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Abstract: Pollution due to various heavy metals is increasing at an alarming rate. Removal of
hexavalent chromium from the environment is a significant and challenging issue due to its toxic
effects on the ecosystem. Development of a low-cost adsorbent with better adsorption efficiency
is presently required. In this study, waste coconut fibers (CF) were used to prepare its composite
with polyaniline (PANI) via in-situ oxidation. The obtained composites with varying loading of
PANI (15, 25, 50, and 75% w/w) were characterized by FE-SEM, TGA, and FTIR spectroscopy. The
prepared composites were evaluated for their adsorption performance for removal of Cr(VI). It
was concluded that the composite with 50% w/w polyaniline loading on coconut fiber exhibited a
maximum adsorption efficiency of 93.11% in 30 min. The effect of pH, dosage, and concentration
of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was
also studied. From the optimization studies it was observed that the absorbents exhibited the best
adsorption response for Cr(VI) removal with 0.25 mg/mL adsorbent at pH 4, in 30 min. The effect
of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption
efficiency of the composite was also studied. This study highlights the application of low-cost
adsorbent as a potential candidate for the removal of hexavalent chromium. A detailed study on the
adsorption kinetics and isothermal analysis was conducted for the removal of Cr(VI) from aqueous
solution using coconut fiber-polyaniline composite. From the kinetic investigation, the adsorption
was found to follow the pseudo second order model. The data obtained were best fitted to the Elovich
model confirming the chemisorption of the Cr(VI) on coconut polymer composites. The analysis of
the isothermal models indicated monolayer adsorption based on the Langmuir adsorption model.

Keywords: adsorption; heavy metals; environmental remediation; wastewater; polyaniline;
coconut fiber

1. Introduction

Heavy metal pollution is a prime concern for the society due to their toxicity, persistent
nature and bioaccumulation in the environment [1]. Heavy metals are metals with den-
sities greater than 5 gm/cm3 and atomic numbers greater than 20 [2].Such metals pose a
serious threat to human, plant, and animal health. Because of their toxicity, heavy metal
removal should be considered. Heavy metals are omnipresent in the environment, the
concentration of which is increasing due to modern day urbanization and industrializa-
tion [3].Heavy metals include Cr, Hg, Pb, Co, Ni, Cu, Zn, Sn, and Cd, etc. Chromium is
a naturally occurring element with valency ranging from II to VI [4]. The main oxidation
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state of chromium is III and VI. When chromium is released into the environment due to
various activities, it is mainly in its hexavalent form [5]. The hexavalent state of chromium is
more stable and mobile than its trivalent state. Cr(VI) is a common contaminant in many
environmental systems as it is widely used in various processes such as in dyes and pig-
ments, leather tanning, chrome plating, etc. [6–8]. Many methods are implemented for the
removal of heavy metal like adsorption, electro dialysis, ion-exchange, reverse osmosis, and
ultra-filtration, etc. [9–14]. Among all the methods used for heavy metal remediation, adsorp-
tion is the most widely adapted method [15]. The adsorption method involves a simple set
up and has higher performance efficiency. It is a regenerative and a cost-effective method
making it the most feasible method for heavy metal removal [16]. Many low-cost adsorbents
have been used by researchers for the adsorption study of chromium. Several studies using
agricultural wastes such as banana peels, citrus limetta peels, coconut husk, potato peels,
palm pressed fibers, and sawdust, etc. as an adsorbent for the treatment of chromium have
been reported [17–21]. However, their efficiency is limited and can be modified by combining
them with other suitable materials. This awakens the necessity of development of new or
modification of the already used adsorbents for effective Cr(VI) removal.

