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Abstract: Black polymer films with high thermal stability are highly desired in flexible electrical and
electronic fields. Conventional black polymer films based on high-temperature resistant polymers
and black inorganic dyes are usually suffered from the poor electrical and tensile properties. In the
current work, a series of intrinsically black polyimide (BPI) films with International Commission on
Illumination (CIE) Lab optical parameters close to zero and high thermal stability have been designed
and prepared. For this purpose, an electron-rich aromatic diamine, 4,4′-iminodianiline (NDA), was
copolymerized with 1,4-phenylenediamine (PDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride
(sBPDA) to afford a series of poly(amic acid) (PAA) solutions, which were then thermally dehydrated
to provide the final BPI films at elevated temperatures up to 400 ◦C in air. The molar fraction of NDA
in the total diamine monomers was 0 for BPI-0 (sBPDA-PDA), 10% for BPI-1, 20% for BPI-2, 30% for
BPI-3, 40% for BPI-4, 50% for BPI-5, and 100% for BPI-6. For comparison, two referenced polyimide
(PI) films, including PI-ref1 and PI-ref2, were prepared according to a similar procedure. The former
was derived from pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) and the latter was
from PMDA and NDA. The BPI films exhibited an increasing degree of blackness with the increasing
contents of NDA units in the polymer films. For example, the BPI-6 (sBPDA-NDA) film exhibited the
optical transmittance of 1.4% at a wavelength of 650 nm (T650), which was obviously lower than those
of PI-ref1 (T650 = 74.6%) and PI-ref2 (T650 = 3.6%). In addition, the BPI-6 film showed the CIE Lab
parameters of 0.39 for L*, 2.65 for a*, 0.66 for b*, and haze of 1.83, which was very close to the criterion
of “pure blackness” for polymer films (L* = a* = b* = 0). At last, incorporation of the NDA units in the
rigid-rod BPI-0 (BPDA-PDA) film slightly deteriorated the high-temperature dimensional stability
of the derived BPI films. BPI-6 film showed a linear coefficient of thermal expansion (CTE) value of
34.8 × 10−6/K in the temperature range of 50 to 250 ◦C, which was higher than those of the BPI-0
(CTE = 12.3 × 10−6/K), PI-ref1 (CTE = 29.5 × 10−6/K), and PI-ref2 (CTE = 18.8 × 10−6/K) films.
Nevertheless, the BPI films maintained good thermal stability with the 5% weight loss temperatures
(T5%) higher than 590 ◦C, and the glass transition temperatures (Tg) higher than 340 ◦C.

Keywords: polyimide; blackness; charge transfer complexes; optical properties; thermal properties

1. Introduction

Polyimide (PI) films have been widely used in modern industry for more than half a
century since their first commercialization in 1960s due to the excellent combined thermal,
mechanical, dielectric properties, and good environmental stability [1–3]. It has been
well-established that the strong inter-molecular and intra-molecular charge transfer (CT)
interactions from the electron-donating diamine units to the electron-accepting dianhydride
units play very important roles for the above-mentioned excellent properties of the standard
wholly aromatic PI films [4–6]. Thus, in theory, the properties of PI films could be tailored by
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adjusting the degree of CT interactions in the polymers. One of the most successful cases for
functionalizing the PI films by adjusting the CT interactions is the research and development
of colorless and transparent PI films in the past decades [7–9]. Researchers successfully
reduced the absorption of visible light in the PI films by inhibiting or weakening the CT
interactions inside the PI films, thus regulating the colors of PI films from traditional brown-
yellow to pale-yellow, or even to colorless [10–12]. Contrarily, it could be anticipated that if
the CT interactions inside the molecular structures of the PI films were enhanced, it might
be possible to deepen the colors of the PI films, even to be totally black.

