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Abstract: Fabricating complex parts using additive manufacturing is becoming more popular in
diverse engineering sectors. Structural Health Monitoring (SHM) methods can be implemented
to reduce inspection costs and ensure structural integrity and safety in these parts. In this study,
the Surface Response to Excitation (SuRE) method was used to investigate the wave propagation
characteristics and load sensing capability in conventionally and additively manufactured ABS
parts. For the first set of the test specimens, one conventionally manufactured and three additively
manufactured rectangular bar-shaped specimens were prepared. Moreover, four additional parts
were also additively manufactured with 30% and 60% infill ratios and 1 mm and 2 mm top surface
thicknesses. The external geometry of all parts was the same. Ultrasonic surface waves were
generated using three different signals via a piezoelectric actuator bonded to one end of the part. At
the other end of each part, a piezoelectric disk was bonded to monitor the response to excitation.
It was found that hollow sections inside the 3D printed part slowed down the wave travel. The
Continuous Wavelet Transform (CWT) and Short-Time Fourier Transform (STFT) were implemented
for converting the recorded sensory data into time–frequency images. These image datasets were fed
into a convolutional neural network for the estimation of the compressive loading when the load was
applied at the center of specimens at five different levels (0 N, 50 N, 100 N, 150 N, and 200 N). The
results showed that the classification accuracy was improved when the CWT scalograms were used.

Keywords: convolutional neural network; additive manufacturing; ABS; SHM

1. Introduction

In recent years, additive manufacturing (AM) applications have grown rapidly to
produce complex parts that cannot be manufactured with traditional methods. Manufac-
turing using additive manufacturing lowers the manufacturing costs, saves energy and
materials, and eliminates the tooling costs [1,2]. One of the most commonly used additive
manufacturing techniques is fused filament fabrication, also known as fused deposition
modeling (FDM). The internal geometry of AM parts can be customized with repetitive
patterns, called infills, which can help to reduce weight, material, and manufacturing
time [3]. As AM parts become increasingly popular in many engineering sectors, structural
health monitoring (SHM) methods will be required for assessing the structural integrity
and detecting damage in these parts [4–6]. As part of the SHM approaches, damage identi-
fication methods are used to monitor a wide range of structural faults and external loading
applied to the structures. Since additively manufactured polymer parts have a small size
and a high attenuation, it is necessary to adjust the current SHM techniques accordingly.

Surface (Rayleigh) waves on solid materials can travel long distances, and their char-
acteristics change when they pass sections with cracks, corrosion, loose bolts, or external
loads [7]. By using SHM methods that are based on Lamb waves, it is possible to detect the
faults originating from a change in wave characteristics or echoes. There are studies in the
literature implementing SHM methods for the quality control of additive manufacturing
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parts [8,9]. The existence of hidden geometries such as multiple skin thicknesses, infill pat-
terns, and infill ratios can vary the specifications of wave propagation [10,11]. In previous
studies, sine and sweep sine waves were extensively used as excitation signals. Fast Fourier
Transform (FFT) [12], Wavelet [13], Cepstrum [14], and Mode Decomposition [15] methods
were used for the analysis of the monitored signals. A new excitation signal consisting of
multiple pulses with different widths was introduced in this study, which eliminated the
need for a signal generator and could be produced using only digital electronic circuits.

Continuous monitoring of the structural condition using SHM methods requires
extensive data collection and analysis. Artificial intelligence (AI) techniques have been
widely used for the interpretation of data [16]. Classical machine learning (ML) classifiers
such as Support Vector Machines (SVM) [17,18], Artificial Neural Networks (ANN) [19,20],
k-means clustering [21,22], and Principal Component Analysis (PCA) [23,24] were used
to map the patterns of sensory data for the detection and classification of damages and
defects [25]. In a study performed by Zhang et al. [26], SVM was used for classifying
different types of damage in an aluminum beam. Khatir et al. [27] investigated damage
detection and quantification in a laminated composite plate using ANN. Bouzenad et al. [28]
employed the k-mean algorithm for the condition monitoring of pipelines. There are several
challenges associated with traditional machine learning techniques, including the handling
of large datasets, the determination of features, and the selection of features that are
damage-sensitive [29]. In contrast, Deep Learning (DL) methods do not require feature
selection for classification even when they are used to classify very complex datasets such
as pictures [30] nor do they require human intervention for distinguishing multiple classes
with high accuracy [31]. The two-dimensional Convolutional Neural Network (CNN) is a
very widely used Deep Learning (DL) algorithm that consists of three layers of neurons
(input layer, hidden layers, and output layer) used for image classification. Studies on
SHM have used signal processing techniques combined with CNN to detect and classify
damages [32,33].