Recently, conducting polymers have attracted a lot of attention in pollutant adsorp-
tion due to their properties such as special morphologies, functional groups and simple
synthetic procedure [22]. They have the ability to remove heavy metals through com-
plexation and ion-exchange mechanism [23]. Polyaniline (PANI) is a polymer which has
been explored in recent years for its potential as a heavy metal adsorbent. PANI, a con-
ducting polymer with terminal amine (–NH2) group has excellent properties such as high
surface area, adjustable surface chemistry, desirable pore size distribution, rigidity, and
economical regeneration [24]. Apart from PANI, PANI-based composites have also been
studied for their application in heavy metal adsorption. PANI-based composites offer
added advantages such as higher surface area, higher dispersibility, enhanced adsorption
performance, and combined properties of the polymer and the substrate [22,25]. Dutta
et al. (2021) synthesized polyaniline-polypyrrole copolymer coated green rice husk ash
and investigated its potential for Cr(VI) removal [26]. PANI-jute fiber was synthesized
by Kumar et al. (2008) for removal of hexavalent chromium from wastewater [27]. PANI-
magnetic mesopores silica composite was used an adsorbent for chromium adsorption by
Tang et al. (2014) [28].Hexavalent chromium was adsorbed on the surface of PANI-rice
husk nanocomposite by Ghorbani et al. (2011) [29]. Lei et al. has reported the use of
PANI-magnetic chitosan composite for the removal of hexavalent chromium [30]. Rahmi
et al. reported the use of using chitosan based composites chitosan for the removal of
Cd(II) from its aqueous solution [31,32]. Cr(VI) was adsorbed using gelatine composites
in a study reported by Marciano et al. [33]. From the literature review, it was inferred
that all the similar studies have either reported the use of large amount of adsorbents
(1 to 125 g/L) for the removal of contaminants or a more time consuming process (up
to 5 to 6 h). In addition, the removal efficiency is also less in comparison to the present
study. Thus, it was observed that the present study offers certain advantages such as using
low-cost adsorbent, less adsorbent dosage, and high efficiency in less time. In this study,
coconut fibers have been used as a substrate and PANI has been dispersed on its surface
using in-situ polymerization. Agricultural waste such as coconut fiber has advantages over
other substrates such as being easy collectable and available with less or no cost. Moreover,
it involves simple processing steps (washing, drying, sieving) and thus reduces energy and
production cost. This study aims to focus on the synthesis of PANI-coconut fiber and its
application for Cr(VI) removal. It also reports the effect of various parameters such as pH,
adsorbent dosage and concentration of Cr on the adsorption capacity of the composite. A
detailed investigation on the kinetic aspects and adsorption isotherm has been performed.
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2. Materials and Methods
2.1. Materials

In this study, coconut shells were collected from the local market of Gandhinagar,
Gujarat, India. Potassium dichromate (K2Cr2O7) (SRL (Ahemdabad, Gujarat, India) AR
grade, extrapure, 99.9%) was used as the source of Cr(VI). Aniline used in this process was
purified using distillation process prior use. All the chemicals used for the preparation of
composites including aniline, ammonium persulfate (APS) (Sigma Aldrich (Ahemdabad,
Gujarat, India), reagent grade, 98%), HCl (Finar (Ahemdabad, Gujarat, India), AR grade,
37% purity) were used as received. All the dilutions performed in this study were carried
out using milli pore water.

2.1.1. Pre-Treatment of Coconut Fibers

The collected coconut shells were separated into coconut fibers (CF) and washed to
remove dirt. The coconut fibers were then dried under shade. The dried coconut fibers
were cut into pieces before grinding them to make a fine powder. The obtained coconut
fiber powder was sieved to obtain particles of uniform size (≤ 75 microns).

2.1.2. Synthesis of Polyaniline (PANI) and Polyaniline-Coconut Fiber (PANI-CF)
Composites

The composites were prepared with different w/w% loading of PANI on CF. PANI
was prepared by in-situ oxidation method. For this process, a solution of aniline in 1 M
HCl was prepared. Another solution of ammonium persulphate (APS) dissolved in 1 M
HCl was added dropwise with constant stirring for 2–3 h. The reaction temperature was
maintained between 0 to 5 ◦C. Subsequently, the reaction mixture was filtered and washed
with 0.5 M HCl until the filtrate became colorless and then with deionized water until
the filtrate became neutral. Then, the obtained PANI was dried in vacuum oven at 80◦C
overnight. The composites with varying loading of PANI were prepared using a similar
approach. The schematic flow of both the processes is shown in Figure S1a,b (Supplemen-
tary Materials). The digital images of the prepared composites are shown in Figure S1c
(Supplementary Materials).

Composites were prepared with different w/w% loading of PANI. The samples were
coded as CFC15, CFC25, CFC50 and CFC75 for 15%, 25%, 50% and 75% PANI, respectively.
For preparation of all the composites, the starting weight of CF was kept 0.5 gm and the
weight of PANI was varied. Rest all steps were similar to the synthesis of PANI. Depending
on the composition of PANI, the prepared samples were named CFC15, CFC25, CFC50,
and CFC75 as listed in Table 1.

