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Abstract: Most used laminated glass is composed of float glass plies bonded together with a vis-
coelastic Polyvinyl Butyral (PVB) interlayer. The shear stiffness of the polymeric interlayer is the key
factor in the behavior of laminated glass. Structural engineers in the past were designing laminated
glass regardless of the shear coupling of the plies. This approach with a high level of reliability led
to expensive laminated glass structures due to insufficient knowledge of foil properties. Most of
the current standards suggest methods that consider the shear coupling of the plies. This paper
presents the experimental data from a static loading test performed on a laminated glass panel
exposed to changing temperatures. The deformations were observed for 48 h. The measured results
were compared with the known analytical design approaches and in addition with the finite element
modeling (FEM) analysis in the available software for laminated glass design. A simplified design
approach that simulates foil behavior in dependence on load duration and temperature change was
adopted in this study. Design approaches that use effective thickness calculations are used with the
Young and shear relaxation modulus provided by the foil producer. The imprecision of the Eurocode
standards for glass design, and the propensity to change the approach to the calculation by introduc-
ing more precise parameters were expounded. The results when combining the time-temperature
superposition (TTS) and the Wölfel–Bennison approach were found to be in very good agreement
with the FEM analysis of 3D solid elements in Abaqus and measured data.

Keywords: laminated glass; foil; PVB; static test; viscoelasticity; temperature-time superposition;
Wölfel-Bennison approach; relaxation modulus

1. Introduction

Laminated glass is a high-quality product whose application is constantly increas-
ing. Simple design calculations exist in guidelines and manuals. However, more precise
calculations that take into account more factors are needed for the design of laminated
glass. Vibration and noise isolation, impact resistance, and mitigation of post-fracture glass
fallout are the advantages of laminated glass [1]. Laminated glass is a composite of two
or more glass layers with a thin elastomeric interlayer, which affects the degree of their
coupling. The shear stiffness of the polymeric layer is the key factor in the behavior of
laminated glass.

Structural engineers in the past were designing laminated glass regardless of the shear
coupling of the plies. This approach with a high level of reliability leads to expensive
laminated glass structures due to insufficient knowledge about the foil’s properties. Most
of the current standards imply methods that consider the shear coupling of the plies.
Properties of PVB interlayers, more precisely the relaxation shear modulus, are given in
data sheets from static loading tests regarding temperature and loading rate. This enables a
more precise design of laminated glass structures for structural engineers.
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The load-bearing capacity of laminated glass is difficult to calculate, and this is the
reason for its limited effective use. The stiffness and load-bearing capacity of laminated
glass depends on, among others, the shear connection of its glass plies, which is achieved
using foil made of different polymer materials. Because of this complex behavior of
laminated glass, simplified design rules are often applied in practice. The simplification
of the design lies in the assumption that the behavior of the polymer is linearly elastic
with a secant shear modulus that considers the load duration and ambient temperature. In
addition, geometrical nonlinearities are important from the aspect of the slenderness of the
glass panel, but they are negligible when the panel is subjected to a transverse load only
and in-plane forces are absent [2].

Material properties of laminated glass components have a wide spectrum. Glass has a
Young’s modulus of approximately 70 GPa, while a value for the interlayer is dependent
on the type of polymer, temperature, load type, i.e., static or dynamic [3], and the load
duration. The secant shear modulus of the interlayer varies from 0.01 MPa to 300 MPa [2].
The creeping/relaxation property of the polymer interlayers under long-term loading will
result in the shear modulus value decreasing [4]. Viscoelastic properties of the interlayer
may result in a drop of effective shear modulus almost to the 0 MPa when the laminated
glass is exposed to higher temperatures or when there is a constant loading under a longer
period. References for several interlayer product types can be presented in the producer’s
technical data forms, such as [5]. An Italian study by Biolzi et al. [6] investigated the
response of laminated glass with PVB interlayer under long load duration at different
temperatures and the effect of relative humidity was observed. The experiment showed
how the effective shear modulus of PVB foil decreases significantly for temperatures higher
than 30 ◦C and at 50 ◦C it had an extremely low value. For temperatures below 0 ◦C, the
shear modulus was greater than 0.5 MPa and showed a slow decline in value even for long
load duration. As for variation of the relative humidity, the experiment showed it has no
significant influence on the shear modulus of the interlayer [6].

The bending stiffness of laminated glass is found to be lower than the stiffness of
monolithic glass with the same thickness in a very short time after being mounted [7].
Monolithic and laminated glass behave similarly under lateral loads of shorter duration
(for example, wind loads) at room temperature or below. Observable different behavior
from the monolithic glass under short-term lateral pressures is not clearly defined, but it
occurs around 49 ◦C [8]. Similar behavior of both glasses with the same nominal thickness
under long-term lateral pressures (e.g., snow loads) occurs at temperatures of 0 ◦C or below
when the foil is stiffer [8]. At elevated temperatures (approximately 77 ◦C), the behavior
changes when the foil transits from a glassy to a rubbery state and the glass units start to
behave like two separate layers without a bond [7].