Black PI (BPI) films represent a class of special PI films characterized by the black
appearance, which have been widely used in the fabrication of flexible printed circuit board
(FPCB) in semiconductor industry, as voice coils in loudspeakers, or as thermal control
components in aerospace vehicles [13–15]. The black appearance designed for the BPI films
for the above-mentioned applications is mainly based on the consideration of shielding
(intellectual property rights protection, etc.), covering (ultraviolet-light shielding, etc.), heat
controlling (temperature adjusting, etc.), or other purposes. As we know, the standard
PI films, such as the commercially available Kapton® (trademark of DuPont, USA) film
based on pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) or Upilex®-S
(trademark of Ube Industry, Japan) film derived from 3,3′,4,4′-biphenyltetracarboxylic
dianhydride (sBPDA) and 1,4-phenylenediamine (PDA), or Upilex®-R (trademark of Ube
Industry, Japan) film derived from sBPDA and ODA, usually showed the colors from dark-
brownness to deep-yellowness due to the strong CT interactions in the highly conjugated
molecular chains [16]. However, the CT interactions are usually not enough to endow the
PI films with the black colors. Thus, in order to achieve the desirable blackness for the PI
films, various methodologies of blending with fine carbon powders or other black additives
have to be adopted in practical applications [17–22]. What is more, the loading amounts of
the black additives are usually higher than 10 wt% so as to obtain the desired blackness.
The BPI composite films usually possess deteriorated electrical and mechanical properties
at such high contents of the black additives [23].

In recent years, the BPI films with intrinsically black or deep appearances and the good
electrical, thermal, and mechanical properties have attracted increasing attention from the
academic and engineering areas. Most of the works have been focused on the incorporation
of the third or more diamine components with enhanced electron-donating features, such as
the diamines containing quinoxaline [24,25], anthraquinone [26], and other structural units.
For example, very recently, Zhou et al. reported the intrinsically black PI films derived
from 2,4,5,7-tetraamino-1,8-dihydroxyanthracene-9,10-dione (4NADA) diamine [26]. The
copolymerized Kapton-type PI films containing 4NADA with the molar ratio of 4% in the
diamine moieties showed the lowest CIE Lab optical parameters of L* = 20.8, a* = 0.8, and
b* = −2.6. In our precious study, a series of intrinsically BPI films were developed from
a nitrogen-bridged aromatic diamine, 4,4′-iminodianiline (NDA) [27,28]. Low CIE Lab
optical parameters were achieved for the derived BPI film based on PMDA and NDA with
the curing temperature as high as 350 ◦C [27]. In our experiments, the cooperative effects
of the enhanced CT interactions and the high-temperature micro-oxidization of the imino
(–NH–) linkages in the BPIs were found to contribute to the blackness of the afforded BPI
films. According to the definition of CIE Lab color parameters shown in Figure 1 (L* is
the lightness, where 100 means white and 0 implies black. a*: positive value means red,
negative value indicates green; b*: positive value means yellow, negative value indicates
blue), the ideal “pure blackness” for the polymer films should be L* = 0. Meanwhile, in
order to eliminate the effects of other colors, the a* and b* values of the polymer films
are also preferred to be 0. Thus, the PI films with intrinsically pure blackness usually
showed the ideal feature of L* = a* = b* = 0. In practice, this “pure blackness” for pristine
polymer films is usually impossible to be achieved due to the intrinsic light-transmitting
characteristics for the organic polymers, especially for polymer films with thin thickness.
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In the current work, as an effort to explore the limitations of the blackness for poly-
mer films via the structural modification, a series of BPI films were designed and de-
veloped based on the highly conjugated poly(biphenyltetracarboxylic dianhydride-1,4-
phenylenediamine) (BPI-0) matrix. NDA was incorporated into the molecular structure of
BPI-0 via copolymerization. Meanwhile, a high-temperature imidization procedure up to
400 ◦C in air was used for the preparation of the BPI films. Effects of the NDA units and
the high-temperature imidization on the thermal and optical properties of the BPI films
were investigated in detail.