Table 1. Nomenclature and starting weight of the reagents for the preparation of composites.

Sample Code CF (gm) Weight of PANI (gm) Weight of APS (gm) Weight of
Product (gm)

CFC15 0.5 0.075 0.231 0.34

CFC25 0.5 0.15 1.54 0.36

CFC50 0.5 0.5 1.54 0.81

CFC75 0.5 1.5 4.63 1.25

3. Characterization

All the samples in the present study were analyzed for their functional groups, mor-
phology and thermal stability using different characterization techniques such as Fourier-
transform infrared spectroscopy (FT-IR), Field Emission-Scanning Electron Microscopy (FE-
SEM), and Thermal gravimetric analyzer (TGA). The Fourier transform- infrared spectra of
the samples were recorded using FT-IR spectrometer Perkin Elmer (Mumbai, Maharashtra,
India), spectrum 2 model in ATR mode in a scan range of 400 to 4000 cm−1. The FE-SEM
images of the samples were taken in Zeiss ultra 55 model (Bangalore, Karnataka, India)
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at acceleration voltage of 5.00 kV. For FE-SEM analysis the samples were sprinkled on
clean aluminum stub over conducting carbon tape. The samples on aluminum stubs were
coated with a thin gold layer using LEICA EM ACE200 (Wetzlar, Hesse, Germany) to make
them conductive. The thermal stabilities of the samples were analyzed using Thermal
gravimetric analyzer (Eltra sthermostep, (Hyderabad, Telangana, India) with a heating
rate of 10 ◦C/min with temperature range 200 to 950 ◦C in O2 atmosphere. The concentra-
tion of the aqueous solution of chromium during adsorption study was monitored using
LABINDIA analytical model 3000+Ultraviolet-visible (UV-Vis) Spectrometer (Ahemdabad,
Gujarat, India), in absorbance scan mode in the range of 200–800 nm.

4. Adsorption Studies

In the present study, adsorption of Cr(VI)in aqueous solution using CFC15, CFC25,
CFC50, CFC75 and PANI was carried out at room temperature in batch mode. For the
adsorption studies, a test solution of Cr(VI) (10 ppm) was prepared and used for adsorption.
For the preparation of 10 ppm solution, 0.02828 gm of potassium dichromate was dissolved
in 1 L of water. For the detailed study for the adsorption of chromium in aqueous solution,
different sets of experiment were performed. The effect of different parameters such
as dosage of adsorbent, concentration of chromium solution and pH were explored for
adsorption of Cr(VI) in aqueous solution. In a typical adsorption experiment, 0.25 mg/mL
of adsorbent was added to aqueous solution of chromium (10 ppm). The mixture was
sonicated for uniform dispersion of the adsorbent. The suspension with the adsorbent was
kept for constant stirring for 30 min for shaking on a mechanical shaker. After completion of
30 min, the solution was centrifuged to remove the adsorbent and the solution was analyzed
using UV-Vis spectrometer. The analysis of the final concentration of chromium was done
by monitoring the absorbance at a wavelength of 352 nm. The kinetics of the adsorption
studies were monitored by taking aliquots at regular interval of time. The supernatant was
analyzed using UV-Vis spectrometer. For investigating the effect of dosage, similar studies
were conducted with amount of adsorbent from 0.05 mg/mL to 1 mg/mL in aqueous
solution of chromium (10 ppm). To explore the effect of pH, the adsorption studies were
conducted at different pH2, 4, 7, and 9. The acidic pH was adjusted using 0.1 M HCl while
the basic pH was adjusted using 0.1 M NaOH. The spectral data obtained were analyzed
for each sample and fitted into different kinetic and isothermal models to determine the
nature of the process. The % removal and adsorption at equilibrium were calculated using
the following formula,

% removal =
C1 − C2

C1
× 100 (1)

The adsorption at equilibrium will be calculated using,

Qe = V(C1 − C2)÷ M (2)

