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Abstract: Flame-resistant materials are key components in buildings and several other engineer-
ing applications. In this study, flame retardancy and thermal stability were conferred to a highly
flammable technical thermoplastic—polypropylene (PP)—upon compositing with a carbonaceous
tannin-based particulate (CTP). Herein, we report on a straightforward, facile, and green approach
to prepare self-extinguishing thermoplastic composites by thermoblending highly recalcitrant par-
ticulate. The thermal stability and mechanical properties of the composites are tethered to the CTP
content. We demonstrate that the addition of up to 65 wt% of CTP improved the viscoelastic proper-
ties and hydrophobicity of the PP, whereas having marginal effects on bulk water interactions. Most
importantly, compositing with CTP remarkably improved the thermal stability of the composites,
especially over 300 ◦C, which is an important threshold associated with the combustion of volatiles.
PP-CTP composites demonstrated great capacity to limit and stop fire propagation. Therefore, we
offer an innovative route towards thermally resistant and self-extinguishing PP composites, which is
enabled by sustainable tannin-based flame retardants capable of further broadening the technical
range of commodity polyolefins to high temperature scenarios.

Keywords: bioeconomy; tannin foams; engineering components; building materials; flame-resistant
materials; polypropylene

1. Introduction

Plastics play a crucial role in many branches of engineering, spanning from construc-
tion to textiles. Polyolefins, including polypropylene (PP), are commodity plastics that
find a plethora of general purpose uses owing to their easy processing and recyclability,

Polymers 2022, 14, 3743. https://doi.org/10.3390/polym14183743 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14183743
https://doi.org/10.3390/polym14183743
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-9373-6313
https://orcid.org/0000-0001-6734-7381
https://orcid.org/0000-0003-3295-6907
https://orcid.org/0000-0002-7063-1874
https://orcid.org/0000-0001-9842-6904
https://orcid.org/0000-0002-4911-2631
https://orcid.org/0000-0002-8382-9492
https://doi.org/10.3390/polym14183743
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14183743?type=check_update&version=2


Polymers 2022, 14, 3743 2 of 13

high chemical resistance, and low cost [1,2]; however, their hydrocarbon nature and rel-
atively low melting point (ca. 130–170 ◦C for PP, depending mainly on tacticity) make
them unsuitable for applications involving moderate to high temperatures, such as in the
automotive, aerospace, and building segments [3–5]. Additionally, the olefinic structure
of PP dissolves into highly volatile aromatic hydrocarbons (e.g., toluene and benzene)
under thermal stresses (slightly above 100 ◦C) and can easily ignite by either heat or flame,
releasing poisonous gases upon burning. Therefore, several attempts of rendering PP or its
composites (e.g., fiber-reinforced PP) flame retardant or even self-extinguishing have been
made over the last years [6–12].

Flame retardancy in PP and other flammable materials is often achieved with the
introduction of additives, which can either act as recalcitrant components that burn at a
slow rate and are less likely to ignite or by quenching chain reactions during combustion. In
the past, few substances based on chlorine and bromine were used to improve both thermal
and combustion resistance in PP [5,13]. More recently, few halogen-free flame-retardant
systems, which are divided into additives or reactive substances [5], have been proven
to be highly efficient. The latter includes compounds based on metal hydroxides, metal
borates, and intumescent flame retardants [4,13–15]. As noted, the compounds used so
far are heavily dependent on highly energy demanding mining or synthesis. Although
synthetic flame retardants provide high thermal and/or combustion resistance, their non-
renewable nature in parallel to their often poor interface with most polymer matrices [16]
has incentivized the search for bio-based components that can fulfil flame retardancy and
other requirements while adding sustainability to such materials.

Natural polyphenolics, such as lignins and tannins, have been demonstrated to im-
prove the thermal stability of PP composites [17]. Their recalcitrant, aromatic nature and
their ability to char under thermal stress have been key for their utilization as thermally
stable fillers [18]. Flame retardancy, however, has not been achieved using only natural
polyphenolics. For such endeavors, natural polyphenolics have been modified with more
traditional, inorganic compounds via supramolecular [19] or covalent [20] interactions
to be later incorporated into PP matrices. In this context, we herein demonstrate the use
of carbonaceous particulate composed of tannin-furfuryl alcohol copolymers (CTP) to
produce and thermally resistant, self-extinguishing PP composites. The combination of
tannins, especially their condensed structures, with furfuryl alcohol, another bio-based
compound, has been widely investigated recently for the formation of insulating and
flame-retardant foams by their cross-linking reaction with aldehydes [21,22]. Such foams,
however, are highly brittle, thus limiting applications where flexibility and/or ductility are
required [23–26]. Therefore, we composited a CTP made up of tannin and furfuryl alcohol
as a bio-based flame retardant with PP as matrix to reach balanced fire safety as well as
thermal and mechanical properties, thus fully harnessing the advantages of each individual
component while making more sustainable flame-retardant materials.