2. Materials and Methods
2.1. Materials

Highly pure (purity ≥ 99.5%) 3,3′,4,4′-biphenyltetracarboxylic dianhydride (sBPDA)
was purchased from Guchuang New Chemical Materials Co., Ltd. (Shanghai, China) and
dried at 180 ◦C in vacuo for 24 h prior to use. 1,4-Phenylenediamine (PDA) was purchased
from Tokyo Chem. Ind. Co., Ltd. (TCI, Tokyo, Japan) and used as received. The white
crystals of 4,4′-iminodianiline (NDA) were prepared in our laboratory and recrystallized
from aqueous ethanol in a glove box before use. Ultra-dry N-methyl-2-pyrrolidinone
(NMP), with the water content lower than 50 ppm, was purchased from InnoChem Sci.
Technol. Co., Ltd. (Beijing, China). The other commercially available reagents were
purchased and used as received.

2.2. Measurements

A DV-II+ Pro viscometer (Brookfield, Ametek, Middleborough, MA, USA) measured
the absolute viscosity of the poly(amic acid) (PAA) solutions at 25 ◦C. The number average
molecular weight (Mn) and weight average molecular weight (Mw) of the PAA varnishes
were tested with a gel permeation chromatography (GPC) system (Shimadzu, Kyoto, Japan).
The Fourier transform infrared (FTIR) spectra of the PI films were measured on an Iraffinity-
1S FT-IR spectrometer (Shimadzu, Kyoto, Japan). Ultraviolet-visible (UV-Vis) spectra of the
samples were recorded on a U-3210 spectrophotometer (Hitachi, Tokyo, Japan). Wide-angle
X-ray diffraction (XRD) was conducted on a D/max-2500 X-ray diffractometer (Rigaku,
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Tokyo, Japan). CIE Lab color parameters of the BPI films were measured using an X-rite
color i7 spectrophotometer (Grand Rapids, MI, USA) with PI films at a thickness of 25 µm.
The color parameters were calculated according to a CIE (International Commission on
Illumination) Lab equation. L* is the lightness, where 100 means white and 0 implies black,
as shown in Figure 1. The whiteness indices (WI) of the BPI films were calculated as follows:
WI = 100 − [(100 − L*)2 + a*2 + b*2]1/2.

Thermogravimetric analyses (TGA) of the BPI films were measured on a TA-Q50
thermal analysis system (New Castle, DE, USA) at a heating rate of 20 ◦C/min in nitrogen.
Dynamic mechanical analyses (DMA) were tested with a TA-Q800 thermal analysis system
(New Castle, DE, USA) with a heating rate of 5 ◦C/min and a frequency of 1 Hz in nitro-
gen. Thermo-mechanical analysis (TMA) measurements were carried out on a TMA402F3
thermal analysis system (NETZSCH, Selb, Germany) in nitrogen with a heating rate of
5 ◦C/min. The coefficients of linear thermal expansion (CTE) values of composite films
were recorded in the range of 50–250 ◦C.

2.3. Preparation of PI films

A standard two-step procedure was used for the preparation of the BPI films. BPI-6
was used as an example to illustrate the preparation pathway. For the poly(amic acid)
(PAA) precursor synthesis, NDA (19.9250 g, 100 mmol) and DMAc (148.0 g) were added
into a 500 mL flask equipped with a mechanical stirrer, a cold water bath, and a nitrogen
circulating system. The diamine solution was cooled to be 5–10 ◦C. Although the diamine
solution was carefully protected with nitrogen to prohibit the oxidation, the color of the
solution turned from colorless to purple within 10 min. Then, sBPDA (theory amount:
29.4220 g, 100 mmol) was gradually added to the NDA solution and the absolute viscosity
of the PAA solution increased gradually. When the absolute viscosity of the PAA solution
reached 10000 mPa s, the addition of sBPDA ceased. The amount of BPDA was found to be
29.1337 g, which was about 99.0% of the theoretical amount. Then, the PAA solution was
stirred at 5–10 ◦C for 24 h under nitrogen. The obtained black and viscous solution with
the solid content around 25 wt% was diluted with DMAc to afford the homogeneous PAA
solution with the solid content of 15 wt% and viscosity around 6000 mPa s.

The PAA solution was then filtered through an automatic filter press with the filter
membranes of 1.0 µm to remove any impurities. Then, the purified PAA solution was
cast onto a clean glass substrate and thermally baked in a high-temperature oven in air
conditions according to the following imidization procedure: 80 ◦C/2 h, 150 ◦C/1 h,
250 ◦C/1 h, 350 ◦C/1 h, and 400 ◦C/1 h. Then, the temperature was decreased naturally to
room temperature. The glass substrate was immersed into deionized water preheated to
80 ◦C. Then, free-standing BPI-6 film peeled off the substrate and was obtained as a flexible
and tough film with a black appearance.

