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Abstract: In the field of soft electronics, high-resolution and transparent structures based on various
flexible materials constructed via various printing techniques are gaining attention. With the support
of electrical stress-induced conductive inks, the electrohydrodynamic (EHD) jet printing technique
enables us to build high-resolution structures compared with conventional inkjet printing techniques.
Here, EHD jet printing was used to fabricate a high-resolution, transparent, and flexible strain sensor
using a polydimethylsiloxane (PDMS)/xylene elastomer, where repetitive and controllable high-
resolution printed mesh structures were obtained. The parametric effects of voltage, flow rate, nozzle
distance from the substrate, and speed were experimentally investigated to achieve a high-resolution
(5 µm) printed mesh structure. Plasma treatment was performed to enhance the adhesion between
the AgNWs and the elastomer structure. The plasma-treated functional structure exhibited stable and
long strain-sensing cycles during stretching and bending. This simple printing technique resulted
in high-resolution, transparent, flexible, and stable strain sensing. The gauge factor of the strain
sensor was significantly increased, owing to the high resolution and sensitivity of the printed mesh
structures, demonstrating that EHD technology can be applied to high-resolution microchannels, 3D
printing, and electronic devices.

Keywords: electrohydrodynamic printing; viscoelastic ink; strain sensor

1. Introduction

Printing technology has developed rapidly, owing to its low cost, excellent resolution,
and expedited manufacturing processes. Innovative printing techniques can create printed
patterns or devices using various solution-based nanomaterials as functional inks. A detailed
understanding of fluid dynamics is required because the printing process primarily entails
the transfer of solution-based inks from the tip of the nozzle to the substrate. PDMS is a
viscoelastic liquid that can be patterned and printed into different structures. PDMS is well
suited for use in cell-based assays and cell culture and is commonly used because of its
gas permeability, easy handling, lower cytotoxicity, and transparency compared with other
microfabrication materials. Furthermore, it can be used in a variety of applications, such as
stamps for transfer printing [1,2], lab-on-a-chip [3], nature-inspired dry adhesive layers [4,5],
flexible/stretchable electronics, and microlens arrays [6–8]. Microelectromechanical system
(MEMS) fabrication techniques, such as photolithography and electron-beam lithography,
can replicate transparent and soft materials from a mold assembly. Although the entire
MEMS process is expensive and time-consuming, direct printing could be an excellent way
to overcome these constraints.
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Additive manufacturing has recently gained popularity in education, industry, archi-
tecture, and healthcare and is useful for artificial tissue scaffolds, biological models and
electronic devices made from 3D images by computed tomography or magnetic resonance
imaging, and product prototyping [9]. For instance, PDMS sealants that can be vulcanized
at room temperature and which have thixotropic flow characteristics have been utilized
to 3D print multimaterial devices, such as reactionware for chemical synthesis [10] and
bionic parts [11]. Similarly, synthetic spider webs and fluidic chambers [12,13] have been
3D printed using PDMS elastomers. The viscosity of the PDMS prepolymer can be changed
by adding filler components, such as wax microparticles; this can further endow the 3D
printed object with a thermos-responsive behavior once it has dried [14]. However, addi-
tive manufacturing lacks high resolution and can only be used to fabricate low-resolution
devices. An alternative technique must be devised to build PDMS-based high-resolution
structures such that elastomeric ink direct printing can aim to adopt a new method for
printing high-resolution and flexible substrates, which is expensive using MEMS and
difficult using conventional 3D printing.

Different methods for the direct assembly, patterning, and geometrical arrangement
of micro- and nanoscale materials that have potential applications in chemical sensing,
tissue engineering, and energy harvesting are gaining attention. In particular, electric fields
provide a dependable and efficient method for utilizing local surface charges. Several
unconventional jet printing methods, such as atomic force microscope charge writing [15]
pyro-electrospinning [16], and bipolar electrospinning [17] have demonstrated the capacity
to produce direct patterns for manufacturing high-value structures. Researchers have
also worked on direct ink writing [18–22], laser writing [23–26], and pressure inkjet print-
ing [27–29] techniques to obtain high-resolution structures of different materials. Although
the aforementioned methods have been utilized to create a variety of structures, their low
resolution is a major issue in increasing device functionality.

For the direct patterning of liquid materials at micro and nanoscale resolutions, EHD
printing technology indeed represents a great method that aligns materials over a large area
by the combined mechanism of the shear effect and mechanical stretching of the charged jet
caused by the velocity distribution [30–32]. Instead of using acoustic or piezoelectric forces
to propel droplets or jets toward a substrate, EHD jet printing uses suitable electric fields.
Based on this phenomenon, micro- and nanoscale-printed electronics can be efficiently
created using sacrificial or functional inks by printing a high-resolution pattern (<1 µm) on
a variety of surfaces. During the EHD jet printing process, the fluid dynamics induced by
the electric field also affect the geometry of the printed materials [33–35]. A printed web
structure has been previously fabricated using EHD direct writing [36] without considering
electric forces, with the structure also having a low resolution.