Qe = amount of adsorption at equilibrium (mmol/g);
V = volume of heavy metal solution taken (ml);
M = quantity of adsorbent added (mg);
C1 and C2 (mg/L)refer to the heavy metal concentration before and after adsorption

respectively at the λmax.
The kinetic data was fitted to different kinetic models such as first order, second order,

pseudo first, pseudo second order, Elovich, and intra-particle diffusion. For adsorption
isotherm analysis, experiments were performed using different concentration of chromium
solution from 10 to 50 ppm. To each solution, 0.25 mg/mL of adsorbent was added. The
adsorption process was carried out for 30 min following the same steps as mentioned above.
The data collected was analyzed using Langmuir, Freundlich, and Temkin isotherm models.
All the experimental data in terms of concentration and %removal were fitted to standard
isotherm models using Origin pro 2021.
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5. Results and Discussions

The synthesized samples were analyzed for structural, thermal, morphological analy-
sis. The characterization and adsorption results are as follows.

5.1. Characterization of the Samples
5.1.1. Thermal Stability Analysis

Figure 1a shows the thermogram of CF, PANI and its composites. In general, a weight
loss is observed with increase in the temperature for the raw materials and composites
used in this study. From the TGA curve of CF, it was interpreted that the decomposition
temperature was 343 ◦C where it suffered maximum weight loss (79.5%). On the other hand,
the TGA curve of PANI showed that the weight loss was maximum (84.8%) at temperature
485 ◦C. The loading of PANI on CF lead to increased stability of composites as evident
from TGA analysis. An increase in Td is observed in composites with varying % of PANI as
compared to CF. The decomposition temperature obtained from TGA has been listed in
the Table 2. Thus, preparation of composites enables us to develop more thermally stable
materials which make them a suitable candidate for adsorption process.
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Figure 1. (a)TGA curve of CF, PANI, CFC15, CFC25, CFC50, and CFC75, (b)FTIR spectra of CF, PANI,
and its composites, and (c) CFC50 before and after the adsorption of Cr(VI).

Table 2. Decomposition temperature and % weight loss with varying composition of PANI.

Sample Code % Weight Loading of
PANI (Theoretical)

Decomposition
Temperature (Td)

% Weight Loss from
TGA

CF 0 343 79.5

CFC15 15 396 79.9

CFC25 25 424 77.6

CFC50 50 440 78

CFC75 75 455 77

PANI 100 485 84.8

5.1.2. Functional Group Analysis

Since adsorption is a surface phenomenon it becomes crucial to analyze the functional
group present on the adsorbent surface. The understanding of functional groups helps
to explore the adsorption mechanism and the nature of the process. Figure 1b shows
the IR spectra of CF, PANI, and the prepared composites. In the IR spectrum of CF, the
characteristic bands at around 3400 cm−1 is assigned to –OH stretching, the peaks at 1750
and 1240 cm−1 are attributed to C=O stretching of lignin and hemicellulose and C–H, C–O
stretching of cellulose [26,34].Other peaks at 1614 cm−1 is for C=C of lignin and 1440 cm−1
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corresponds to C–H vibration. Similarly in a study investigating thermally treated wood
samples, Cheng et al. also observed C=C stretching vibrations at 1603 cm−1 [35].IR peaks
observed in the spectrum of PANI at 1568 and 1489 cm−1correspond to C=C stretching
of quinoid and benzenoid rings, respectively [36]. The peak at 1292 cm−1 correspond to
C–N and C=N stretching. The peak for out-plane and in-plane C–H bonding is observed at
795 and 1106 cm−1 [37–40]. The oxygen and nitrogen containing functional groups offer
potential binding sites for the adsorption of heavy metals. These functional groups tend to
increase the cation-exchange capacity of the material by creating electron donor centers
in the aqueous medium [41,42]. For the confirmation of the adsorption of Cr(VI) on the
surface of CFC50, FTIR spectrum of CFC50 after chromium adsorption was also recorded
(Figure 1c). A shift in IR peak of CFC50 at 1561 cm−1 corresponding to C=C stretching
of quinoid to 1572 cm−1 was observed after the adsorption depicting the adsorption of
chromium on the surface of CFC50. The intensity of peakat 1292 cm−1 corresponding to
C–N and C=N stretching also changes before and after adsorption showing the involvement
of nitrogen containing functional group in the adsorption process. In the IR spectrum of
CFC50 after adsorption, a new peak at 1051 cm−1 can be observed. Similar results have
been reported by Dula et al., Solgi et al., and Shooto et al. [43–45].