To use 2D CNN in damage detection and damage classification studies, the sensory
data need to be converted into an image for training the network. Ruiz et al. [34] converted
the time domain signal data into image texture for classifying different faults of wind
turbine blades. Tang et al. [35] produced a composite image by splitting time-series data
into multiple segments and adding the visualized time and frequency responses into a 2D
array. Time-series sensory data can be converted into 2D time–frequency graphical displays
using Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT).
These images can be used for training the CNN algorithms to evaluate the condition of
large structures [35] as well as small machines [36].

The effects of print settings and internal hidden geometry on wave propagation char-
acteristics and load sensing were investigated in this study. Seven rectangular bar-shaped
specimens were fabricated additively using various print orientations and infills. The wave
propagation characteristics were compared with those in a commercially manufactured bar
with the same dimensions. Data collection was conducted by using the Surface Response
to Excitation (SuRE) method. In order to evaluate the effectiveness of this SHM method in
load sensing, the test specimens were loaded at the center with five levels of compressive
forces, and CNN was used to estimate the load on the specimen.

2. Theoretical Background

An essential aspect of vibration-based SHM studies is the dynamic response to excita-
tion, which has been used in the literature to select damage-sensitive features and conduct
statistical analyses as part of the damage assessment process [37]. Guided waves, called
lamb waves in thin metal plates, travel in the solid medium for long distances with low
attenuation. These waves travel in three modes: symmetric (in plane), anti-symmetric (out
of plane), and shear horizontal. It is possible to attach piezoelectric wafer active sensors
(PWAS) to the host structure to both excite and measure surface waves. The advantages of
piezoelectric elements have made them very popular in SHM studies; they are affordable
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and lightweight and can be designed in a variety of sizes and geometries. With the SuRE
method, an excitation signal is applied to a piezoelectric element to excite guided waves
on the surface of the structure, and one or more contact/noncontact sensors are used to
monitor the dynamic response to excitation at the desired location. As a result of the vis-
coelastic behavior of the material, dispersive traveling waves undergo damping, depending
mainly on the structure’s properties. With the help of the inverse piezoelectric effect, the
waves reaching the sensor are converted to an electric signal which can be displayed in an
oscilloscope or recorded by a data acquisition system.

Different signal processing techniques can be used to acquire information regarding
the changes in the state of the structure. This can be achieved by identifying critical
features that reveal changes in the material state when compared with a reference state.
The recorded sensory data in the time domain can be analyzed in the frequency domain by
using the Fast Fourier Transform (FFT) algorithm. The FFT calculates the Discrete Fourier
Transform (DFT) of a signal in a shorter time. Equation (1) allows the calculation of the
DFT for signal x(n).

X(k) =
N−1

∑
n=0

x(n)e−j 2πkn
N (1)

where x(i) represents the original signal at time i, N represents the length of the signal,
and X(k) is a complex number representing the amplitude and phase of a sinusoidal wave.
Considering the assumption that the mechanical and electrical properties of piezoelectric
elements remain constant during the experiment, any changes in the recorded signal can be
referred to as a change in the mechanical properties of the structure. It has been suggested
that the Sum of the Square of Differences (SSD) can be used as a damage detection metric
in order to calculate the differences in the frequency spectrum between the current state
and the reference (also called the baseline) [38].

The FFT spectrum of a signal represents the frequency components of a signal but
does not reveal any information about the time components. In order to analyze how the
frequency content of a nonstationary signal changes over time, STFT can be used. STFT
obtains the spectral characteristics of a signal by calculating the FFT in short time intervals.
Spectrograms are time–frequency domain plots created by this transformation [39]. The
following equation represents the mathematical expression of the STFT:

Xm(ω) = ∑∞
n=−∞ x(n)w(n−mh)e−jωn (2)

Here, x(n) is the input signal, w(n) is the m-point window function, and h is the hop
size. STFT is based on a fixed-size time-shifted window, with a poor resolution in time or
frequency; the window is either small in time, which gives a poor frequency resolution, or
wide, which reduces the time resolution.

