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Abstract: Nanosilica was surface modified with polyaniline and incorporated into polyurethane to
form a polymer matrix capable of entrapping a liquid electrolyte and functioning as quasi-solid-
state electrolyte in the dye-sensitized solar cells. The effect on the S—PANIi distribution, surface
morphology, thermal stability, gel content, and structural change after varying the PEG molecular
weight of the polyurethane matrix was analyzed. Quasi-solid-state electrolytes were prepared by
immersing the polyurethane matrix into a liquid electrolyte and the polymer matrix absorbency,
conductivity, and ion diffusion were investigated. The formulated quasi-solid-state electrolytes
were applied in dye-sensitized solar cells and their charge recombination, photovoltaic performance,
and lifespan were measured. The quasi-solid-state electrolyte with a PEG molecular weight of
2000 gmol~! (PU—PEG 2000) demonstrated the highest light-to-energy conversion efficiency, namely,
3.41%, with an open-circuit voltage of 720 mV, a short-circuit current of 4.52 mA cm ™2, and a fill
factor of 0.63.

Keywords: electrolyte; nanosilica; polyurethane; polyaniline; dye-sensitized solar cells

1. Introduction

Dye-sensitized solar cells (DSSCs) are a promising renewable energy source due to
their low manufacturing cost, ease of fabrication, and high efficiency [1]. Conventional
DSSCs are mostly based on liquid electrolytes and the lifespan is a challenging issue.
Liquid electrolytes suffer from solvent evaporation and leakage, which eventually reduce
the DSSCs lifespan [2—4]. Various studies have been carried out to solve these problems,
for instance, by using solid or gel electrolytes, ionic liquids, and polymer matrix-based
quasi-solid-state electrolytes [4-6]. The penetration of solid electrolytes, gel electrolytes,
and ionic liquids into the dye-sensitized semiconductor layer and their ion diffusion are
poor, resulting in a poor DSSC efficiency although the lifespan is significantly improved.

The use of polymer matrix-based quasi-solid-state electrolytes seems to have a great
potential for solving the penetration and ion diffusion problems. This is because the liquid
electrolyte (high ion diffusivity and penetrability) absorbed inside the polymer matrix pen-
etrates the dye-sensitized semiconductor layer when squeezed during the DSSC assembly
process. Numerous polymers have been studied as the polymer matrix for quasi-solid-state
electrolytes in the DSSCs, such as polyacrylic acid [7-15], polyvinylidene fluoride [16-20],
polyacrylonitrile [21-24], polyvinyl butyral [25], polyhydroxyethyl acrylate/polyethylene
glycol [26], cellulose acetate [27], polycarbonate [28], polyurethane [29,30], and so on. Poly-
acrylic acid (PAA)- and polyvinylidene fluoride (PVDF)-based quasi-solid-state electrolytes
are the most studied.

PAA is a superabsorbent. However, it is not a good absorbent when it is used as the
liquid electrolyte of the DSSCs. This is because PAA consists of the —COOH group, whereas
the common solvent for the liquid electrolyte (i.e., propylene carbonate, ethylene carbonate
and gamma-butyrolactone, N-methyl-2-pyrrolidone and 3-methoxypropionitrile) consists
of the -C=0, C-O-C or —-CN group. To improve the liquid electrolyte absorbency, PAA
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was grafted with polyethylene glycol [7-12], cetyltrimethylammonium bromide [13,14],
gelatin [15], and so on. The efficiency of the DSSCs based on PAA ranged from 1.61% to
9.10% [8,9,11-15,31].

PVDF attracts attention due to its high dielectric constant, good electrochemical sta-
bility in the presence of titanium dioxide and platinum, good affinity towards the liquid
electrolyte because of the electron-withdrawing fluorine atoms in the polymer backbone,
and it is conductive at room temperature (10~% to 1073 Sem 1) [18,19,32]. However, the
crystalline property of PVDEF hinders the movement of the ions, which reduces the conduc-
tivity of the formulated electrolyte [18,33]. Therefore, many studies have been conducted to
reduce the crystallinity. For example, PVDF was copolymerized with hexafluoropropylene,
namely, PVDF—HEFP. The crystallinity of PVDF was around 45.8% to 54.8% [34-36], and
after being copolymerized with hexafluoropropylene, was around 27.7% to 28.8% [34,37].
The incorporation of nanoparticles into PVDF—HFP was also widely conducted to reduce
the crystallinity. A huge increase in DSSC efficiency from 3.09% to 7.75% was reported
upon the incorporation of vanadium pentoxide [32], whereas the efficiency was from 5.02%
to 5.96% upon the incorporation of titanium dioxide [20] and from 4.57% to 5.15% upon the
incorporation of barium titanate [38].