5.1.3. Morphological Analysis

Figure 2 shows the FE-SEM image of CF, PANI, and their composites. The FE-
SEM image of CF clearly shows the presence of fibrous shape morphology (Figure 2a)
while PANI exhibits a rod like shape with agglomerates as shown in Figure 2b. Simi-
lar fibrous morphology for CF and rod-like shape for PANI has been reported by Du-
tra et al. and Martina et al. respectively [36,46]. The FE-SEM images of composites shown
in Figure 2c–f depict dispersion of rod like particles over CF confirming the formation of
CF-PANI composites. Additionally, as the concentration of PANI increases in the com-
posites, the amount of rod like particles dispersed on the CF increases which confirm the
proper loading of PANI on CF.
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5.2. Adsorption Study

The prepared composites namely CFC15, CFC25, CFC50, CFC75 and PANI were
evaluated for Cr(VI) adsorption in aqueous solution. Figure 3a shows the UV spectra of
the comparative performance/adsorption ability of CF, PANI, and composites. The results
indicated a drastic reduction in the intensity of absorption peak at λmaxof 352 nm confirming
the removal of Cr(VI) from aqueous solution. The adsorption efficiency of PANI, CFC15,
CFC25, CFC50, and CFC75 was found to be 88.41%, 14.58%, 73.80%, 93.11%, and 82.60%,
respectively as represented in Figure 3b. From the adsorption results, it was inferred that
the preparation of CF-PANI composite (CFC50) showed enhanced adsorption efficiency
as compared with PANI. This is attributed to the synergic effect of CF and PANI in the
composites, for improved adsorption of Cr(VI) in aqueous solution. Thus, the preparation
of composites of PANI with CF is a cost-effective and sustainable method for the removal of
Cr(VI). An improved performance as compared with a pristine PANI sample was observed
for smaller amount of PANI when dispersed over CF. Additionally, by further increasing
the amount of PANI on CF (CFC75) the adsorption efficiency decreased from 93.11% to
82.60%. It is proposed that coconut fibers act as a support and promote uniform dispersion
of PANI over its surface. The poor efficiency of CFC15 is attributed to smaller loading
amounts of PANI and its non-uniform dispersion. An increase in the performance was
observed with increased loading of PANI until 50%. The sudden decrease in efficiency for
CFC75 is due to the agglomeration of particles and unavailability of more active surface
sites. From the studies we can conclude that the development of CFC50 reduces the cost
and results in improved performance as compared with PANI.
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Figure 3. (a) UV-Vis spectra depicting the adsorption performance of the prepared samples (b) %
adsorption of prepared samples for Chromium adsorption (pH = 6, adsorbent dosage = 0.25 mg/mL,
Cr concentration = 10 ppm, contact time = 30 min).

5.3. Kinetic Studies

The kinetics of adsorption of Cr(VI)in aqueous solution were monitored at different
time intervals. Figure S2a–e (Supplementary Materials) shows the UV-Vis spectrum for the
kinetic studies for different adsorbents used. A continuous decrease in absorbance indicates
the removal of Cr(VI) from aqueous solution. Figure S2f (Supplementary Materials) shows
the absorbance vs. time graph for CF, PANI, and its composites. From the results, it was
concluded that CFC15 and CFC75 showed desorption of Cr(VI) after 10 min, while no
desorption could be seen in cases of PANI, CFC25, and CFC50.

The kinetic data obtained from the UV-Vis spectra was then analyzed using a different
kinetics model to better understanding of the process. The kinetic data was fitted into
Pseudo first order (PFO), first order (FO), pseudo second order (PSO), second order (SO),
Elovich model, and intraparticle diffusion corresponding to the same concentration of
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Cr(VI)aqueous solution (10 ppm). Equations of the kinetic models studied in the present
work are as mentioned in Table S1 (Supplementary Materials).