Based on our knowledge so far, in this study, we report for the first time the fabrication
of a high-resolution mesh-printed strain sensor via the EHD route with PDMS/xylene
ink. Viscoelastic ink (PDMS/xylene) was used through a microscale nozzle to study the
dynamics of printing under the EHD effect. PDMS cross-linking produces time-dependent
viscosity that may influence printing and curing during the patterning process. Due to
the low surface energy and flowability of the viscous PDMS/xylene ink, high-resolution
mesh structures were produced by varying the speed and voltage settings of the EHD
printing technique. Experiments were conducted to examine the parametric effects of
the voltage, flow rate, nozzle distance from the substrate, and speed to achieve a high-
resolution printed structure. Furthermore, conductive silver nanowires (AgNWs) were
coated by modifying their surface wettability to build functional devices, such as strain
sensors. Our fabricated strain sensor showed promising resolution characteristics with the
EHD jet printing technique over other printed techniques.

2. Materials and Methods

Preparation of PDMS ink: Dow Corning Inc. (Midland, MI, USA) provided the PDMS
elastomer (Sylgard 184-A) and curing agent (Sylgard 184-B). The PDMS elastomer and
curing agent were mixed by 10:1 to make PDMS ink. Xylene 0.5% wt. was mixed with
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the PDMS ink to make a conductive solution. Mesh printing of elastomer PDMS ink:
To print PDMS ink, a multipurpose EHD printing machine (Enjet Inc., Suwon-si, Korea)
was used under electric field effects. The nozzle on the Z-axis and the substrate stage on
the X–Y axes can be moved by employing computer-aided controller software developed
by Enjet. A microsyringe pump was used to inject 1mL of PDMS/xylene ink (Table 1)
into the 34G (60 µm I.D.) plastic nozzle. The flow rate of the PDMS/xylene ink was
maintained at 0.3 µL/min to ensure a constant flow. The distance between the nozzle tip
and the substrate was increased from 20 to 40 µm. Mesh structures were created using
trichloro (1H,1H,2H,2H-perfluorooctyl) silane (Sigma-Aldrich, Inc., Seoul, South Korea)-
terminated glass substrates. To create an open microchannel array in the longitudinal
direction (X-direction), the sample was soft-baked at 70 ◦C for 8 min. A glass substrate
with an open microchannel array was then printed again in the vertical direction (Y-axis).
The entire pattern of the final elastomer PDMS/xylene mesh structure was cured at 80 ◦C
for 90 min in a convective oven.

Table 1. Ink preparation.

Materials Weight (%)

PDMS (base) 10
PDMS (reagent)

Xylene
1

0.5

Surface treatment of mesh-printed elastomer structure: The printed elastomer struc-
tures were first coated with an adherent polydopamine (PDA) by simply immersing them
for 10–16 h in an alkaline dopamine HCl solution (3 mg of dopamine HCl dissolved in
10 × 10−3 M, Tris buffer, pH 8.5). The inherently hydrophobic PDMS surface was mod-
ified into a hydrophilic substrate after coating with PDA, which improved the wetting
phenomena in this experiment due to the hydroxyl group in PDA. The PDA-modified
printed elastomer mesh structure was also treated with an atmospheric RF plasma system
(IHP-1000, APPlasma Co., Hwaseong-si, South Korea) to create a better hydrophilic sur-
face on a pre-cleaned printed mesh structure using acetone, ethanol, and DI water. The
hydrophilic surface of the PDMS printed mesh structure was dip coated with a solution of
AgNWs for 20 s, dried at 60 ◦C for 1 min, and annealed at 150 ◦C for 2 h. The dip-coating
process ensures an even coat on the mesh structure while the surface activation process
provides sufficient adhesion.

Measurement of printed strain sensor and I–V curve: A strain sensor stretching test was
performed on a custom-built testing machine by connecting the copper film to each side of
the printed mesh sensor and the measurement was performed using commercially available
software. Two ends of the printed mesh structure sample were attached to motorized
moving stages to test their strain-sensing capabilities. Then, uniform strain/release cycles
were applied and hysteresis measurements were taken at a displacement rate of 0.50 mm/s.
A source meter was used to measure the relative change in resistance (Keithley 2400,
Keithley Instruments Inc., Cleveland, OH, USA). We used the four-point probe measuring
technique (MST 2000 A) to measure the resistivity and current–voltage (I–V) characteristics.