The other BPI films were prepared according to similar procedures, as mentioned
above. In addition, two referenced PI films were also prepared from pyromellitic anhydride
(PMDA) with 4,4′-oxydianiline (ODA) for PI-ref1 [27] and with NDA for PI-ref2 [27]
according to the procedure reported in our previous work. The properties of the PI-ref
films were correspondingly cited in the current work.

3. Results and Discussion
3.1. PI Films Preparation

The BPI films were designed and prepared via a well-established two-stage polymer-
ization procedure for PI films preparation shown in Figure 2. The soluble PAA precursors
were first synthesized and then thermally imidized to afford the final PI films at elevated
temperature up to 400 ◦C in an air environment. BPI-0 and BPI-6 were homopolymers and
represented the two ends for the series of polymers, while BPI-1–BPI-5 were copolymers
with tailored molar ratio of PDA and NDA diamines. It has been mentioned in the Introduc-
tion section that the colors of the PI films are highly affected by both of the CT interactions
in the polymer chains and the processing conditions for the films. The CT interactions could
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be roughly estimated by the energy level gap (Eg) between the lowest unoccupied molecular
orbital (LUMO) energy levels (εLUMO) and the highest occupied molecular orbital (HOMO)
energy levels (εHOMO) for the repeating units of the PIs (Eg = εLUMO−εHOMO) [29–31]. The
εLUMO and εHOMO values of the PI molecular chains could be calculated according to the
density functional theory (DFT)/B3LYP methods with Gaussian 09 software using the
6-311G(d) basis set [29]. Generally, the lower the Eg values, the more significant the CT
interactions in the polymers, and the more significant the absorption of visible light by
the polymers. The calculated molecular orbital energy and electrostatic potential maps of
PIs are shown in Figure 3. The PIs showed a decreasing Eg value of BPI-0 (sBPDA-PDA)
> PI (sBPDA-ODA) > BPI-6 (sBPDA-NDA), indicating that BPI-6 possessed much stronger
CT interactions in the molecular chains than that of BPI-0. This is mainly due to the
enhanced CT interactions by the lone pair of electrons in the nitrogen in NDA units.
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The molecular weights of the PAA precursors are shown in Table 1. In the current
research, the final absolute viscosities were controlled to be around 6000 mPa s in order
to meet the future fabrication procedure for FPCBs. Thus, the molecular weights of the
PAA precursors were adjusted by varying the molar amounts of sBPDA. The PAA var-
nishes exhibited the number average molecular weights (Mn) and polydispersity indices of
2.73 × 104–3.34 × 104 g/mol and 1.53–3.18, respectively. Although the molecular weights
of the PAA vanishes were controlled in order to achieve a relatively low viscosity at a
high solid content, the moderate Mn values were expected to meet the requirements of
the following PI film preparations. In addition, it could be noticed that incorporation of
the NDA components increased the PDI values of the PAAs, which might be due to the
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somewhat branching reactions between the highly reactive anhydride groups in sBPDA
and the low-reactive imido (-NH-) groups in NDA units during the polymerization.
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Table 1. Molecular weights of the PAAs.

Samples Mn
a (×104 g/mol) Mw

a (×104 g/mol) PDI a

PAA-0 2.73 4.19 1.53
PAA-1 2.75 6.36 2.31
PAA-2 2.80 6.68 2.38
PAA-3 2.90 7.12 2.46
PAA-4 2.93 7.43 2.54
PAA-5 2.93 7.44 2.54
PAA-6 3.04 9.66 3.18

a Mn: number average molecular weight; Mw: weight average molecular weight; PDI: polydispersity index,
PDI = Mw/Mn.