Figure 4 shows the graph plotted to understand the kinetics for different models. The
parameters for the linear fitting analysis such as R2, rate constant (K), etc. are listed in
Table 3. From the high R2 values, the pseudo second order kinetic model was found to be
the best fitted for the present adsorption study. The Elovich and Intraparticle diffusion
models were also analyzed to understand the mechanism of adsorption. The intraparticle
diffusion model states that the adsorption process is controlled by either film diffusion, pore
diffusion, or surface diffusion or their combination [47].Ofomaja et al. reported that the
adsorption of chromium by magnetite coated biomass followed the intraparticle diffusion
model [48]. The Elovich model is a widely adapted in adsorption kinetics, used to describe
chemical adsorption [49]. The value of R2 indicated that the Elovich model was better suited
to understand the mechanism. Elovich models hints towards chemisorption and is more
suited for the heterogeneous surface of the adsorbent [50]. Similar results were reported
byAworanti et al.for the adsorption of Cr(VI) by sawdust derived activated carbon [51].
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Second order, (c) Pseudo first order, (d) Pseudo second order, (e) Elovich, (f) Intra-particle diffusion,
(pH = 6, adsorbent dosage = 0.25 mg/mL, Cr concentration = 10 ppm, total contact time = 30 min).

5.4. Isotherm Study

The isothermal analysis was performed for the composite sample CFC50 as it was
found to be the best adsorbent for the removal of Cr(VI) among all the samples. For
isothermal analysis, different concentrations of chromium in its aqueous solution were used.
The experimental data obtained were plotted in the form of Qe versus Ce (concentration at
equilibrium) to study the Langmuir, Freundlich, and Temkin adsorption isotherm [52,53].
The data were fitted with the non-linear form of all the isotherms shown in Figure S3
(Supplementary Materials). The linear and non-linear equations of the isotherms are listed
in Table S2 (Supplementary Materials). The comparative analysis of R2value for all the
isotherm models as shown in Table 4 indicated that the data were best fitted in Langmuir
isotherm equation. Hence it can be concluded that the adsorption process of Cr(VI) using
CFC50 follows the Langmuir model. From the analysis it is inferred that the adsorption
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occurs at a specific homogeneous site and is limited to one layer. The isotherm assumes that
there is a formation of a monolayer adsorbate on the outer surface of adsorbent. After the
formation of this layer no further adsorption takes place. Piccin et al. (2011) and Dada et al.
(2012) reported similar results for the adsorption of food dye and Zn+2 by chitosan and
rice husk, respectively. In both the cases the adsorption followed the Langmuir adsorption
isotherm [53,54].

Table 3. The values of K and R2 of different kinetic model fittings for the adsorption of Cr(VI) onto
the prepared samples.

Sample
Code

Qe(mg/gm) First Order Second Order Pseudo First
Order

Pseudo Second
Order Elovich Intra-Particle

Diffusion

K R2 K R2 K R2 K R2 R2 Kd R2

PANI 35.36 0.06592 0.8460 0.0242 0.9547 0.1172 0.8846 0.012 0.9836 0.8390 4.254 0.7478

CFC15 7.15 0.00419 0.473 0.00043 0.4727 0.0175 0.3347 0.134 0.9362 0.0549 0.198 0.1022

CFC25 29.52 0.03436 0.7558 0.007 0.8755 0.0503 0.9768 0.023 0.9884 0.9182 2.143 0.9427

CFC50 37.24 0.0733 0.8733 0.0383 0.8765 0.0981 0.9100 0.020 0.9937 0.9625 2.725 0.9630

CFC75 33.04 0.04476 0.5923 0.0134 0.7085 0.0718 0.7314 0.065 0.9984 0.7985 1.253 0.7239

Kd = intraparticle diffusion constant.

Table 4. Value of R2 and different constants for the Freundlich, Langmuir, and Temkin isotherm
models for the adsorption of different concentrations of Cr(VI) by CFC50.

Freundlich Langmuir Temkin

R2 Kf n R2 B qmax R2 KT

0.9730 2.534 5.420 0.9888 36.630 2.4024 0.9867 1.586

Note: Kf[(mg/g)(L/mg)1/n] = Freundlich adsorption capacity constant; n = Freundlich intensity parameter;
b (L/g) = constant indicating affinity between an adsorbent and adsorbate;qmax(mg/g) = maximum saturated
monolayer adsorption capacity of the adsorbent; KT = Temkin isotherm constant.