3. Results and Discussion

Figure 1a,b illustrate the schematic of two types of printing processes to print mi-
croscale PDMS/xylene mesh patterns with direct ink writing and EHD jet printing, respec-
tively. EHD jet printing is a non-contact printing method that induces ink ejection from a
conductive nozzle onto a substrate using an electric field. Ink will not flow through a capil-
lary nozzle, as shown in Figure S1, unless a force is applied to overcome the surface tension
and capillary forces that keep it stationary. The only forces acting on it are gravity and any
pressure within the system (due to the syringe pump or applied air pressure). When an
electric potential is applied to the system, the charge migrates to the ink’s meniscus surface;
once enough charge has accumulated on the ink interface, an electrostatic potential (normal
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and tangential components) is created between the meniscus and the grounded substrate.
Electric forces attract the ink to the deposition substrate, where normal stress destabilizes
the meniscus, while tangential stress promotes the formation of the meniscus into a cone,
resulting in jetting. The normal component of the electric field is enough to overcome
the ink’s surface tension. The translation stage holds the printed substrate and controls
how the deposition pattern is formed, which is usually a predetermined design loaded
into the control software. This stage can also move in the z direction, which modulates
the strength of the electric field in the case of constant potential. A constant elastomer ink
flow supplied through the microcapillary nozzle of a syringe pump was used to draw a
mesh structure on a slide glass substrate using computer-aided design tools. To create a
hydrophobic surface, heat deposition (60 ◦C, 30 min) was used for the detachment and
freestanding of the final printed mesh pattern. Figure 2 shows the steps involved in printing
the PDMS/xylene mesh pattern on a glass substrate. A fluorine-terminated self-assembled
monolayer hydrophobic substrate was created via heat deposition at 60 ◦C for 30 min
(Figure 2b). First, the line array was printed and soft-baked at 70 ◦C for 8 min (Figure 2c);
then, the liquid PDMS/xylene was patterned vertically in the Y-direction (Figure 2d). To
obtain a freestanding PDMS mesh pattern, it was detached from the glass substrate after
hard baking at 80 ◦C for 90 min (Figure 2e). In our experiment, the minimum hole size
was approximately 20 µm; however, this could be changed further by carefully balancing
the printing parameters with the liquid properties. The printed mesh pattern should be
able to operate in efficient functional devices using extra coating and printing techniques to
create electronic circuits. Attaching functional materials to a hydrophobic surface without
an adhesive layer is challenging because of the low surface energy of the PDMS/xylene
mesh pattern and the weaker attractive molecular forces. The hydrophobic PDMS surface
should be converted into a hydrophilic surface; this can enhance the wettability in this type
of experiment because of the hydroxyl groups. Therefore, the printed mesh structure was
plasma treated (O2) to render the surface hydrophilic. The AgNWs were applied to the
plasma-treated mesh structure to create a functioning strain sensor device (Figure 2e).

Figure 3 shows the scanning electron microscopy (SEM) analysis images of the AgNW
coating on the printed mesh structure. The uniform coating of the printed mesh struc-
ture shows strong adherence between the AgNWs and printed structures (Figure 3a,b).
Figure 3c,d show microcrack openings in the AgNWs’ thin film under stretching, indicating
that the applied strain increased the electrical resistance of these thin films. Cracks are
intended to form in stress-concentrated areas to release the accommodated stress. When
a soft polymer is stretched, cracks form and spread in the thin films of the conducting
coating on top of it [37–42]. This results in the stretching of opened and enlarged microc-
racks in the thin films, severely limiting the electrical conduction through the thin films
due to the separation of the microcrack edges. When resistive-type sensors are stretched,
the tunneling resistance can be altered. Resistive-type sensors based on AgNW-PDMS
nanocomposites can possess customizable gauge factors that are controlled by the AgNW
percolation network’s number density. Further, greater gauge factors and more effective
separation between NW–NW connections can be achieved by lower-density networks. In
this study, due to the fascinating high-resolution geometry and cracks caused by stretching,
the gauge factor of the sensor was substantially high. Figure 4 illustrates the effects of
the working height, voltage, and speed on the width of the printed mesh and the I–V
curve results. By optimizing a speed of 350–360 mms−1 (Figure 4a), a working height of
50–160 µm (Figure 4b), and a voltage of 3.3–3.5 kV (Figure 4c), an optimum line width of
approximately 5–10 µm was achieved. Figure 4d shows the I–V curve outcomes, presenting
the relative change in resistance as a function of the given tensile strain by the stretch and
release procedures that exhibit the adhesiveness of the functional AgNWs to the printed
mesh structure. According to the mesh geometry, the hysteresis performance of the strain
sensor can be recovered, and varied strain circumstances can be employed to efficiently
control the gauge factor. The development of cracks causes a change in resistance during
stretching and, hence, also affects the gauge factor.
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Figure 5 shows how a mesh-printed elastomer structure design can be successfully
created using direct ink writing and EHD jet printing techniques. The printed mesh
structure resolution was low, at approximately 50 µm, and was achieved by direct ink
writing, where no electric field effects were applied between the nozzle and substrate
(Figure 5a). When we printed liquid PDMS/xylene in the perpendicular direction on the
soft-baked transverse pre-patterned elastomer, the liquid PDMS/xylene formed a low-
resolution round mesh structure (Figure 5a). The minimum hole size in the direct ink
writing experiment was approximately 30 µm and the line thickness was around 50 µm, but
it was possible to change it further by carefully altering the printing parameters (voltage,
speed, and working height) along with the liquid properties. To achieve a high resolution,
we also created PDMS-based mesh structures using the liquid instabilities caused by the
EHD effects (Figure 5b–d). Owing to the externally applied electric field, the resolution of
the mesh-printed structure was approximately 10 µm; this is approximately 10 times higher
than that of the conventional direct-writing method. The hole size of the printed mesh
structure was approximately 50 µm as the PDMS line thickness was shortened by electric
field effects. An EHD field capable of boosting the prominent instability in the natural
spectra of the capillary surface waves was applied to the air–liquid interface at an ambient
temperature. The liquid PDMS/xylene might experience an EHD force from the electric
field, forming a liquid bridge between the two substrates. The liquid PDMS had a height of
approximately 110 µm, by four consecutive layers in the z-direction with a wetting contact
angle of approximately 60◦ (C.A.) on a hydrophobic silane-terminated surface. When we
attempted to print on bare hydrophilic glass, the aspect ratio was significantly lower than
that in the hydrophobic scenario, and we were unable to create the appropriate geometry
to fully analyze the printing mechanism.