Continuous Wavelet Transform is a digital processing technique that improves the
time and frequency resolution to overcome the limitations of STFT. This technique is based
on wavelets which are wave-like oscillations with a zero average, localized in time and that
can be asymmetric, non-smooth, and irregular. A signal can thus be divided into a family
of wavelets, fundamentally identical but different in their scales and shifts. The CWT uses
a size-adjustable window which has a longer window for local areas with low frequencies
and a shorter window when the area is localized in the high frequencies. Equation (3)
expresses this transformation:

T(a, b) =
1√
a

∫ +∞

−∞
x(t)γ∗

(t− b)
a

dt (3)

where x(t) is the input signal, γ is the wavelet function, a and b are translation and dilation
parameters, respectively. The Spectrogram (obtained using STFT) and scalogram (the out-
put of CWT) images acquired from the time-domain sensory data have been implemented
as input datasets for the Convolutional Neural Network classification [40].
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In this study, a two-dimensional CNN was implemented for the classification of the
recorded data. The size of the input images was set as 389 × 343 × 3 in width, height, and
color channels (red, green, and blue), respectively. An abstract illustration of the CNN
architecture is shown in Figure 1; it consisted of three main layers. By applying convolution
operations to different filters and the input images, different features were extracted from
the input data at the convolutional layer. This layer produced a feature map, which
contained detailed information about the input image. This step resulted in a decrease
in data width and height, but an increase in data depth. The activation functions were
added to the network after the convolution layers in order to introduce non-linearity into
the network. Using activation functions helped the network to learn the complex features
of the data. There are different types of activation functions in CNNs, but the Rectified
Linear Unit (ReLU) is the most common. CNNs consist of a succession of convolution and
pooling layers and finish with fully connected and softmax layers. In the pooling layer, the
size of the feature map is decreased by summarizing the features, which results in a better
computational performance. Among different pooling operations, maxpooling was chosen
for this network. In this layer, each patch in the feature map is summarized by selecting the
largest value. Fully connected layers output one-dimensional arrays of numbers using the
output from the previous layers. Finally, the softmax layer creates a probability distribution
for each class, which assigns a probability value to every defined class of data. In this study,
the CNN consisted of three building blocks of convolution and pooling layers between the
input data and the output. The first, second, and third blocks were composed of 15, 30, and
45 filters, with a kernel size of 3 × 3. The maxpooling layers in each block had filters of size
2 × 2 with a stride of 2. Table 1 provides the details of the training settings.
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Table 1. Training settings of the CNN.

Solver Initial Learn Rate Max Iteration Shuffle

sdgm 0.0001 150 Every-epoch

3. Experimental Setup

A Funmat Pro 410 3D printer was used to fabricate ABS parts using the Fused De-
position Modeling (FDM) technology at high chamber temperatures to overcome the
difficulties of 3D printing ABS parts. To study the effect of the print direction on the
wave propagation characteristics and the effectiveness of the SHM method in load sensing
on 3D printed polymer parts, eight test bars were prepared with the same dimensions
(170 × 38 × 10 mm). The test specimens were categorized into two sets based on their
internal geometry characteristics (solid parts and parts with infills). The first set had one
conventionally manufactured ABS part which was cut from an ABS plate (manufactured
by the extrusion process) and three additively manufactured ABS bars. In Figure 2a, the
additively manufactured solid ABS parts with different print orientations are shown, as
well as the conventionally manufactured part that was cut from an ABS plate. In the case
of Flat and Edge parts, printing was performed in the direction along which the largest
and second-largest surfaces of the part were located on the bed. With the help of supports,
the Inclined part was fabricated on the largest surface with a 45◦ angle relative to the print
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bed. The second test set included four bars with similar dimensions as the solid bars, but
with different internal hidden geometries: two parts with 30% rectangular infills, and two
with 60% rectangular infills, each with a thickness of 1 mm or 2 mm. Figure 2b shows
the internal geometry of the parts with infills. The thickness of the skin is not visible in
this photo.
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Figure 2. ABS test specimens: (a) solid parts; (b) parts with infills.