Polyurethane (PU) attracts attention due to its ability to absorb liquid electrolytes.
PU has a unique structure due to its two-phase morphology, i.e., soft and hard segments.
The main components in PU are polyol and isocyanate compounds. The soft segment is
contributed by polyol, whereas the hard segment is from an isocyanate compound. In PU
electrolytes, the soft phase acts as a polymeric solvent to solvate the redox couple (I” /I37)
in the liquid electrolyte. It also has high segmental motion which facilitates the mobility of
ions. The hard phase of the PU distributed or interconnected throughout the soft phase
acts as a physical crosslinker and filler to the soft phase and contributes to the dimensional
stability of the polymeric matrix [39]. Despite the great potential of PU, only a few studies
were found that reported an efficiency ranging from 0.8% to 7.68% [29,30,39-45] and which
mostly focused on the type of polyol and incorporation of nanoparticles.

There is no study reporting on the effect of the polyol molecular weight on the per-
formance of the DSSCs. For the DSSCs based on the polymer matrix’s quasi-solid-state
electrolyte, the absorbency of the polymer matrix towards the liquid electrolyte is a key
factor that affects the DSSC performance. The polyol molecular weight of the PU matrix
strongly affects the polymer matrix absorbency. Therefore, the novelty of this study is the
investigation of the effect of the polyol (polyethylene glycol) molecular weight (10,000, 8000,
6000, 4000, and 2000 gmol 1) of PU on the performance of the formulated quasi-solid-state
electrolyte (i.e., thermal stability, crystallinity, gel content, polymer matrix absorbency, con-
ductivity, and ion diffusion coefficient) and the DSSC (i.e., charge recombination, efficiency,
and lifespan).

2. Materials and Methods

Nitric acid, 69% (HNOj3), sodium iodide (Nal), iodine (Iz), propylene carbonate
(PC), polyethylene glycol (PEG) with a molecular weight of 10,000, 8000, 6000, 4000, and
2000 gmol’l, 4.4/ -diphenylmethane diisocyanate (MDI), 96% ethanol, and iso-propanol
(IPA) were purchased from Merck. Titanium dioxide (TiO,, Aeroxide P25), 4-(1,1,3,3-
Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100), Di-tetrabutylammonium cis-
bis(isothiocyanato)bis(2,2'-bipyridyl-4,4’-dicarboxylato) ruthenium (II) (N719), chloropla-
tinic acid hexahydrate (HyPtCls-6H;0), and a fluorine-doped tin oxide coated glass slide
(FTO) were purchased from Sigma-Aldrich, Melbourne.

2.1. Preparation of the Polyurethane Quasi-Solid-State Electrolyte (QSE)

To prepare the quasi-solid-state electrolyte, S—PANi was synthesized via the post-
modification method [29]. The prepared S—PANi was sonicated in 1 mL of PC for 1 h. As
shown in Table 1, 1 g of PEG was then added into the solution and stirred for 2 h at 65 °C.
After that, 0.3 g MDI was added dropwise into the solution under continuous stirring [46].
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The resulting solution was casted on a glass plate and cured at room temperature (23-25 °C)
for 2 h [47]. The glass plate was masked with scotch tape to control the thickness of the
polymer matrix at 100-110 pm. The polymer matrix was detached from the glass plate and
dried in an oven at 60 °C for 24 h [11]. After drying, the polymer matrix was immersed
into the LE (1.5 g Nal, 0.15 g I;, and 15 mL PC) for 2 days. The label and formulation of the
formulated polymer matrices are shown in Table 1.

Table 1. Formulation of PU matrices of different PEG molecular weight.

