown in Figure 12. The figure shows that using only
the first three important features gives the best performance of the model. The first three
important features are real permittivity values at 542 Hz, 339 Hz, and 1390 Hz. If the MLR
model is developed using the real permittivity values at these frequencies, the coefficient
of determination R2 of the predicted and true test data is 0.9511.
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The decision tree regressor (DTR) model has also been developed using 10-Fold cross-
validation and the RFE technique. The maximum depth of the tree was nine, and the mean
squared error (MSE) function was selected to measure the quality of the split in the internal
nodes. MSE function minimizes the L2 loss using the mean of each terminal node. These
hyperparameters were obtained using the grid search technique. Figure 13 shows the R2

score for the RFE analysis of the DTR model. It can be seen that the maximum R2 value
(0.9605) achieved from the DTR model was when the first six most important features were
selected to develop the model. The corresponding features include real permittivity values
at 212 Hz, 2 Hz, 52 Hz, 827 Hz, 1388 Hz, and DRS values. However, using all the features
does not harm the model output as severely as in the case of MLR. If all 32 of the features
are used to develop the model, the R2 value of the model on the test data is 0.9544, which is
very close to the maximum obtained R2 value of 0.9605.

In this work, an artificial neural network-based regressor multi-layer perceptron (MLP)
has also been developed to estimate M from dielectric data. For a good performance of the
model, exhaustive hyperparameter tuning has been performed. The crucial hyperparame-
ters for MLP regressor are the activation function and hidden layer number and size. A
total of 2,307,432 models have been developed using a combination of three hidden layers
and 10–100 nodes per hidden layer. It was found that, with three hidden layers, with the
following combination of (96, 88, 31) and hyperbolic tangent activation function, the best
R2 value of 0.9620 was obtained.
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Apart from the accuracy of the estimation, the computational cost is an important
aspect of developing regression models. Though the MLP regressor provides a slightly
better R2 score than the two other models, it takes almost three times more computational
time than MLR and almost two times more computational time than DTR. In summary, all
three developed models can accurately predict the relative moisture absorption value, with
an R2 value of more than 0.95. The summary of the model performance metrics has been
tabulated in Table 6.

Table 6. Tuned hyperparameters and performance parameters for MLR, DTR, and MLP regressors.

Model Hyperparameters R2 MSE MAE Computational
Time (s)

MLR Features to use: 3 0.9511 0.0408 0.1661 0.013

DTR Features to use: 6
Maximum depth: 9 0.9605 0.0364 0.1248 0.019

MLP

Activation
Function: tanh

Hidden layer sizes:
(96, 88, 31)

0.9620 0.0317 0.1466 0.041

3.3. Model Interpretation Complying Physics

Prediction accuracy and optimized computational cost are two important aspects of
any ML algorithm. However, due to the black-box nature of the algorithms, it is hardly
interpretable to the users. In this work, dielectric characteristics of composite specimens
under hygrothermal loading are used to predict the current moisture state and estimate the
relative moisture absorption. In the previous sections, the accuracy and efficiency of the
algorithms are explained, but one question comes into prospect—which features governed
the outputs?

Feature permutation importance (PI) is a feature inspection method that estimates the
feature importance, based on the impact of an individual feature on the model’s outputs. In
this method, to test a feature’s significance, the observations of the corresponding features
are shuffled, and the accuracy of the fitted modified dataset is compared with the fitted
parent dataset. If shuffling a particular column changes the prediction error, the difference
in the metric is assigned to the feature as PI. Features with high PI mean they are significant
in predicting the model’s outputs.