2. Materials and Methods
2.1. Raw Materials

Condensed tannins were extracted from black wattle bark (Acacia mearnsii) and sup-
plied by TANAC® (Montenegro, Brazil). According to the supplier, this tannin extract is
composed of condensed tannins (70–80 wt%), hydrocolloid gums (20–30 wt%), as well
as minor amounts of sugars and small molecules. Its particle size mean was determined
by scanning electron microscopy (SEM) to be 0.66 µm. Neat PP (H103) was supplied by
Braskem (Triunfo, Brazil). According to the supplier, this polymer matrix has the following
characteristics: 40 g·min−1 melt flow rate at 230 ◦C/2.16 kg (ASTM D1238), 0.905 g·cm−3

density (ASTM D792), 1200 MPa bending modulus (ASTM D790), 34 MPa tensile strength
(ASTM D638), 101 Rockwell hardness (ASTM D785), 20 J/m Notched Izod strength (ASTM
D256), and 156 ◦C Vicat softening point (ASTM D1525). The following chemicals were
acquired from Sigma Aldrich, Guarulhos, Brazil, and used without previous purification:
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furfuryl alcohol (CAS number 98-00-0), formaldehyde (CAS number 50-00-0), diethyl ether
(CAS number 60-29-7), and toluene-4-sulfonic acid (CAS number 6192-52-5).

The CTP derived from rigid tannin foams was produced accordingly with Tondi
and Pizzi [23]. A. mearnsii tannin extract, distilled water, furfuryl alcohol (97 wt%), and
formaldehyde (32 wt%) were mixed under mechanical stirring for 2 min and added by
diethyl ether (99.5 wt%) and toluene-4-sulfonic acid (65 wt%), followed by mechanical
stirring for 30 s before the homogeneous mixture was then poured into an open container
for the foam to rise. The foams were allowed to rest at room temperature (about 20 ◦C) for
at least 24 h to evaporate unreacted volatiles and then knife-milled into CTP.

2.2. Preparation of the PP-CTP Composites

PP and CTP were mixed at four PP contents ranging from 35 to 65 wt% on a high-speed
thermo-kinetic mixer (model MH-100, Guarulhos, Brazil) set at 120 ◦C (the temperature
was further risen by viscous dissipation upon shearing) and then compression molded on
an electrically heated hydraulic press (Marconi, model MA 098/AR15, Piracicaba, Brazil) at
900 MPa and 175 ◦C for 10 min. The molded parts (140 × 140 × 3.5 mm3) were produced
in triplicates and equilibrated at 20 ◦C and 65% relative humidity in an environmental
chamber until reaching constant mass.

2.3. Fourier-Transformed Infrared (FTIR) Spectroscopy

The chemical features of the samples were investigated by FTIR. KBr pellets were
prepared with milled samples and then analyzed in direct transmittance mode on an
infrared spectrometer (Shimadzu Prestige-21, Kyoto, Japan). A total of 45 scans were
recorded at a resolution of 2 cm−1 in the 400–4500 cm−1 wavenumber range. The spectra
were normalized (0, 1) to enable intensity comparisons.

2.4. Density and Bulk Water Interactions

Apparent density (ASTM D792), water absorption, and thickness swelling at 2 and 24 h
(ASTM D570) were determined for all composites following their respective standardized
procedures. Water leaching was determined in triplicate: 1 g of a milled sample (60 mesh)
was immersed in distilled water for 24 h and then oven dried at 60 ◦C until reaching
constant mass. Quantitative data were statistically analyzed using analysis of variance
prior to Tukey tests, as suitable, both at a significance level of 5%.

2.5. Scanning Electron Microscopy

The burnt section of the PP-CTP composite was gold-sputtered and imaged on a
scanning electron microscope (Phenom ProX Desktop SEM, Guarulhos, Brazil) using a
5 kV voltage.