Label Weli\gﬁltfgiirrl PEG,g MDLg PC,g S—PANi,g NCO:0H
PU—PEG 10,000 10,000 1 0.3 1 0.15 12.0
PU—PEG 8000 8000 1 0.3 1 0.15 9.6
PU—PEG 6000 6000 1 03 1 0.15 7.3
PU—PEG 4000 4000 1 0.3 1 0.15 438
PU—PEG 2000 2000 1 0.3 1 0.15 24

2.2. Preparation of Dye-Sensitized Solar Cells

The preparation of the DSSCs was divided into three parts, which included the
photoanode, electrolyte, and counter electrode [8,12,19,48]. To prepare the photoanode:
TiO, paste was prepared by mixing 0.25 g of TiO,, 1.25 mL of HNOj3 (0.1 M), 0.13 g of
PEG 20,000, and 20 pL of Triton X for 15 min. After that, the TiO, paste was coated onto
the FTO glass and sintered at 450 °C for 60 min. Then, it was immersed in N719 solution
(0.035 wt% of N719 in ethanol) for 24 h. To prepare the platinized counter electrode: 20 pL
of HyPtCly (H2O)4 solution (0.5 wt% of HyPtClgy (H,O)6 in IPA) was dropped onto the
conductive side of the FTO glass and sintered at 450 °C for 45 min. To prepare the DSSCs:
a slice of the formulated electrolyte (0.125 cm?) was sandwiched in between the prepared
photoanode and the platinized counter electrode. A simulator was set up to measure the
photovoltaic performance of the DSSCs. The simulator was equipped with a metal-halide
lamp [49-52] (150 W) and the solar irradiation was set at 60 mWem 2. The solar irradiation
was calibrated with a power meter (TES, TES-1333R). The photovoltaic performance of the
DSSCs was measured from 0 V to 1V at a scan rate of 10 mVs 1.

2.3. Characterization

A microscope (Olympus BX60M) equipped with a camera (Paxcam) was used to in-
vestigate the surface morphology and porosity. The thermal property of the samples was
studied by thermogravimetric analysis (PerkinElmer Pyris 6 TGA). The sample (5-10 mg) was
heated under a nitrogen atmosphere condition at a heating rate of 10 °Cmin~! from 30 °C to
600 °C [47,53-56]. The crystallinity of the dried sample was studied via a monochromatic,
high-intensity X-ray diffractometer (XRD, SIEMENS D5000) that used Cu-Ka radiation
(k = 1.54056 A, 40 kV, 30 mA) at room temperature from a diffraction angle (26) of 5° to 80°
(the increment step was 0.02° and the step time was 0.5 s) [54,55,57]. The liquid electrolyte
absorbency of the polymer matrix was measured with a digital analytical balance and
calculated with the following Equation (1) [9,20,48]:

Final Weight — Initial Weight
Initial Weight

Liquid Aborbency (ggfl) = (1)
where the initial weight is the weight of the polymer matrix before being immersed into
the liquid electrolyte and the final weight is the weight of the polymer matrix after being
immersed into the liquid electrolyte. To measure the conductivity [58-60], the QSE was
sandwiched in between two platinized FTO glasses (Pt| QSE | Pt). The conductivity (o)
measurement was carried out by the AC impedance method using an LCR meter (GW
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INSTEK, LCR-821) with an applied voltage of 20 mV that ranged from 10 Hz to 100 kHz at
23-25 °C. o was calculated by using Equation (2):

L

°T AR,

2
where L is the thickness of the QSE, A is the area of the sample electrode, and Ry, is the bulk
resistance. The ion diffusion coefficient (Dg) measurement was performed by the cyclic
voltammetry method using the GSTAT101 (Autolab) with a scan rate of 50 mV that ranged
from of —0.8 V to 0.8 V [61-64] at 23-25 °C. D¢ was calculated using the Randles—-Sevcik
equation as shown below:

I, = 268600 x n? x v2 x Dg? x A x C 3)

where [, is the maximum current; n is the number of electrons transferred in the redox event;
v is the scan rate; A is the electrode area; and C is the concentration of the electroactive
species. The gel content test was conducted to measure the crosslinking degree of the
sample. The sample was prepared according to the ASTM D2765-95. This method is used
with standard procedures by refluxing the samples in boiling xylene for 24 h. The sample
was placed in 100 mesh cages, labeled, and weighed. After refluxing in xylene, the residual
solvent was removed at a temperature of 140 °C and placed for 4 h in an oven. The cages
were removed, allowed to cool, and reweighed. The gel content was calculated as:

Wi — W

Gel COl’ltent = (1 - m

) x 100% 4)
where Wi is the weight of the mesh cage, W5 is the weight of the mesh cage and sample,
W3 is the weight of the stapled cage and sample, and Wj is the weight of the stapled cage
and sample after extraction and drying. The dark current measurement was conducted
to measure the charge recombination of the DSSC [65-68]. It was measured under a
dark condition from 0 V to 0.8 V at a scan rate of 10 mVs~!. The data were collected
by the Autolab PGSTAT101 with NOVA software used to measure and calculate various
performance parameters.