5.5. Effect of Adsorbent Dosage on Chromium Adsorption

To optimize the ideal dosage of adsorbent for the efficient removal of Cr from its aqueous
solution, the effect of dosage was investigated. Different dosages of adsorbent (CFC50) that
is 0.05, 0.1, 0.25, 0.5, and 1 mg/mL were explored for the removal of aqueous solution of
Cr(VI) under similar conditions. Figure 5a shows that the adsorption efficiency of CFC50
increased as we increased its dosage from 0.05 to 0.5 mg/mL.The increase in %efficiency
is due to the availability of more active sites as the adsorbent dosage is increassed. The
adsorption efficiency changed from 98.23% to 98.06% for an increase in adsorbent dosage
from 0.5 to 1 mg/mL. This observation indicating saturation of adsorption by the sample is in
agreement with the fact that the adsorption process follows the Langmuir isotherm model
as inferred from isothermal analysis. After reaching the optimum dosage, the equilibrium
was attained between the adsorbate and the adsorbent at a particular condition. Hence, the
% efficiency also became saturated. Similar results were reported by Malhotra et al., (2018)
where they found a decrease in adsorption with increase in dosage of adsorbent after attaining
the optimum dosage condition [55]. It has been reported that increasing adsorbent dosage
leads to the overcrowding of particles which led to a decrease in the adsorption performance.
Keeping in mind the economic point of view, all the adsorption studies were performed taking
0.25 mg/mL as the optimum adsorbent dosage.
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contact time = 30 min).

5.6. Effect of pH

The pH of the solution plays a vital role during the adsorption studies as it influences
the adsorption mechanism. The effect of pH was analyzed by preparing Cr(VI) solutions
with different pH values, i.e., 2, 4, 7, and 9. The adsorbent dosage was kept at 0.25 mg/mL
in 10 ppm of chromium solution with a contact time of 30 min. The pH of the aqueous
solution of Cr(VI) was found to be 6. It was observed that the adsorbent exhibited superior
performance in acidic conditions as shown in Figure 5b. Removal efficiencies of 91.39%,
94.40%, and 93.11% were observed at pH 2, 4, and 6 respectively. On the contrary, a
reduction in removal (%) was observed at higher pH values. With the increase in pH
from 6 to 9, a reduction in removal (%) from 93.11% to 56.89% by CFC50 was observed.
From the pH study performed, it is concluded that the optimum pH for the adsorption of
Cr(VI) is acidic. At acidic pH, Cr(VI) species generally exist as HCrO4

− ions which increase
their electrostatic attraction with the highly protonated polymer composite. Similar findings
showing the protonation of PANI were reported by Sulimenko et al. and Stejskal et al. [56,57].
This allows additional removal of chromium in acidic media. At basic pH, HCrO4

− becomes
converted into CrO4

2−. This creates competition between OH− and CrO4
2− ions to become

adsorbed on the surface of the adsorbent resulting in lower adsorption of chromium. The
entire mechanism of the interaction of the adsorbent with the analyte (Cr(VI)) over the
acidic and basic pH range is represented in Figure 6.

On comparing the results obtained from the present study with other similar research
work as summarized in Table 5, we can conclude that the composites prepared in this study
showed better results in terms of adsorption efficiency, adsorbent dosage, contact time, and
utilizing low-cost adsorbent.

5.7. Adsorption Mechanism

Every adsorption process has a unique mechanism. The mechanism of adsorption
depends on the interaction of adsorbent and adsorbate. The interaction is influenced
by multiple factors such as surface charge, surface area, the nature of the analyte, and
functional groups present on the surface of the adsorbent, etc. The understanding of the
mechanism and its dependence on surface characterization are very important. Mechanism
details enable us to modify the adsorbent and improve its performance. From the analysis
of the adsorption process and characterization of the adsorbent, the proposed mechanism
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is as follows. The adsorption of chromium by CF-PANI composites followed the PSO
kinetics, indicating that the adsorption by these materials occurs by chemisorption [69].
There is a strong attraction between positively charged amine functional groups (–NH–,
–NH2) present on the surface of the polymer (confirmed from the IR spectrum of PANI)
and negatively charged HCrO4

- in acidic medium. Owing to this, it can be anticipated
that electrostatic interaction could be a possible mechanism to explain the adsorption of
Cr(VI) in the present study. As inferred from the IR results the presence of oxygen and
nitrogen containing functional groups also help in the binding of Cr(VI) as mentioned in
the results obtained from FTIR analysis [42]. Hence the preparation of composites provides
more active sites for the enhanced removal of Cr(VI) due to dispersion of PANI on CF.
Similar mechanisms have been reported by Deng et al. (2015) and Chigondo et al. (2019)
for chromium adsorption using Polyethylenimine-modified fungal biomass and Magnetic
arginine-functionalized polypyrrole, respectively [70,71].
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6. Conclusions