2.6. Surface Wettability

Water contact angle was measured through the sessile drop method on a goniometer
(Kruss, model DSA25B, Hamburg, Germany). Distilled water drops (11 µL in volume) were
cast on the surface of five samples (20 × 20 mm2) per treatment and the contact angle was
measured every 10 s for 60 s.

2.7. Thermogravimetry

The mass loss profile over temperature was evidenced by thermogravimetric (TG)
and derivative TG (DTG) curves recorded from 30 to 600 ◦C at a constant heating rate of
15 ◦C·min−1, within an argon flow rate of 50 mL·min−1.

2.8. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was performed using a TA Q20 calorimeter
(New Castle, DE, USA) in the 100–200 ◦C range in order to evaluate temperatures of crys-
tallization (Tc) and melting (Tm) of CTP-PP composites. The samples were heated, cooled
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down, and then heated again, always at a rate of 10 ◦C·min−1 in the ramp mode. Crys-
tallinity (%) was calculated based on the area under curve, according to Mattos et al. [27].

2.9. Dynamic Mechanical Analysis and Tensile Tests

Mechanical behavior of the PP-CTP composites was studied on a dynamic mechanical
analyzer (TA instruments, model Q-800, New Castle, DE, USA). Prismatic (35 × 17 × 37 mm3)
specimens were evaluated using a dual cantilever set up at a frequency of 1 Hz and
a static load of 5 N. Samples were heated from 30 to 120 ◦C at 5 ◦C·min−1. Tensile
properties of the PP-CTP composites were evaluated through mechanical tests using an
EMIC DL23-300 universal machine (São José dos Pinhais, Brazil). The samples and test
parameters were adjusted as indicated by ASTM D638. The samples had dimensions of
85 × 15 × 3 mm3 (length, width and thickness) and 5 replicates were used per treatment.
The test speed was 5 mm·min−1.

2.10. Flame Retardancy

Flammability tests were performed to investigate the potential of CTP to act as a flame
retardant in PP-based composites. Prismatic (15 × 3 × 100 mm3) specimens were exposed
to a vertical flame from a Bunsen burner for 10 s, and then classified according to their
visual aspect into totally burned (a) and self-extinguishing (b). The final weight loss was
also measured. This test was inspired in an appropriated standard procedure. Pine wood
sawdust- and pine needle-filled PP composites (50 wt% PP), prepared following the same
conditions described earlier, were used as a comparison. Unfilled neat PP specimens were
also tested for comparison purposes.

2.11. Statistical Analyses

Data normality was confirmed by Shapiro-Wilk tests. Afterwards, all the data were
subjected to ANOVA tests followed by Fisher tests. The latter tests were performed to
compare the means. All statistical tests were conducted at a 0.05 significance level.

3. Results and Discussion
3.1. Chemical Features of the Composites

The FTIR spectra (Figure 1) of the composites display the typical spectroscopic signa-
tures of their components. Neat PP has a prominent band at the 2850–2950 cm−1 range,
which represents CH, CH2, and CH3 groups [27]. The broad peak at 3440 cm−1 is ascribed
to the stretching vibration of the O–H groups associated with absorbed moisture [28], which
is more intense for the CTP when compared to either neat PP or its composites. There
is a positive correlation between the band centered at 3440 cm−1 and the CTP content
in the composites, thus inferring a gradual decrease in hydrophilicity associated with a
progressive increase in PP fraction in the composite, which is expected because of the
hydrocarbon, nonpolar nature of PP.

The IR spectrum of CTP had peaks at 1006, 1509, and 1630 cm−1. The peak at
1006 cm−1 is attributed to C–O vibrations of (i) –C–O–C– ether bridges in complex oxygen-
containing cyclic molecules and/or (ii) =C–O–C= breathing in furan moieties [28]. That
band at 1509 cm−1 can be associated with in-plane C–H bending vibrations in aromatic
molecules from heteroaromatic compounds [28]. This band can also be related to C=C
stretching vibrations in furan rings belong to the furfuryl alcohol [29,30]. The band at
1630 cm−1 is typically attributed to C=C stretching in benzene ring. As noted, there were
no new clear IR peaks in the composite spectra that would indicate the formation of new
chemical identities. Therefore, the PP-CTP interfacial interactions are driven primarily by
physical means, i.e., Van der Waals contact forces including London dispersion. Hydropho-
bic interactions and hydrogen bonding may also be at play.
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Figure 1. Infrared spectra for the PP−CTP composites and their single phases ranging from
(a) 4000 to 2400 cm−1 and from (b) 1800 to 800 cm−1.