Figure 14 shows the PI values for each feature in the three classification models (QDA,
SVM, MLP). PCA was not performed to find the PI on the QDA model, as PCA reduces
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the dimension. From the figure, for QDA, the PI for each feature was very close. This
is due to the fact that the features were intercorrelated, so each feature was somewhat
involved in predicting the output. However, the accuracy of this model (QDA without
PCA) was only 67.3%. This model was not successful in predicting the outputs with great
accuracy, and this was not a representation of the physics behind the moisture absorption
phenomenon. So, these PI values cannot be interpreted to learn the physics. Now, for SVM,
the real permittivity features, in the range of 1 to 540 Hz, and DRS show the maximum PI
values, compared to the permittivity at other frequencies and thickness features. This result
accurately proves the underpinning physics here. In composites, water molecules can reside
in two distinct forms—free and bound. As water molecules are inherently dipolar, they
deploy a dipolar contribution to the real permittivity, which is observable around 1000 Hz
for most materials. Secondly, since it is vulnerable to the concentration of polar molecule
components, the permittivity response is especially sensitive to changes in a material’s
chemical structure. Water molecules attach to the hydrophilic groups on the polymer chain
during moisture absorption, altering the polymer’s mobility. Additionally, as a result of
the plasticization effect, it also changes molecular relaxation. This phenomenon is also
clearly seen in the lower frequency range (<1000 Hz). Last, but not least, ionic contributions
are seen below 10 Hz when a material’s real permittivity increases as its conductivity
increases. So, the SVM algorithm can pick those patterns in the permittivity data, which
is governed by distinct physics. However, in the case of the MLP classifier model, there
was no pattern in the PI values for the features. This might be due to the fact that, in MLP,
each feature is interconnected to the nodes in the hidden layer, and their correlated effects
predict the model output. Even if one feature is shuffled, the model struggles to predict the
output accurately.

To interpret the results of the regression models, the recursive feature elimination
(RFE) technique was adopted. In RFE, features are ranked by importance using the model-
dependent feature importance method. For instance, in multiple linear regression (MLR),
regression coefficients are used to rank the features. In the developed MLR model, the
output is governed by the real permittivity values at 542 Hz, 339 Hz, and 1390 Hz. On
the other hand, in DTR, the importance of a feature is determined as the normalized total
reduction of the R2 score brought by the feature. This is called GINI importance [44]. RFE
utilizes this parameter to rank the features in the case of DTR. In this study, the following
six features (real permittivity values at 212 Hz, 2 Hz, 52 Hz, 827 Hz, 1390 Hz, and DRS
value) are the most important features, which can estimate the relative moisture absorption
for a given sample, with an R2 value of 0.9605. So, MLR and DTR are mostly governed
by real permittivity values near or under 1000 Hz. This can be attributed to the dipolar
polarization that is observable near 1000 Hz. This effect is a direct indicator of the moisture
absorption phenomenon, as reported in the literature [16,45].

Not to mention, the models developed in this study are not universal to all config-
urations and material systems of all polymer composite structures. However, this work
opens the scope, in order to develop a global data-driven machine learning model that
can estimate the moisture content in a variety of material systems exposed to varied envi-
ronmental factors. To achieve this feat, the work has to be expanded to acquire new data
samples, including more variability in the materials system and aging parameters. This
application can also be expanded to predict the mechanical strength degradation from the
dielectric data of polymer composites under hygrothermal loading, which is also a scope of
future study.
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4. Conclusions

This work has provided, for the first time, a framework incorporating different ma-
chine learning algorithms and dielectric responses from polymer composites under hy-
grothermal aging to predict the moisture content accurately. Classification models, i.e.,
quadratic discriminant analysis (QDA), support vector machine (SVM), and multilayer
perceptron (MLP), and regression models, i.e., multiple linear regression (MLR), decision
tree regressor (DTR), and multiplayer perceptron (MLP), were developed to quantitively
estimate the relative moisture absorption (M%) of the composites. Finally, permutation
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importance (PI) and recursive feature elimination (RFE) techniques were adopted to under-
stand the dielectric response at which frequencies govern the model’s prediction accuracy.
The following conclusions can be drawn from this study:

• QDA with multicollinearity reduction using principal component analysis (PCA),
SVM, and MLP—each provide effective models that can predict the saturation state of
the composite with accuracies of 93.48%, 93.48%, and 97.83%, respectively.

• Developed MLR, DTR, and MLP regression models can estimate M% from dielectric
state variables, with R2 scores of 0.9511, 0.9605, and 0.9620, respectively.

• The PI values indicate that real permittivity values in the range of 1 to 540 Hz and
dielectric relaxation strength (DRS) mostly dictate the classification models’ higher
accuracies, whereas the RFE values indicate that the real permittivity values in the
range of 1 Hz to 1390 Hz mostly dictate the high R2 values for regression models. This
can be attributed to the interfacial polarization, dipolar polarization, and plasticization
phenomena that come into perspective, due to moisture absorption.

To conclude, with tremendous accuracy, the developed models can predict a test
sample’s material state changes, due to the hygrothermal effects using dielectric state
variables. Consequently, a global data-driven model can be developed and implemented in
real-life structural health monitoring.
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