Figure 3 shows the experimental setup used in this study for data collection. The
SuRE method was implemented to excite the test specimen with surface waves and to
monitor the response to excitation. Two piezoelectric disks were permanently attached to
each end of the test specimens using the M-Bond 200 adhesive. The parts were excited
from one side, and the dynamic response to excitation was monitored on the other side
using the other piezoelectric element. Rigol DG1022 was the arbitrary function generator
used to generate surface waves on the test specimens, and the Owon XDS3104AE digital
oscilloscope was used for recording the sensory data at a sampling rate of 5 MS/s. Three
different excitation signals were used for different purposes. A single-pulse excitation
signal with 20 µs duration was used for measuring the wave travel time in different parts.
To compare the envelopes of the recorded signals in the time domain, a 20 V peak-to-
peak sweep sine wave in the 50–150 kHz range was used with a sweep time of 1.0 ms.
Multiple-width pulse excitation (MPWE) is the third excitation signal used for load sensing.
It consists of 20 consecutive pulses with incremental durations within each step and a 40 µs
time delay after each pulse.
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In order to evaluate the load estimation accuracy using the SuRE-CNN combination,
tests were performed when the parts were in a relaxed state and at four levels of loading. A
MARK-10 force gauge was used to hold the center of each part under compression loads
of 50 N, 100 N, 150 N, and 200 N. In each loading condition, the experiment was repeated
10 times with one PZT acting as an actuator, and the other as a sensor.

4. Results
4.1. Surface Waves’ Travel Time

In the first experiment, the single-pulse excitation was used for exciting the parts
with a short pulse and monitoring the arrival time of the wave to the other end of the test
bar. The aim of this experiment was to examine how the print orientation and infill of
the 3D-printed specimens affected the wave speed over the ABS test specimens. Figure 4
shows that the first test group, which consisted of solid parts, responded differently to
the single-pulse excitation than the second test group. Both plots include the data for
the conventionally manufactured part as a reference. As can be observed in Figure 4a,
the conventionally manufactured solid parts had a slightly higher wave speed than the
additively manufactured ones. It can be observed that the ultrasonic surface waves traveled
relatively slowly in the inclined part compared to other solid parts. Figure 4b shows that
the surface waves traveled at lower speeds when hidden geometries were designed. It also
can be concluded that the surface wave travel speed in 3D printed parts can be increased
by increasing surface thickness and infill ratio.
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4.2. Effect of the Print Settings on Wave Propagation Characteristics

In the second study, surface waves were excited with a sweep sine wave between 50
and 150 kHz and a sweep time of 0.1 ms. The experiment was performed when the parts
were in relaxed condition without any loads on them. Figure 5 presents the envelopes of
the recorded signals in the time domain for both test groups. As the frequency of the sweep
sine excitation signal increased linearly with time, the observed envelopes are similar to
FFT spectrums. It is possible to observe a similar trend for different solid parts, though their
responses to excitation differed. It can be seen that the surface waves on the commercially
manufactured bar had the highest amplitude compared to those on the 3D printed bars,
especially at higher frequencies. Figure 5 shows that at lower frequencies, the monitored
signal amplitude for parts with a 30% infill ratio was higher than for parts with a 60% infill
ratio, while at higher frequencies, the opposite was true.
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4.3. External Load Estimation

For the third study, all parts were subjected to compressive loads from 0 to 200 N in
50 N steps, and the data were analyzed for estimating the applied force. In this experiment,
an MWPE excitation signal was applied to the actuator piezoelectric. The MWPE signal
consisted of 20 pulses with progressively longer pulses over time. The wave generator was
set at the highest voltage level (20 V), and the first pulse lasted for 0.5 µs. There was an
increase in pulse widths by 0.5 µs at the following pulses with 400 µs intervals between
consecutive pulses. Figure 6 shows the collected sensory data in the time domain when
no load was applied on the solid parts and on parts with 30% and 60% infill with 2 mm
skin thickness. The fabricated part on the edge showed the most similar time-domain
signal to that of the conventionally manufactured part. Spectrograms and scalograms are
time–frequency representations derived using STFT and CWT algorithms, respectively.
Figures 7 and 8 show the obtained spectrograms and scalograms for solid bars as a sample.
To provide the CNN with the most meaningful information, the frequency band was limited
between 5 kHz and 2 GHz. The network was trained with 70% of the dataset and tested
with 30% of it.
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For each study, the CNN was trained through the use of two different image datasets:
spectrograms and scalograms. In the first case study, the CNN classified all test bars in
a relaxed state without any load applied. For the second case study, the CNN was used
to estimate the load applied on the 3D printed solid bars under five different loading
conditions. In the third study, the CNN was employed six times to estimate the loading
on parts with different infill ratios at five loading conditions using different combinations
of data.