3.2. Density and Water Interactions

The addition of the CTP into the PP matrix increased the apparent density of the
composites in a quasi-linear fashion (Figure 2). By gravimetry, we have estimated the
density of the CTP to be ca. 1.5 g·cm−3, which is much higher than the values obtained for
classic tannin-rigid foams—ranging from 0.05 to 0.18 g·cm−3 [24,31]. The density of the
composites did not follow the rule of mixtures as a result of the formation of microvoids
during the composite processing. These microvoids can be ascribed to the weak interfacial
adhesion already expected for the studied phases. Similar increases in density were
reported for PP-based composites filled with other bio-based materials, such as wood
particles [17] and starch [32]. An increase in the density is majorly attributed to the density
of the filler, even when chemical treatments are applied to the filler or small amounts of
additives are incorporated into the matrix [32].

Water leaching is usually associated with water resistance in PP-based composites [15]
and it is crucial to the implementation of this composite in several applications involving
liquid media, at least potentially [14]. There is a positive relationship between CTP content
and water leaching (Figure 2a). The multiphase (not fully compacted) character of the
composite, as well as the presence of microvoids at the components interface (Figure 2b),
allow a partial water flow in and out of the material in some conditions (e.g., full immersion).
Given the heterogeneous nature of CTP, solubilization of some entities may be inducing
the leaching of relatively bigger particles. However, even at such harsh conditions, only ca.
10 wt% of the material is lost after 24 h. This indirectly confirms the physically driven PP-
CTP interaction, corroborating FTIR. Nevertheless, most of the traditional flame retardants
(both additives and intumescent flame retardants) are easily leached in water if no strong
interactions with the matrix are in place, as these are based on amines, phosphates, and
sodium salts, among others [5,14].
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Figure 2. Water-composite relationships. (a) Density and water leaching of the PP-CTP composites
comprising CTP at 35 (PP65CTP35) to 65 wt% (PP35CTP65). (b) Scanning electron microscopy of the
PP55CTP45 composite, displaying the presence of microvoids across its structure. (c) Water absorption
and (d) thickness swelling (TS) after 2 and 24 h. (e) Water contact angle kinetics for the PP-CTP
composites. Values having the same letter (a) are not significantly different (Fisher LSD test).

Neat PP does not absorb water. Considering the hydrophilic character of CTP, one
may expect an increase in the water absorption and thickness swelling of the PP composites
compared to neat PP (Figure 2c,d). This stronger interaction with water agrees with most
of the PP-based composites, and it is tethered to the higher polarity of chemical groups
belonging to the filler, i.e., groups able to H-bond with water such as hydroxyls [17,32].
Although higher water absorption is found in all the composites when compared to neat
PP, it is remarkable that the values were below 5% in all conditions, especially when
no covalent bonds are formed between the composite components. The overall increase
in water absorption and thickness swelling, although not significant, probably resulted
from the appearance of microvoids at the PP/filler interface (Figure 2b). Furthermore, the
SEM images seem to indicate an overall good distribution of the filler particles inside the
polymer matrix.
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As far as surface wetting, the addition of CTP resulted in composites with remarkably
higher water contact angle when compared to neat PP (Figure 2e), reaching a difference
of 50◦ in the best performers. One can note that bulk and surface water relationship re-
markably differ from each other in our materials. Kaymakci and Ayrilmis [33] incorporated
variable wood flour contents (ranging from 30 to 60 wt%) into a PP matrix and reported
that the increases in wood flour content yielded increased surface wettabilities, which were
attributed to increases in surface roughness as smooth surfaces may facilitate drop spread-
ing while air pockets may prevent it. Processing temperature and viscosity also strongly
influence the final surface wettability of typical bio-based PP composites [34]. The contact
angle kinetics also indirectly indicates that the CTP were homogeneously distributed inside
the PP-based matrix as all composites presented similar surface energies. This substantial
increase in the surface hydrophobicity of PP-CTP composites can also be assigned to the
nonpolar nature of some of the tannin moieties that are associated to aromatic groups.
Whereas more hydrophilic substrates may improve bonding strength and adhesion, a more
hydrophobic surface is key for outdoor applications as a higher water contact angle usually
indicates better resistance against biologic degradation (e.g., by insects and fungi) [17].