Change in the maximum load capacity is expected in a composite of glass and polymer
because of their dissimilar mechanical properties under the loading [9]. Therefore, the
presence of the plastic or viscoelastic interlayer causes a decrease in the bending stiffness of
the laminated glass. This is in contrast with the requirement to withstand bending moments
induced by wind pressure, snow loading, and self-weight acting over comparatively large
spans [7].

Various kinds of polymers and other plastics are used as materials for the interlayers.
Widely used interlayers are poly-vinyl-butyral (PVB), ionoplast (SentryGlas®), ethylene
vinyl acetate (EVA), polyethylene (PE) [10], and thermoplastic polyurethane (TPU) [11].

This paper presents the experimental data regarding the laminated glass panel gained
from static loading. The experimental campaign was performed at KFK Ltd. in Zagreb,
Croatia. Deformation was measured for a better understanding of the foil shear modulus
and its dependence on temperature under uniform stress. Self-weight loading was chosen
for constant stress application during the measured time. The deflection was then calcu-
lated using analytical formulations using several approaches: normative document EN
16612 [12], enhanced effective thickness approach [13], Wölfel–Bennison approach [13], and
approach developed for this study, Wölfel–Bennison approach with TTS (time-temperature
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superposition) principle implementation [14]. Furthermore, numerical 3D FEM analysis
in software was obtained for the comparison of design approaches of laminated glass. A
simulation was performed using software with laminated glass design options: Dlubal
RFEM—RF GLASS [15] and SCIA Engineer [16] who implemented glass Addon followed
by a Joint Research Centre Report [17] stipulating that prEN 16612 [12] and prEN 13474 [18]
will be the basis of Eurocode for Glass structures. The European standard for glass is also
compatible with DIN 18008 (National German Glass Design) [19]. According to the German
glass standard DIN 18008 [19], the shear effect should be taken into account depending on
the results. If the shear effect is favorable to the results, it must not be considered for the
calculation and if the effect is unfavorable to the results, shear transfer, in its full capacity,
must be considered [20].

Detailed solid FEM analysis through TTS (temperature-time shift) was performed
in Abaqus SIMULIA [21]. Laminated glass deflection results are presented in this paper.
Analysis was made by comparison of analytical, numerical, and experimental results. The
purpose of this research is to understand the behavior of the laminated glass when the
temperature and the load duration are variable, and how to consider all these parameters
for a more accurate laminated glass design analysis.

2. Materials and Methods

In trying to understand the bending stiffness of laminated glass, two extremes can be
observed (Figure 1). With layered glass plies of equal thickness without the existence of the
foil between them, plies can slide freely and the shear modulus tends to zero (Figure 1b).
In Figure 1a, laminated glass is considered monolithic glass with a thickness equal to the
sum of the thicknesses of the glass plies; glass plies are considered as absolutely bonded
together and shear modulus tends to infinity. These two cases define the upper and lower
stiffness limit of laminated glass: the case of layered glass plies determines the lower limit,
and the case of monolithic glass the upper stiffness limit. The actual stiffness of laminated
glass is within these borderline cases (Figure 1c) [13].
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Figure 1. Laminated glass composed of two plies under bending: (a) monolithic limit; (b) layered
limit; (c) intermediate configuration.

2.1. Theoretical Background
2.1.1. Viscoelastic Response of the Interlayer

PVB foil is one of the first and still most commonly used interlayers for laminated glass
and it is known as a viscoelastic material. Thus, structural engineers use a below-unity type
factor in structural design considering that the PVB interlayer is not completely effective in
transmitting shear forces between the layers of glass [7].

To determine the mechanical properties of viscoelastic materials [22], it is necessary
to combine elastic behavior governed by Hooke’s law and viscous behavior governed by
Newton’s law [23]. During the static test, two approaches are carried out: creep test and
stress relaxation test (Figure 2).
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Figure 2. Stress and strain diagrams of viscoelastic material: (a) when constant stress is applied;
(b) constant strain is applied. Adapted from [23], Elsevier, 2021.

For the creep test (Figure 2a), constant stress is applied to get strain propagation in
time. During the stress relaxation test (Figure 2b) constant strain is applied to determine
stress response in time. Under constant stress, it can be seen that after the instantaneous
strain, the strain is gradually increasing over time, which is known as the creep effect. After
removing the stress there is again the instant recovery but with the propagated viscous
recovery (Figure 2a). When the constant strain is applied in the static test, there is an
instantaneous stress response but with the relaxation effect, whereby the stress gradually
decreases during the time under the constant strain (Figure 2b). During the dynamic test
(Figure 3) stress and strain will vary over time in a sinusoidal manner but with a temporal
offset δ between. The offset will vary depending on the viscosity of the material. For the
materials closer to elastic mechanical behavior, the offset will be smaller. A temporal offset
can be expressed through the phase angle tan(δ) = E”/E′, where E′ is storage modulus and
E” is loss modulus. Complex modulus E* can be calculated using Equation (1), where the
“i” is for imaginary unit i =

√
−1.
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E∗(ω) = E′(ω) + iE′′(ω) (1)

The combination of elastic solid and fluid behavior represented by springs and dash-
pots, respectively, allows to build linear viscoelastic models. The simplest model, based
on relaxation curves is the Maxwell model which is widely used because of its relatively
simple approach through the definition of the Prony series [24]. Prony series are defined
using the process of fitting to experimental data. There are several methods for it [24],
while the whole process can be applied using a homogenous logarithmic scale distribution
inside of commercial program packages, such as Abaqus, Ansys, etc. Complex dynamics
shear modulus can be expressed as Equation (2).