As illustrated in the procedures shown in Figure 4, a series of BPI films were prepared
by thermally imidized the PAA precursors in the temperature range of 80–400 ◦C. It
could be clearly observed that the colors of the PI films gradually blackened with the
increasing of the NDA contents in the polymers. When the molar ratio of NDA in the
total diamines reached 40% (BPI-4), the films became totally black in the color. FTIR
measurements were performed to confirm the chemical structures of the BPI films and
the results are shown in Figure 5. First, the imide rings revealed a series of characteristic
absorptions in the spectra for all of the polymers. For instance, the imide carbonyl groups
revealed the asymmetric and symmetric stretching vibrations at 1771 cm−1 and 1705 cm−1,
respectively. They also showed the bending vibrations at 737 cm−1. The imide C-N groups
showed the stretching vibrations at 1350 cm−1. In addition, the C=C bonds in phenyl ring
exhibited the characteristic absorptions at 1504 cm−1. The weak characteristic absorptions
of N-H stretching vibrations at 3383 cm−1 were only observed for BPI-1–BPI-6. The FTIR
information revealed here confirmed the successful preparation of the films.
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3.2. Optical Properties

One of the main targets for the current work was to develop PI films with intrinsi-
cally black colors close to “pure blackness”. Two pathways were adopted for this target,
including the enhancement of CT interactions in the PI (sBPDA-PDA) system by the lone
pair of electrons containing NDA diamine and the slight oxidation of the –NH– groups at
high temperatures. UV-Vis and CIE Lab measurements were performed to evaluate the
structure–optical properties relationship of the afforded BPI films. The results are listed
in Table 2. The UV-Vis spectra (Figure 6) of the PI films indicated that the developed BPI
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films exhibited quite low optical transmittance in the visible light regions. They showed
the cutoff wavelengths (λcut) in the range of 415–572 nm, which were lower than that of
the standard PI-ref1 (PMDA-ODA) film (λcut = 407 nm). In addition, the λcut values of
the BPI films increased with the increase of the NDA contents in the films. The optical
transmittances of the BPI films at different wavelengths of 550 nm (T550), 650 nm (T650),
and 760 nm (T760) were also recorded. The BPI-6 film showed the T550, T650, and T760
values of 0, 1.4%, and 22.5%, respectively, which were obviously lower than those of the
PI-ref1 film (T550 = 70.4%; T650 = 74.6%; T760 = 80.9%) and were comparable to those of
the PI-ref2 (PMDA-NDA) films cured at 400 ◦C (T550 = 0; T650 = 3.6%; T760 = 36.8%). The
effects of the curing temperature on the optical properties of the PI films could be revealed
by comparing the optical transmittances of the films at different curing temperatures. For
example, it could be seen from the data shown in the parentheses that the 350 ◦C-cured
PI-ref2 film showed the T550, T650, and T760 values of 0.4%, 34.8%, and 72.4%, respectively,
which were apparently higher than those of the 400 ◦C-cured counterparts. It should be
noticed that the curing condition of 400 ◦C in a natural environment is quite common in
the practical manufacturing of commercial PI films, especially for the biphenyl types of PI
films [32,33]. Thus, the currently used film-making conditions at a high temperature of
400 ◦C are reasonable and acceptable for the industrial applications.

Table 2. Optical and thermal properties of the BPI films.

Samples λcut
a

(nm)
T550

a

(%)
T650

a

(%)
T760

a

(%) L* a a* a b* a WI a Haze
(%)

BPI-1 415 9.7 40.2 63.4 38.45 35.62 65.74 3.16 1.64
BPI-2 499 5.0 32.7 59.5 27.38 37.70 47.13 5.57 0.40
BPI-3 525 1.3 23.4 53.5 23.78 37.36 40.97 5.75 0.66
BPI-4 529 0.6 14.2 43.3 13.07 31.86 22.51 4.72 0
BPI-5 563 0 5.6 29.5 4.27 22.51 7.34 1.39 0
BPI-6 572 0 1.4 22.5 0.39 2.65 0.66 0.35 1.83

PI-ref1 407 70.4 74.6 80.9 88.65 −9.35 79.41 14.45 0.68

PI-ref2 592
(555) b

0
(0.4)

3.6
(34.8)

36.8
(72.4)

2.20
(23.36)

11.99
(46.43)

3.33
(40.26)

1.41
(1.76)

0
(0)

a λcut: Cutoff wavelength; T550, T650, T760: Transmittance at the wavelength of 550 nm, 650 nm, and 760 nm,
respectively; L*, a*, b*: CIE Lab optical parameters, see Measurements; WI: whiteness index. b The data in the
parentheses were for the films cured at 350 ◦C.