An examination of the manner in which the applied tensile strain during the stretch
and release procedures affected the relative resistance change ([R − R0]/R0) is shown in
Figure 6. Under severe strain, resistive-type strain sensors frequently display substantial
nonlinearity and hysteresis. However, in this study, at low and high strains, the hystere-
sis performance was almost completely recovered by the mesh structure of the printed
electrodes. Additionally, a variety of strain conditions could be used to effectively adjust
the gauge factor (Figure S2). The creation of cracks caused a change in the resistance
during stretching (Figure 3c,d). The resistance might also be altered because of the vari-
ous distances between the cracks. Several research teams have created various types of
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architectures (such as serpentine-shaped conducting lines or stretched substrates) to lower
the maximum strain value during mechanical deformation to manufacture stretchable
strain sensors. The specifications of stretchy directions and difficult fabrication procedures
have limitations, although printing could be a different approach to creating stable and
stretchy sensing applications to overcome these challenges. Owing to the mesh structure, a
considerably higher gauge factor sensor value was achieved than those of the previous results
(Figure 6), indicating that this can be used for various potential applications. A high-resolution
printing technique was used to fabricate sensitive and flexible strain sensors. This technique
can be further applied to high-resolution 3D printing and microchannels. We obtained a high-
resolution (10 µm) mesh-printed strain sensor via the EHD jet printing technique that showed
promising resolution characteristics over other printed techniques (Table S1) [36,43–47].
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Figure 6. Printed mesh structure and gauge factor measurement. (a) Printed mesh structure flexibility
and bending tests. The relative change in resistance as a function of the given tensile strain by the
stretch and release processes during small (b) (2–7%) and large (c) (12–36%) strains.

4. Conclusions

In this study, we proposed a new method for fabricating high-resolution stretchable
mesh strain sensors using the EHD jet printing technique with PDMS/xylene elastomeric
ink. We investigated the printing dynamics of high-resolution mesh structures using a
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microscale nozzle under EHD effects. It was found that a scalable sensor design can be
fabricated by fine-tuning the rheological properties of the ink and controlling the print
path and electric field effects. Experiments were conducted to investigate the parametric
effects of voltage, flow rate, nozzle distance from the substrate, and speed to achieve high-
resolution (5–10 µm) printed structures. In addition, we reduced and strongly immobilized
the conductive AgNWs on printed mesh structures to capitalize on functional architectures,
such as strain sensors. Our fabricated strain sensor showed promising resolution charac-
teristics with the EHD jet printing technique over other printed techniques. This method
can also be used to create soft functional devices for wearable electronics, human–machine
interfaces, soft robotics, and other potential applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14204373/s1, Figure S1: Physics of EHD jet printing where
forces acting on a capillary tip during EHD printing by cone jet mode; Figure S2: Various gauge factor
values according to the strain; Table S1: Comparison of printing techniques and resolutions.
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