G∗(ω) = G′(ω) + iG′′(ω) (2)

Expressions for the static modulus are presented in Equation (3), and for the dynamic
modulus, Equations (4) and (5), where aT is the shift factor.

G(t) = G(t/aT , T0) (3)

G′(ω, T) = G′(aT
∧
A ·ω, T0). (4)

G′′(ω, T) = G′′(aT
∧
A ·ω, T0) (5)

Higher temperatures cause the mobility in polymer chains and therefore its stiffness
decreases which cause a drop in the total stiffness of laminated glass composite. Within
temperature changes, there is also time propagation that will affect the chain changes.
The transition from glassy to rubbery phase can be described within temperature Tg = T0
(glass transition temperature). When the polymer is close to reaching its glass temperature,
it is most affected by time and frequency. For temperatures below Tg, the mobility in
polymer chains is low and molecules cannot move freely. On the other hand, when the
temperature is above Tg, molecules have significantly more freedom of movement, and as
the temperature rises, their free volume does as well. As a result of the change in molecular
mobility, that occurs throughout the glass transition interval, mechanical and physical
properties of the interlayer change. There are several methods for determining the glass
transition temperature (standardized specific volume measurement, DTA, DSC, DMA at
a fixed cooling or heating rate), but the one described as superior by Li et al. [25] is the
new TTS method. This method complies with time-temperature superposition (TTS) with a
dynamic mechanical analyzer (DMA).

Understanding the behavior of viscoelastic materials can be determined within the
time and temperature-dependent superposition (TTS) principle [14]. The correlation be-
tween time and temperature is known as the TTS principle where temperature change
will cause E(t) horizontal shift (Figure 4) on a logarithmic time scale [26]. TTS principle
is based on the shift factors aT used for the time correction at a given temperature (T1,
T3, T4). Equivalent relaxation time is expressed by t/aT and matched with the reference
temperature Tref (T2).

Shift factor can be determined using Equation (6) proposed by the Williams, Landel,
and Ferry (WLF) model [26]:

log(aT) =
−C1(T − T0)

C2 + (T − T0)
(6)

where C1 and C2 are the WLF constants that are dependent on the temperature in the
exact moment T and reference temperature T0. The exact determination of Tg is not
possible, but according to ASTM D3418-97 [27], it can be concluded from the loss modulus
E”(ω). For PVB foil, it is approximately +8 ◦C. Another value for reference temperature is
recommended to use in the WLF approach [14]. Softening temperature Ts = 50 ◦C was taken
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as the reference temperature and WLF factors C1
s = 8.86 and C2

s = 101.6 in this research.
Values for C1 and C2 may be used as general values proposed by William, Landel, and
Ferry, or can be evaluated by Expressions (7) and (8):

Ci
1 =

C0
1 C0

2(
C0

2 + Ti − T0
) (7)

Ci
2 = C0

2 + Ti − T0 (8)

Even though the TTS principle may be applied for all tested temperatures, the WLF
method is applicable only for temperatures above Tg [28]. For temperatures lower than Tg,
the shift factor αT is recommended to be calculated using the Arrhenius activation energy
in Equation (9), which is applicable only when the T < Tg [29].

log10αT =
Ea

2.303R

(
1
T
− 1

Tg

)
(9)

where Ea (J/mol) represents the activation energy of the observed interlayer and Ra repre-
sents the universal gas constant (Ra = 8.3144621 J/mol K). However, the application of this
new model becomes essential only when the tested temperature is found to be substantially
below Tg.
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2.1.2. Effective Thickness Methods