The performance of the trained CNNs for the first study is presented in Figure 9.
There were eight classes that corresponded to parts with different manufacturing settings,
including one conventionally manufactured part, three additively manufactured solid
parts, and four additively manufactured parts with infills. The data were collected when
no load was applied on the parts. The classification results presented in Figure 9 show that
the CNN could distinguish these eight different classes with 100% accuracy, regardless of
whether spectrograms or scalograms were used.
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Figure 9. Classification results for all parts under no loading.

For the second study, two CNNs were trained (using scalogram and spectrogram
datasets) to classify 15 classes of the data for the solid parts (Flat, Inclined, and Edge),
each at 5 different loading conditions. Based on the results shown in Figure 10, the overall
classification accuracy was 84.4% for spectrograms and 95.6% for scalograms. Misclassified
cases were within the range of 50 N from the actual test value in both studies.
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Figure 10. Classification results for solid parts at different loading conditions.

In the third study, the load for each bar was estimated at five different load levels using
data from the 3D printed bars with infills. In total, six CNNs were trained for parts with
30% and 60% infills, and the performance results are presented in Table 2. In comparison to
their performance when using spectrograms, the CNNs performed better when trained
on scalograms.
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Table 2. Classification results for 3D printed parts with infills.

Parts Inputs No. of Classes Training Cases Testing Cases Errors Accuracy

30% infills
Spectrogram 10 70 30 5 83.3%
Scalogram 10 70 30 2 93.3%

60% infills
Spectrogram 10 70 30 3 90.0%
Scalogram 10 70 30 0 100%

30% and 60% infills
Spectrogram 20 140 60 10 83.3%
Scalogram 20 140 60 5 91.7%

5. Conclusions

In this paper, surface wave characteristics and wave travel speed were compared
between additively manufactured parts and conventionally made ABS bars with the same
dimensions of 170× 38× 10 mm. Three of the additively manufactured bars were solid and
3D printed at different orientations. Four additional bars were additively manufactured
with 30% and 60% infill ratios and 1 mm and 2 mm skin thicknesses. The data were collected
using the SURE method, and signal processing techniques were applied to prepare them for
the CNN input. For the load sensing task, experiments were performed when a compression
load was applied at the center of the specimens at five different levels.

The surface wave speed was almost the same for all the solid parts regardless of the
print setting. It took slightly more time for the waves to read the sensor when they moved
on the parts with lower infill ratios and/or thinner top surfaces. The envelope of the
response to a sweep sine showed a similar behavior in the solid parts, especially at low
frequencies. For the parts with a 30% infill ratio, the amplitude of the response was higher
than for the parts with a 60% infill ratio at low frequencies, while at higher frequencies the
trend was the opposite.

An MWPE excitation signal was used to collect the data for loading estimation using
the CNN. Ten CNNs were trained for the estimation of the loading condition on different
parts using spectrograms or scalograms. In the first study, the spectrograms and scalograms
of the recorded data were obtained when there was no load on the test specimens. The
CNN could classify eight different manufacturing characteristics with 100% accuracy for
both scalograms and spectrograms. In the second study, the CNN was used to estimate
the applied load on the 3D printed solid parts. We used 70% of the data for 15 different
classes (three parts each at five different loading conditions) for training the CNN and 30%
for the test. The overall classification accuracy was 84.4% when using spectrograms and
increased to 95.6% when using scalograms. Misclassified cases in both studies were within
the range of 50 N from the actual values. In the third task, six different CNNs were trained
to quantify the loading when the test bars had infills. The load estimation accuracy was
within the range of 83–100%. This study also showed that the performances of the CNNs
trained with the scalograms were slightly higher.

These results indicate that very small surface wave speed and attenuation character-
istics adjustments may be made by controlling the infill-related parameters during the
additive manufacturing process. The combination of the SuRE method and the CNN can
be used to identify the manufacturing details or quality of a part. Even when combining
data from parts made with different build orientations, the CNN estimated the load levels
with good accuracy. In all the studies, the CNN estimation accuracy ranged from 83% to
100%, which is satisfactory for many applications. In this study, the classification based on
scalograms showed better results, with a small margin, compared with the results obtained
when using spectrograms. The calculation of scalograms is much faster and more efficient
than that of spectrograms and may be preferred in industrial applications.
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