The CIE Lab color parameters of the BPI films were measured, and the plots are shown
in Figure 7. All the BPI films exhibited the lightness (L*) values below 40, indicating the
dark nature of the films. BPI-6 film had a L* value of 0.39, which was much lower than that
of the PI-ref1 (L* = 88.65) and very close to the pure blackness (L* = 0). Meanwhile, the
BPI-6 film showed the positive a* and b* values of 2.65 and 0.66, respectively, indicating a
little bit red of and yellow nature in the film. The whiteness index (WI) of the BPI-6 film
was only 0.35. In addition, the BPI-6 film showed the low haze of 1.83%. Thus, BPI-6 could
be a film with the degree of blackness close to “pure black” level (L* = a* = b* = 0).

At last, it is worth noticing that PI-ref2 (PMDA-NDA) cured at 400 ◦C also showed
quite low WI (1.41) and low Lab values (L* = 2.20; a* = 11.99; b* = 3.33). What is more,
according to the simulation results shown in Figure 3, PI-ref2 had a lower Eg value than
that of BPI-6. Thus, the PI-ref2 film should exhibit higher CT interactions and deeper colors
than that of BPI-6. However, in the UV-Vis and CIE Lab measurements, BPI-6 showed
the lower optical transmittance and deeper colors. Therefore, the XRD plots of the PI
films were further measured, and the results are shown in Figure 8. PI-ref2 showed the
typical amorphous structural feature, while BPI-6 showed a clear crystalline nature with
the scattering angles in the range of 10~30◦ due to the ordered packing of the molecular
chains in BPI-6 caused by the rigid-rod biphenyl units in the dianhydride moiety and the
enhanced molecular chain interactions by the imino (–NH–) units in the diamine moiety.
The crystalline domains in BPI-6 efficiently decreased the penetration of visible light and
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thus endowed the film with deeper colors. Based on the above discussion, one can draw the
conclusion that the colors of PI films were simultaneously affected by the CT interactions,
crystallinity of the molecular chains, and the processing conditions.
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3.3. Thermal Properties

Various measurements, including TGA, DMA, and TMA, were performed to inves-
tigate the structure–thermal properties relationship of the BPI films and the results are
summarized in Table 3. First, the TGA and derivative TGA (DTG) plots of the BPI films
shown in Figure 9 revealed that the BPI films did not lose the original weights before
500 ◦C in nitrogen and showed the 5% weight loss temperatures (T5%) in the range of
591.3–625.9 ◦C. All the BPI films showed the residual weight ratios at 750 ◦C (Rw750) around
70 wt%. They showed the most rapid decomposition temperatures (Tmax) in the range
of 631.3–662.0 ◦C. All the BPI films showed apparently higher thermal resistance than
those of the standard PI-ref1 film. Meanwhile, incorporation of NDA units in BPI-0 matrix
decreased the T5% and Tmax values of the BPI films, increasing the Rw750 values at the same
time. The flexible imino linkages in the NDA units contributed to the inferior initial thermal
decomposing temperatures for the polymers. However, the NDA-induced crystallinity for
the BPI films increased the weight retentions of the films at elevated temperatures.

Table 3. Thermal properties of the PI and PI-ref films.