The simplified method according to European EN 16612 uses the concept of “effective
thickness” [12]. This method separates the equivalent thickness for calculating deflection
due to bending from the equivalent thickness for calculating stresses. The equivalent
thickness for calculating bending deflection is given by Equation (10) where ω is a coefficient
with a value between 0 and 1. When the value of ω is 0, it is assumed that there is no shear
transfer between glass plates. A value of ω = 1 implies full shear transfer where the foil
is fully effective; hi is the thickness of glass ply (Figure 1a), and di is the distance of the
mid-plane of the glass ply i, respectively, from the mid-plane of the laminated glass (12).
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The value of ω is given regarding the stiffness family and load condition of the
interlayer. It is presented in Table D.3 from the [12]. Interlayers can be associated with
stiffness families 0, 1, and 2 which determine coefficient ω as follows: for family 0, ω = 0
(for any load condition, no shear transfer between glass plates), for family 1 (ω = 0–0.3) and
family 2 (ω = 0–0.7) exact value of ω can be read according to the load condition to which
the calculated glass is exposed. In table D.2 of EN 16612 [12], there is an overview of load
scenarios associated with the duration of the load and temperature. It must be noted that
the coefficient ω in the EN 16612 [12] standard is more precisely defined compared to the
prEN 13474 [18]. More options are offered in the current version of European standards for
evaluating coefficient ω. Nevertheless, comparing the accuracy of defining foil properties in
EN 16612 to those in Trosifol® technical data [5], it can be noticed only a few load durations
with the corresponding temperature that very imprecisely approximate the properties of
the interlayer. Trosifol® technical document includes relaxation shear modulus for different
temperatures. The UltraClear foil was considered since it was used in the experiment. In
the technical data, the value of shear modulus for a load duration of 1 s decreases drastically
with temperature raise (for example: for −20 ◦C, G = 250 MPa, and for 25 ◦C, G = 2.7 MPa).
Applying double interpolation (temperature and time), obtained more precise values of
shear relaxation modulus can be obtained. Trosifol® also offers datasheets with values
of coefficient ω [30], considering the version of European standards [31] used to present
composite behavior according to Eurocode standards.

te f ,w = 3

√
n

∑
i=1

h3
i +12 ω

n

∑
i=1

(
hi·d3

i
)

(10)

where hi is the thickness of the glass panes and di is the distance from the mid-plane of
laminated glass (Figure 5).
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Figure 5. Laminated glass composed of two glass plies and polymeric foil.

The version of European standards EN 16612 [12] and EN 16613 [31] changes the
approach to the calculation of laminated glass. The equivalent thickness method which
is related to stiffness families and load conditions with default shear transfer coefficients
is disregarded to direct use of interlayer properties in FEM analysis. Viscoelastic models
based on the Prony series are considered for finite element calculations [32].

Methods proposed by Galuppi et al. [13] for effective thickness evaluation will be
presented in this study: Wölfel–Bennison and the enhanced effective thickness approach. In
Equation (11) can be seen how the Wölfel–Bennison approach calculates the thickness using
h1 and h2 as individual glass plies thicknesses. Figure 5 illustrates a composite of two glass
layers and a polymeric interlayer. The beam length l, width b, and thickness for each layer:
h1 and h2 for glass and t for interlayer are the physical values needed for laminated glass
definition. Mechanical characteristics of laminated glass are expressed with E for Young’s
modulus of glass and G for the Shear modulus of the polymer. The non-dimensional
coefficient Γ = 1/(1 + K) ∈ (0,1) takes into consideration the capability of the PVB foil to
transfer shear stress between the glass plies. For the determination of Γ (Equation (12)) a
strong approximation is made by using the universal value of β = 9.6 for laminated glass.
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In the principle of virtual work, another coefficient is found K (Equation (13)) where the
intermediate layer of thickness t is defined through the shear coefficient of the intermediate
layer χ = t2/H2 and bending stiffness Bs = EA*H2, where A* is the applicable cross-section
area A* = A1A2/(A1 + A2) and H = t + (h1 + h2)/2.

he f f ;w = 3

√
h3

1+h3
2+12Γ

h1h2

h1+h2
H2. (11)

Γ =
1

1 + β tE
Gbl2

A1 A2
A1+A2

. (12)

K = βBs
χ

Gbtl2 (13)

Equation (14) presents deflection-effective thickness determination by the Enhanced
effective thickness (EET) approach for the 1D (beam) case. The non-dimensional weight
parameter η (Equation (15)) serves a similar role to that of Γ in the Wölfel–Bennison
approach and takes into consideration the capability of the PVB foil to transfer shear
stress between the glass plies. Furthermore, a moment of inertia for the monolithic limit
(Equation (15)) Itot = I1 + I2 + A*H2, and the value for IS = A*H2/b (Equation (14)). Shear
coupling parameter Ψ takes into consideration the boundary and load conditions for the
most common cases of the design practice [13]. In the case of simply supported beams
under uniform load, the results given by both of these analytical methods match perfectly.
This is because the Wölfel–Bennison approach is based on using the universal value β = 9.6
that, according to Wölfel’s theory, applies only to the scenario of simply supported beams
under uniformly distributed load. The Wölfel–Bennison method yields insufficiently
accurate results when changing boundary and load conditions in comparison with the
EET method. Coefficient Ψ can be calculated using Equation (16) for any glass element
boundary conditions, subjected to any load condition. Coefficient Ψ can be determined
from Table 1 in [13] for glass beams (one-dimensional case) and Table 2.1 and 2.2 in [13]
for glass plates (two-dimensional case); in addition to multi-layered laminated glass [33],
curved laminated glass [34], and cantilevered laminated glass [35]. For the case of the
simply supported beam under uniform load, the expression for Ψ = 168/(17xl2) was chosen.