Composites of CF and PANI were prepared with different loadings of PANI (15, 25,
50, and 75 w/w%). The composites were characterized using FTIR, FE-SEM, and FTIR spec-
troscopy for their surface and functional analysis. Subsequently, the prepared composites
were used as adsorbents (0.25 mg/mL) for the removal of hexavalent chromium (10 mg L−1)
from its aqueous solution. Our findings demonstrated that the CFC50 composite was most
effective for the removal of Cr(VI) exhibiting 93.11% adsorption in 30 min. It showed an
enhanced removal capacity as compared with pristine PANI (88.41%). The kinetics studies
indicated towards the pseudo second order (R2 = 0.9937) of the removal process. The effects
of adsorbent dosage, pH of the chromium and concentration of the chromium solution
on the adsorption performance of CFC50 were also studied. The adsorption efficiency
increased with increasing adsorbent dosages of CFC50. Moreover, from the pH studies it
was inferred that the acidic pH is more suitable for the adsorption of Cr(VI) in its aqueous
solution. This is due to the existence of Cr(VI) as a HCrO4

- ion in acidic medium which
increases its electrostatic attraction with the highly protonated polymer composite. The
adsorption of Cr(VI) by CFC50 was well described by the Elovich kinetic (R2 = 0.9625)
and Langmuir isotherm models (R2 = 0.9888). The nature of adsorption was found to be
monolayer and occurred via chemisorption. Thus, our study effectively displayed the
suitability of the prepared CF-PANI composite in the treatment of Cr(VI). Development
of CF-PANI composites results in enhanced adsorption performance of PANI for Cr(VI)
removal and also is feasible considering the economic aspect in mind. This will contribute
towards the removal of harmful pollutants and environmental mitigation which will open
new doors in the field of adsorption. Moreover, field studies using the CF-PANI composites
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as an adsorbent for wastewater treatment should be considered in future. The CF-PANI
composites evaluated in this study can be further up scaled and used in water purification
systems as a filtration medium owing to their excellent performance as adsorbents.

Table 5. Summary of research papers on the removal of chromium using PANI and bio-waste based
adsorbents.

Adsorbent Dosage of
Adsorbent (g/L) Time Removal (%) Qe(mg/g) Ref.

Rice husk
ash—Ppy—PANI 0.8 300 min 98% [26]

Polypyrole-calcium
rectorite composite 1 - 714.29 [58]

Metal-organic
framework-alginate beads 50 - 98% [59]

PANI—jute 2 180 min 62.9 [27]

PANI—silica 0.8 430 min 193.85% [28]

Calcinated wheat bran 1 24 h 29.3 [60]

Tea leaves - 24 h 84.5% [61]

Palm kernel 0.5 45 min 19 [62]

Eggshell powder 125 120 min 60.96% [63]

PANI—sugarcane bagasse 1 100 min 35.2 [64]

CoFe(2)O4—PANI 0.5 14 min 103.11 [65]

Arginine doped
PANI—walnut shell 0.3 3 h 99% [66]

Pomegranate
peels—Ppy—PANI 10 90 min 95.35% [67]

Sugarcane bagasse
Oil cake

Maize corn
20 60 min

92%
97%
62%

[68]

Coconut fiber-polyaniline
composite 0.25 30 min 93.11% 37.24 Present

study

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14204264/s1, Figure S1. Schematicflow for the synthesis
of (a) PANI, (b) CF-PANI composites, and (c) the digital images of the prepared samples; Figure S2.
UV-Vis absorbance spectra for the kinetic studies at different time intervals of time (a) PANI (b) CFC15
(c) CFC25 (d) CFC50 (e) CFC75(pH = 6, adsorbent dosage = 0.25 mg/mL, Cr concentration = 10 ppm,
total contact time = 30 min) (f) Absorbance (at λmax = 352 nm) vs. time of prepared composites for
Cr(VI); Figure S3. Freundlich, Langmuir, and Temkin isotherm models for different concentration of
Cr(VI) by CFC50 (pH = 6, adsorbent dosage = 0.25 mg/mL, Cr concentration = 10 ppm to 50 ppm,
contact time = 30 min); Table S1. Linear equation forms for different kinetic models; Table S2. Linear
and non-linear equations for Freundlich, Langmuir, and Temkin isotherm models.
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