PI T5%
a (◦C) T10%

a

(◦C)
Tmax

a

(◦C)
Rw750

a

(%) Tg
b (◦C)

CTE c

(×10−6/K)

BPI-0 ND d ND ND ND ND 12.3
BPI-1 625.9 646.1 662.0 69.2 ND 15.3
BPI-2 617.8 639.3 655.3 70.1 349.5 20.9
BPI-3 609.6 632.8 649.5 69.9 347.6 26.6
BPI-4 609.3 632.2 646.8 71.1 365.5 28.9
BPI-5 602.4 625.3 642.3 71.6 349.0 32.2
BPI-6 591.3 619.1 631.3 72.7 351.7 34.8

PI-ref1 581.0 594.8 605.1 61.6 418.8 29.5
PI-ref2 515.7 559.6 591.3 59.6 431.6 18.8

a T5%, T10%: Temperatures at 5% and 10% weight loss, respectively; Tmax: Temperature at which the rapid decomposi-
tion was recorded; Rw750: Residual weight ratio at 750 ◦C in nitrogen; b Tg: Glass transition temperature detected by
DMA measurements; c CTE: linear coefficient of thermal expansion in the range of 50–250 ◦C; d Not detected.
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The dynamic mechanical behaviors and glass transition temperatures (Tg) of the BPI
films were evaluated by DMA measurements, and the results are shown in Figure 10. It
could be observed from the modulus–temperature plots of the BPI films shown in Figure 10a
that incorporation of flexible NDA units gradually decreased the storage modulus (E′) of the
BPI films. The BPI-1 showed an initial E′ value of 6.71 GPa at 50 ◦C, which was obviously
higher than that of BPI-6 film (E′ = 1.46 GPa). It was the same trend for the loss modulus
(E′′) of the BPI films. Apparently, the flexible –NH– linkages in NDA components decreased
the modulus of the BPI films. According to the tan delta plots shown in Figure 10b, all the
BPI film showed clear glass transition behaviors around 350 ◦C except for BPI-1. The peaks
of the tan delta plots were defined as the Tg values of the polymers. Thus, the current BPI
films showed the Tg values in the range of 347.6–365.5 ◦C, which were lower than those of
PI-ref1 (Tg = 418.8 ◦C) and PI-ref2 (Tg = 431.6 ◦C).

At last, the high-temperature dimensional stability of the BPI films was evaluated by
TMA measurements, as shown in Figure 11. BPI-0 film (trademark: Upilex®-S) has been
well-known for the low coefficient of thermal expansion (CTE) in the wide temperature
range and has been widely used in semiconductor industry as substrates for FPCB, COF
(chips on films), TAB (tape automated bonding), and other high-tech applications. It could
be seen from Figure 11 that BPI-0 film did not show obvious dimensional change in the TMA
test and revealed the CTE value of 12.3 × 10−6/K in the temperature range of 50–250 ◦C.
With the increasing contents of NDA units in the BPI films, the dimensional stability of
the polymers gradually deteriorated. For example, BPI-6 film showed the CTE value of
34.8 × 10−6/K, which were apparently higher than those of BPI-0, or even the standard
PI-ref1 film (CTE = 29.5 × 10−6/K). In the FPCB fabrication, the copper foil has the CTE
value around 17.0 × 10−6/K. Thus, the PI film substrate should have a similar CTE value
in order to prohibit the reliability problems arising from the CTE mismatch in the practical
FPCB applications. In the currently developed BPI films, only BPI-1 (CTE = 15.3 × 10−6/K)
showed a comparable CTE value to that of copper coil. Thus, further decreasing of the
CTE values of the BPI films with more deep colors should be further investigated. In our
preliminary experiments, incorporation with silica nanoparticles showed good promising
results in decreasing the CTE values of BPI-6 film, which will be reported in our next work.
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4. Conclusions

The current work aimed to develop high-performance BPI films with excellent black-
ness close to “pure black” level while maintaining good thermal and high-temperature
dimensional stability for FPCB applications. Incorporation of the NDA diamine containing
chromophoric groups into the intrinsically colored BPI-0 (sBPDA-PDA) system was proven
to be effective to achieve the target. The BPI-6 homopolymer derived from sBPDA and NDA
showed the dark appearance with the WI of 0.35 and the CIE lab color parameters close to
0. In addition, the BPI-6 film showed good thermal stability, with the initial decomposition
temperature higher than 590 ◦C and Tg over 350 ◦C. Although the BPI-6 film showed a
slightly higher CTE value than required, further modification via composite technique
might be promising to compensate the gap. The detailed results will be reported in our
next work.
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