ĥw =
1(

η

h3
1+h3

2+12Is
+ 1−η

h3
1+h3

2

)1/3 (14)

η =
1

1 + Et
Gb

I1+I2
Itot

A1 A2
A1+A2

Ψ
(15)

Ψ =

∫
Ω p(x)g(x)dx∫

Ω g′(x)2dx
(16)

2.2. Experimental Research

The experiment was performed to obtain deflection data of laminated glass due to
long-term loading at different temperatures. Since the load duration and temperature are
variable, the application of uniform load to the panel, self-weight was used (250 kg/m2).
During the installation, several things needed to be secured. It was necessary to avoid
(as much as possible) sudden movements of the glass to prevent a change of its initial
shape before starting the measurement. The measurement needed to start from the moment
the load acts on the glass. It was necessary to ensure that no deflection occurs before
the start of the measurement (e.g., with additional pads) (Figure 6a). After the instant
deflection was detected, measurements were executed within intervals of 1 min. The glass
supports were placed along the shorter sides of the glass panel, freely supported by vertical
pads and not clamped anyhow (Figure 6b). Expected deflections and shape changes were
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dependent on the installed foil. The measured parameters were time, maximum deflection,
and glass temperature.
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The panel dimensions were 500 mm in width and 3000 mm in length. The laminated
glass panel was composed of two 5 mm annealed glasses bonded by a transparent Trosifol®

PVB UltraClear interlayer with a thickness of 0.76 mm. The technical data of Trosifol® was
considered for the mechanical properties of the interlayer [5]. The effective panel span
between vertical supports was measured at 2800 mm with an overhang of 100 mm on each
side. The load on the panel was only its self-weight. The total test measurement took 2 days
with variable indoor temperature conditions. The real-time temperature conditions were
observed, during which the inside temperature for 2 days was around 20 ◦C with a peak of
29.4 ◦C after the first day of measurement. It is important to notice that most research on
laminated glass is performed at a controlled temperature when the only variable is time,
and the relaxation properties of shear depend only on the load duration. During this test,
two relatively serious rises and falls in temperature occurred, which are expected to happen
during the exploitation time as well.

Glass assembly and the installation of all test devices with additional pads that prevent
deflections before the start of the measurement were accurately executed (Figure 6a). The
deflection measuring device was WA-T: Inductive Displacement Transducer with highly
reliable measurement results [36]. The nominal measuring range of this transducer is up
to 100 mm. The principle of device measurement is an inductive quarter bridge circuit
based on the differential inductor principle which is completed internally to form a full
bridge circuit.

The measurement started before the extra pads were pulled out. Extra pads were care-
fully pulled out so that the glass does not vibrate. In the data measurement, interruptions
did not occur.

The test results are presented for the 48-h period when the temperature changes
presented a great impact on the deformation curvature (Figure 7).
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2.3. Numerical Modeling

Currently available analysis software greatly simplifies the calculation of laminated
glass and the prediction of the glass behavior. Since it is difficult to predict the conditions to
which the glass will be exposed during its time of use, based on the performed experiment,
the idea was to compare results from software and compare the measured results from the
experiment. Numerical analyses were carried out in the following software: SCIA Engineer
21.1. [16], Dlubal RFEM 5.27 [15], Abaqus SIMULIA [21].

SCIA Engineer Addon for glass calculates the effective thickness based on the prEN
13474 [18] regarding the shear stiffness of the interlayer taking into account the duration
of the load and the temperature very roughly. The static analytical-numerical calculation
gives unnecessarily large glass thickness with a large degree of confidence. Properties of
the interlayer are defined through the interlayer stiffness families (0, 1, 2, 3, and 4) in SCIA
Engineer. After Addon calculates the effective thickness, it is necessary to proceed with
the FEM static analysis on the 2D plate with a relevant thickness within SCIA Engineer.
Coefficients ω are equal to those given in Table 12 from the [12]. The effective thickness
obtained in SCIA Engineer software is additionally reduced according to prEN13474 [18]
standards for the interlayer thickness (0.76 mm). Since the thickness of the foil is not
included in the effective thickness of the composite, the deflections increase. It should
also be observed that in addition to the mentioned effective thickness reduction, SCIA’s
calculation is based on old regulations prEN 13474 [18] that take into account the properties
of the interlayer even more imprecisely compared to the European standard EN 16612 [12].