3.3. Thermal, Mechanical and Thermo-Mechanical Properties of the Composites

All composites presented similar thermal decomposition profiles (Figure 3), which
are not simple superimposition of the thermograms of their single phases, especially until
400 ◦C. This behavior is different from what was reported in most studies on bio-filled
PP composites, which affirmed that the thermal stability followed closely the rule of
mixtures [1,8,17]. Chemical interactions between filler and matrix do not exist or are in
too low intensity that could not be observed by FTIR. Therefore, the remarkable difference
between the thermal behavior of the tannin-furan based powder outside and inside the
PP matrix can be attributed to the accessible surface area and heat exchange kinetics.
The particulate material exchanges heat with the environment in a faster way than their
bulkier counterparts. This has been studied in the case of glass transition temperature of
microparticles when compared to their nanoscaled analogues [35,36].

The neat PP was more thermally stable than the single CTP up to ~400 ◦C, which is
the range where the neat PP starts its thermal decomposition. PP completely degrades after
450 ◦C following a series of random chain scissions and chain transfer reactions, releasing
pentane and heptane, until complete decomposition [4,7,37]. On the other hand, the CTP is
a multi-branched rigid copolymer composed by aromatic moieties from their tannin-furan
networks that can rearrange themselves into more compacted carbonized structures during
thermal stresses [24,38,39].

The CTP incorporated in the PP matrix shifted the maximum decomposition peak,
which is ascribed to PP, to ca. 470 ◦C, as well as increased its residual content to above
20 wt%. In buildings, whenever there is any risk for human life, this can help to extend the
escape time during a conflagration. This behavior occurred for other PP-based composites
and it is ascribed to the formation of char during the filler decomposition [37]. A high
residue yield is also related to high flame resistance [37]. Still compared to the neat PP, the
PP-CTP composites had similar thermal stabilities until 300 ◦C, at which point they became
more thermally resistant. This is also an important finding because this temperature level
is easily exceeded during a conflagration. The Tm and Tc results determined with basis
on the DSC curves indicated that, in relation to the neat PP, small increases of 4–5 ◦C were
found for all CTP-based composites. These increases were observed as a function of the
CTP content. Therefore, the CTP particles probably acted as nucleating agents for the
crystallization of PP [27]. This impacted the PP dispersion and promoted a heterogeneous
nucleation [40]. The Tm results kept stable for all composites. As observed in Table 1,
the ∆Hf and Xc decreased with addition of the CTP particles. This decrease is related to
the formation of a transcrystalline region, in which restrictions in the lateral direction of
growth of spherulites are observed, resulting in a columnar layer [41]. Similar results were
reported in previous studies on particulate filled PP composites [27,40].
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Figure 3. (a) Thermogravimetric (TG) and (b) derivative TG (DTG) curves, and DSC curves for
(c) first and (d) second heatings for the PP-CTP composites and their single phases.

Table 1. Crystallization (Tc) and melting (Tm) temperatures, heat of fusion (∆Hf) and degree of
crystallinity (Xc) for the CTP-PP composites.

Tc (◦C) Tm (◦C) ∆Hf (J/g) Xc (%)

Neat PP 125 168 82.6 43.5
PP65CTP35 130 164 17.8 14.4
PP55CTP45 129 170 16.4 13.8
PP45CTP55 130 165 12.6 14.7
PP35CTP65 130 166 13.6 15.9

An important feature of materials aiming at either fire protection or thermal stability is
their mechanical behavior as a function of temperature. Variations of storage (E′) and loss
(E′′) moduli were observed in the temperature range of 30–110 ◦C (Figure 4a). Compared
to the neat PP, the composites presented both higher E′ and E′′ across this temperature
range, which indicates that the incorporation of the CTP led to remarkable gains in stiffness.
Particles incorporated in soft matrices can create anchoring mechanisms among the polymer
chains, thus decreasing their mobility and consequently stiffening the composite [17,37].
This is especially true when using porous reinforcements as, during processing, the PP melt
can flow into the particulate pores, thus creating a mechanical interlocking that does not
need to rely upon any chemical interactions [4,34].
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Figure 4. (a) Storage (E′) and loss (E′′) moduli, (b) Tan δ curves for neat PP and PP-CTP
composites, (c) modulus of elasticity (d) and tensile strength (MPa) for the PP-CTP composites.
* and ** determined by Mattos et al. [27] and Sui et al. [40], respectively.