Dlubal RFEM [15] offers 2D calculation (with or without shear coupling of layers)
and 3D calculation. The difference between these two methods is that 2D calculation is
using plate theory within each layer is defined as a surface element, and 3D calculation
is carried out by finite element modeling of solid. To simulate the deflection of laminated
glass panels due to changes in foil properties, it is recommended to use 3D calculation. For
the shear modulus, because load duration is not considered yet in RFEM, it is possible to
enter the correct values from the material library. Alternatively, elastic (E) and shear (G)
modulus could be set manually so that they match the real modulus depending on the load
duration and the glass temperature. In this research Trosifol® technical document was used
as a reference and according to the values for Trosifol® Clear foil, the numerical calculation
was provided [5]. Temperature curves for the Shear relaxation modulus (Figure 8) and the
Young relaxation modulus (Figure 9) dependent on load duration are presented in Figure 8.
The study from Hána et al. [37] provides RFEM analysis of laminated glass that is in good
agreement with the enhanced effective thickness (EET) approach and Wölfel–Bennison
approach in the case of a simply supported beam under the uniform load [13,38]. Another
study from Gwóźdź et al. [39] suggests non-linear analysis to be performed in the RFEM in
the case of plates with linear supports on all four edges.
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Figure 8. Shear Relaxation curves for PVB Clear from Trosifol® data sheet at different temperatures.
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Figure 9. Young Relaxation curves for PVB Clear from Trosifol® data sheet at different temperatures.

A more detailed static FEM analysis was performed using Abaqus SIMULIA. The
numerical model from three solid elements was defined and the material properties of glass
and viscoelastic foil were assigned. For viscoelastic behavior, the thermo-rheological simple
(TRS) was chosen. Further, the temperature effects that define the shift function (WLF)
were included for Ts = 50 ◦C and recommended values for coefficients C1 and C2 [14]. Plate
elements of 2800 × 500 mm were only vertically supported on both edges, with meshing
element dimensions 0.05 × 0.05 m. The loading was defined as a value of uniform pressure
load 0.25 kN/m2. Finite element modeling analysis in Abaqus SIMULIA was performed
only for one point (1500 min and 29.4 ◦C), while in SCIA Engineer and RFEM software
45 static analyses (points) were observed to draw the deformation curvature over 2800 min.

3. Results

In the following section, results will be presented for the deformation measured in the
experiment, deformation from the analytic calculations, and deformations obtained from
FEM analyses in software.

The results from the measurement that took 48 days are presented in Figure 10. It
is noticeable in the measurement data results (Figure 10) that, even though there is a
temperature difference during the time, the glass has relatively consistent deformation. The
instantaneous deflection of 27 mm was measured in the experiment that corresponds to the
full composite behavior (G→ ∞). Very quickly, inside the first minute, creep deformation
of 4 mm was measured additionally with total deformation propagation of 35 mm within
2 h. In the time of 2.5 h, deformation stayed around a constant value until the temperature
rise occurred from 20 ◦C to 29.4 ◦C in the middle of the measuring time. The peak in
temperature that occurred after one day of measuring (1500 min) caused deformation to
increase to the maximum of 37.9 mm, which stayed constant till the end of the measuring
time due to the temperature drop and shear stiffness increase.

3.1. Analytical Calculations

The temperature peak that occurred in the middle of the measuring time was the mis-
matching point for the comparison of measurement data and design analysis calculations
performed in this study. A simple analytical design approach defined in EN 16612 [12],
Wölfel–Bennison approach [2], and a more detailed analysis of laminated glass using
the TTS principle [13] implemented in the Wölfel–Bennison approach was performed in
this study. Depending on the chosen method, according to Equation (17) for the simply
supported beam, the deflection is calculated using the moment of inertia that has been cal-
culated for the effective glass thickness. The results were compared. Since the results gained
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from both the Wölfel–Bennison and EET approaches match perfectly in the case of simply
supported beams under uniform load, no additional comparison of the implemented TTS
principle in the EET method was carried out.

w =
5

384
q·l4

E·I (17)

The behavior of the laminated glass, more precisely, the deflection curve behavior
through time was obtained from different laminated glass design approaches. European
standards contain a certain amount of safety that is considered through the calculation
of structural elements in any material. The deflection curve of the interlayer obtained by
calculation according to European standards is shifted by a degree of safety 2.5 to the curve
drawn from measured deflections with a total of 98 mm.
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The equivalent thickness approach given by the European standards is proven to be
very conservative which leads to unnecessarily large deflection (Equation (10)). Omega
coupling values, ω, are given in EN16612 [12]. Trosifol® technical data [30] offer tables with
ω coupling values for diverse types of interlayers. Values for UltraClear foil were used for
the calculation and display of the deformation curve according to EN 16612 and EN 16613
(Figure 11a).

An analytical formulation for the calculation of the effective thickness within the
Wölfel–Bennison approach (Equation (11)) (using Trosifol® UltraClear data sheet for the
Shear relaxation modulus) at the peak temperature of 29.4 ◦C and time point of 1500 min
resulted in a gap of 6.51 mm from the measured data which makes 15% error in the result
(Figure 11b). Results are sufficiently accurate with the measured deformations when the
temperature is close to constant (0–1000 min in Figure 9), but the problem occurs when
there is a temperature difference, as shown in Figure 10. The WLF model was used for the
correction of the relaxation modulus provided by Trosifol®. Since the temperature rises
from 20.8 ◦C to 29.4 ◦C in a relatively short time, foil viscoelastic properties have to be
included. The analytical approaches from Galuppi et al. [13] rely on the definition of a
secant modulus (time and temperature-dependent). Thois is well presented in Figure 10
(1500 min), where the deformation curvature is in slight growth during the measurement,
but from the analytical results (Figure 11), the curve is much steeper. The analytical
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formulation gives unrealistic high deformation values and for that reason, the WLF method
was used to solve the problem of interlayer mechanical properties. Reference temperature
was chosen to be Ts = 50 ◦C and WLF constants C1 = 8.86 and C2 = 101.6 as recommended
in [14]. Furthermore, C1

i and C2
i were calculated using Equations (7) and (8), where

Ti was listed from measuring data for every minute. Finally, the TTS shift factor was
calculated (Equation (6)) based on which the Relaxation modulus from Trosifol® was
corrected (Equation (3)). With a new Shear modulus of the interlayer, the Wölfel–Bennison
approach proceeded for obtaining deformation. For 2800 points deformation was calculated
and the curvature was drawn. In this way, the results have less than a 3% deviation from
measured data. The logical input to the code was that the deformation curve can’t reverse
under constant stress (which would happen in analytical results if the temperature drops).
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Figure 11. Deformation from different glass design analytical approaches: (a) norm EN 16612;
(b) Wölfel-Bennison approach; (c) Enhanced effective thickness approach; (d) Effective thickness
approach combined with TTS correction of Shear Modulus G.

Inside this study, laminated glass deformation was analytically solved using the WLF
approach using shear relaxation modulus from Trosifol® UltraClear (Figure 8). Relaxation
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modulus values given in the Trosifol® datasheet were linearly interpolated to determine
more precise values for the shear relaxation modulus for the exact time and temperature.
Trosifol® datasheet is determined by dynamic mechanical analysis following EN ISO 6721.
The sample storage temperature was 23 ◦C before measurement. The four-point bending
test [40] proved to be an adequate nondestructive method for determining relaxation shear
modulus. Values from the Trosifol® table are in good agreement when the temperature
curves are close to each other, which can be seen in Figure 11b.

The experimental campaign in this study adopts two variables, time and temperature,
under the static loading. Thus, additional correction of relaxation modulus from Trosifol®

is required. Additional time-temperature superposition (TTS) is needed when there is
a change in temperature during the time, as happened at the end of the first day of
measurement in this study. The shift of modulus from different temperature curves was
made to fit the reference temperature. Using the TTS principle on wider time domains as
presented in this study, shift factor aT translates horizontally the Young and shear modulus
of foil from the measured temperature in exact time to the reference temperature with
the new time t/aT. When presented graphically aT (Figures 4 and 12) through the time
of the experiment, it can be seen the curvature is mirrored to the temperature curvature,
thus reducing the impact of temperature changes on the mechanical properties of foil. For
verification of the credibility of the shift factor, a simple check can be conducted when
T = T0 –> log aT = 0→ aT = 1 and t/aT = t, which proves the time stays unaltered when the
temperature curve matches the reference temperature.
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Figure 12. Shift factor and temperature diagram in time.

WLF factors for C1 and C2 were calculated for every minute, based on which the
shift factor was obtained. For example, in 1500 min and the temperature peak of 29.4 ◦C,
C1

29.4 = 11,11 and C2
29.4 = 81.00. After the time correction is made using reference temper-

ature T0 = TS = 50 ◦C, with the corresponding WLF factors C1
s = 8.86 and C2

s = 101.6 as
recommended in [14], new shear modulus G (t/aT, T0) were calculated. When the master-
curve is obtained and the constants C1 and C2 for each time and temperature point are
known, all mastercurves in the range of validity of the WLF model could be obtained.
Thus, the time and temperature viscoelastic modulus of the material is completely de-
fined [14]. Additionally, deformations of the laminated glass were calculated using the
Wölfel–Bennison with a new shear relaxation modulus. In that way, obtained deformation
fits deformation measurement results within less than 3% (Figure 11c).
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A comparison of applied analytical approaches was presented in Figure 13. Defor-
mations using the TTS principle match the measured data the best since both—time and
temperature were taken into account. Using the TTS principle, additional attention was
paid to ensure that the deformation could not be smaller even if the stiffness of the glass
increases under lower temperatures (as happened during the second day of measurements),
remaining constant or slowly propagating over time, depending on the conditions, until
the foil loses its shear stiffness and the plies start to act separately. The TTS principle is in
the best agreement with the measurement data within 3% accuracy and the worst is EN
16612 with 50 mm larger deflections from measured ones.
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Figure 13. Deformation comparison of different glass design analytical approaches with measured
data: EN 16612; Wölfel-Bennison approach; Enhanced effective thickness approach; Effective thick-
ness approach combined with TTS correction of Shear Modulus G.

3.2. Numerical Analysis

Two software programs for structural analysis were used to obtain deformations: SCIA
Glass Addon (Figure 14) and Dlubal RF GLASS (Figure 15). The numerical model is a
double-sided hinged plate (2.8 × 0.5 m) with meshing elements 0.05 × 0.05 m. The loading
was defined as a value of uniform surface load 0.25 kN/m2. The performed analysis
was static.