All samples presented similar decreases in E′ when heated, which means similar
softening and relaxation processes. The similarly shaped E′′ kinetics indicates that the CTP
insertion did not change the viscoelastic nature of the neat PP, which probably did not
affect molecular rearrangement mechanisms during the loading cycles [37]. The relaxation
transition peak at ca. 70 ◦C for the neat PP appeared similar to an inflection in the Tan δ

curve (Figure 4b), probably representing the α-transition of PP crystalline fractions [39].
Both tensile strength (F = 3.61; p > 0.05) and tensile modulus (F = 3.12; p > 0.05) of the
studied composites were considered statistically similar at a confidence level of 0.95%.
Analog trends we observed in previous studies [2,17,27].

3.4. Flame Resistance of the Composites

The burning tests showed that the neat PP and both positive controls (wood-polymer
composites) underwent fast combustions and were fully degraded, as shown in Figure 5
and indicated in Table 2. Kim et al. [5] reported that thermoplastic composites mostly get
entirely burnt out after 10 s of flame contact in vertical burning experiments. According to
Ikram et al. [7], flammability in neat PP is attributed to its aliphatic hydrocarbon backbone
that dissolves into highly volatile and flammable aromatic hydrocarbons (e.g., benzene).
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Regarding the positive controls, when there is a weak filler/matrix interface, these phases
burn separately; while the matrix undergoes its normal quick burning, the filler acts as a
heat conductor instead of as an insulator, which increases the overall flammability. Thus,
incompatible, non-retardant filler poorly wetted in the matrix may lead to easier heat
conduction, penetration, and oxygen admittance to the filler itself [34].
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Figure 5. Behavior of (a) neat PP and (a,b) PP-CTP composite during combustion assays. (c) Proposed
mechanism of flame development and burning process of the PP matrix and PP-CTP composites.
(d) SEM image of the PP-CTP composite after burning displays the formation of the charred layer,
and exposure of tannin microparticles (highlighted in brown) that induce flame extinguishing.

Table 2. Flammability results for the neat PP, controls, and CTP-filled composites.

Sample Mass Loss (%) Burning Rating

Neat PP 100 Total burning
PP/pine needle 100 Total burning

PP/pine sawdust 100 Total burning
PP65CTP35 2.21 Self-extinguishing
PP55CTP45 2.12 Self-extinguishing
PP45CTP55 2.01 Self-extinguishing
PP35CTP65 5.58 Self-extinguishing

Remarkably, all PP-CTP composites self-extinguished before 20 s. Reduced flamma-
bility in a composite is usually attributed to a thermally stable filler [37]. The thermally
decomposed filler becomes a char layer on the top surface of the composite and then
acts as a steady barrier (Figure 5c), hindering the transfer of heat to the PP matrix from
the radiant heat source (Figure 5), which in turn protects the underlying polymer [4,7].
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Here, the addition of 65% CTP resulted in a self-extinguished composite before 20 s, losing
only 5.58% in mass. This also suggests that small amounts of CTP endowed with a high
specific surface area can also act as fire-resistant additives. Additionally, even expensive
intumescent flame-retardant systems act following this same mechanism. According to
Shao et al. [14], intumescent flame retardants generate multicellular swollen chars on the
surface of the polymer accompanied by decomposition of the blowing agent, slowing down
the heating and oxygen transfer, thus protecting the substrate from both radiant heat flux
and flame. Future research may address thermogravimetric analysis coupled with mass
spectrometry (TGA-MS) to fully explain this flame mechanism.

4. Conclusions

The incorporation of CTP increased the density and induced a remarkably smaller
surface wettability (water contact angle over 120◦) in the PP matrix. The composites also
presented higher water solubility, absorption, and swelling capacities than neat PP, behavior
that was expected due to the hydrophilic nature of CTP. Unlike water resistance, the CTP
content influenced positively the thermal, thermo-mechanical, and combustion properties.
In fact, the CTP acted as a reinforcement component, rather than a filler, yielding higher
dynamic mechanical properties regardless of the temperature within the tested range. The
PP-CTP composites were more thermally stable than neat PP, especially above 300 ◦C,
which is important for applications where there is a risk of fire. Self-extinguishing was
one of the most attractive properties of these PP-CTP composites, which confirms CTP as
an effective renewable alternative to avoid flame spread. The reduced flammability of PP
granted by CTP arises from a charred layer of the latter on the surface of the former, which
otherwise burns readily. CTP is demonstrated as an efficient bio-based flame retardant for
flammable commodity polymers, herein showcased by PP, further extending their range of
potential applications to those involving moderately high temperatures.
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