SCIA Engineer has a glass calculation add-on (Figure 14) based on calculations from
pre-norms prEN 13474 [18]. Mechanical properties of glass and interlayer material were
modeled within glass addon and linear static analysis was run. Properties of the interlayer
were defined tabularly by choosing the interlayer stiffness families (0, 1, 2, 3, and 4). The
calculation of the effective thickness of the assigned numerical model is given according to
pre-norms and that calculated thickness is the entry in the numerical calculation. Regarding
the shear stiffness of the interlayer, SCIA Engineer takes into account the duration of
the load and the temperature very roughly. This analytical-numerical calculation gives
unnecessarily large glass thickness with a large degree of confidence (Figure 16a). Choosing
Family 1, the value of coefficient ω was set to 0.1. SCIA Engineer obliterates the foil
thickness through Equation (10) using the distances of the mid-plane of the glass plies i
respectively and not including foil thickness. The value of the effective thickness in the
glass addon is 2–7% reduced to the current European standards, resulting in a 7% deviation
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in results and a total of 105 mm in deflection. SCIA Engineer gives an error of 64% from
the measured deformation in the experiment. (Figure 17).
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Figure 14. SCIA Engineer—addon for glass design.

The value for the shear modulus in the formulas was obtained from linear interpolation
of the given shear relaxation modulus inside of the Trosifol® datasheet and manually
entered into RF GLASS (Figure 15). Design approaches that are incorporated into the
software Dlubal are in good agreement with the analytical Wölfel–Bennison approach [2]
proving the accuracy of the Wölfel–Bennison approach with the FEM analysis of solid
elements (Figure 16b).
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Thermo-rheological temperature dependence for time domain viscoelasticity was
defined from the suboptions menu (TRS) inside of the material definition for the PVB
interlayer. Shift function approximation was defined as Williams–Landel–Ferry (WLF).
Reference temperature theta Θ was chosen at 50 ◦C as suggested by [14] and the WLF
factors C1

s = 8.86 and C2
s = 101.6. Young modulus and Poisson’s ratio for the elastic

properties of foil were selected for the exact time and temperature (1500 min and 39.4 ◦C).
Interpolated elastic relaxation modulus was obtained from the Trosifol® table E = 0.591 MPa
and Poisson’s ratio 0.495. The results are shown in Figure 18. Results fit the measurement
data with almost 100% accuracy.
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Figure 16. Deformation from different software FEM analysis: (a) SCIA Engineer; (b) RFEM—RF GLASS.
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the experiment.
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4. Conclusions

The demand for products made of laminated glass is growing every day, so it is
necessary to adjust the design methods to optimize the utilization of the material. In this
study, an attempt was made to simulate the actual behavior of the laminated glass at a
given moment to expand it to its lifetime use. In this paper, the viscoelastic behavior
of the PVB interlayer was observed in dependence on time and temperature variables.
The application of the TTS and WLF model was analyzed and compared to the currently
available standards for laminated glass design.

The relaxation modulus at different temperatures was adopted from the Trosifol®

catalog E(t) and G(t) with the additional linear interpolation. The WLF model was used for
the correction of the relaxation modulus provided by Trosifol. The shear modulus in the
producer’s technical data is accurate for the constant temperatures. The problem occurs
when there is a change in the temperature. The reason for this lies in the inability of the
interlayer to follow the glass due to the memory effect. The analytical approaches based
on effective thickness only consider the time and temperature in the current moment. The
analytical formulation gives unrealistic high deformation values and for that reason, the
WLF method was used to solve the problem of interlayer mechanical properties. For the
WLF model constants, C1

WLF = 8.86, C2
WLF = 101.6 and the reference temperature Ts = 50 ◦C

most accurate results were obtained in comparison to the measured data. The deformation
curvature change that occurs within analytical approaches was well maintained using the
shift factor aT.

Compared to the measured data, the error generated in design approaches followed
by European standard was approximately 61% for analytical calculation and 64% in FEM
analysis proceeded in glass addon within SCIA Engineer software. Another analytical
approach, i.e., Wölfel–Bennison approach, was in good agreement with the measurement
when the temperature was constant, but the temperature rise was the breakdown point
with an error of 15%. The same results are gained using an enhanced effective method
for analytical calculation. The RF GLASS 3D analysis within RFEM Dlubal software was
found to be 100% accurate with Wölfel–Bennison approach and the enhanced effective
method when the mechanical properties of the foil were manually defined. In SIMULIA, the
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viscoelasticity of the PVB interlayer was defined through thermo-rheological temperature
dependence (TRS) and found to be in 100% agreement with the experiment.

5. Discussion

In future research on laminated glass plates, dynamic loading will be observed due to
the additional parameters that should include instant deformation, creep deformation, and
instant recovery deformation that is memorized into the foil when changing the direction of
the loading during the time. Load duration and temperature changes under the changing
pressure are difficult to implement into the laminated glass behavior without simulating
a longer period of laminated glass usage. Finally, the potential to prolong the laminated
glass’s lifetime can be proposed.
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