3. Results and Discussion
3.1. ATR—FTIR Analysis

Figure 1 shows the ATR—FTIR spectra of PU—PEG 10,000 (only ATR—FTIR spectra of
PU—PEG 10,000 are presented, as the spectra of PU-PEG 8000, PU—-PEG 6000, PU-PEG
4000, and PU—-PEG 2000 were similar). The ATR—FTIR shows the presence of -OH
vibration (3513 cm 1), N-H vibrations (3333 and 1539 cm~!), -CH, vibration (2882 cm™1),
C=0 vibration (1702 cm~!), C=C vibrations (1602, 1508, and 1468 cm~!), C-N vibration
(1310 cm™!), C-H vibrations (1412, 1340, 1280, and 1235 cm~!), C-O-C and Si-O-Si
vibration (1100 cm '), and C-C vibrations (956 and 843 cm~!). This was in agreement with
the chemical structure of PU. The occurrence of the N-H group, C=O group, and C-O-C
group as well as the disappearance of the N=C=0 group (2267 cm~!) [30] of MDI proved
the formation of the PU matrix [69-74].

3.2. Distribution Pattern

A transmitted light microscope was used to investigate the distribution pattern of
S—PAN!i in the PU matrix of different PEG molecular weights. The images obtained are
shown in Figure 2. It is highlighted that the black region indicates highly aggregated
S—PAN;i, the grey region indicates evenly distributed S—PANi, and the white region
indicates few or no S—PANI present in the PU matrix. The images show that the aggregated
S—PANIi became less and the distribution was more homogenous as the PEG molecular
weight decreased. This is because the viscosity of the polymer solution decreased as the
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PEG molecular weight decreased [75-77]. In a less viscous medium, the aggregated particle
breaks down further into smaller particles under mechanical force (stirring or sonication).
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Figure 1. ATR—FTIR analysis of PU-PEG 10,000.
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(d)

Figure 2. Transmitted light microscopic image of (a) PU—PEG 10,000, (b) PU—-PEG 8000, (c) PU-PEG
6000, (d) PU-PEG 4000, and (e) PU—PEG 2000.

3.3. Surface Morphology

A reflected light microscope was used to investigate the surface morphology of the
PU matrix (Figure 3). Pores of different sizes were found on the surface of the PU matrices.
The pore formation was due to phase separation which occurred due to the crosslinking of
the S—PANi with the PU, as well as the incompatibility of the soft (PEG) and hard segment
(MDI]) in the PU [57,78,79]. It was also due to the hydrogen bonding-induced polymeric-
rich and solvent-rich region in the PU matrices, which upon drying, caused the solvent in
the solvent-rich region to evaporate [80]. As the molecular weight of the PEG increased,
the pore sizes and the number of pores increased. Increasing the PEG molecular weight
increased the soft and hard segment length, and promoted the incompatibility of the soft
and hard segment [81-83] and crosslinking level, thereby increasing the pore formation.

Figure 3. Cont.
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Weight (%)

Figure 3. Reflected light microscopy image of (a) PU—PEG 10,000, (b) PU-PEG 8000, (c) PU-PEG
6000, (d) PU—-PEG 4000, and (e) PU-PEG 2000.

3.4. Thermal Stability

Figure 4a and b show the TGA and DTG thermograms of the PU matrix with different
PEG molecular weights. It can be seen that the thermal degradation trend for all of the PU
matrices was similar. Varying the PEG molecular weight neither improved nor degraded
the thermal stability of the PU matrix. All of the PU matrices were stable up to 255 °C, which
were suitable to be applied in DSSCs for outdoor application. Two thermal degradation
steps can be observed from the DTG thermograms. The thermal degradation steps were
not separated from each other. The first thermal degradation was due to the breakage of
the urethane bond (hard segment), whereas the second was due to the breakage of the ether
bond (soft segment) in the PU matrix [53,54,84-86].
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Figure 4. (a) TGA and (b) DTG thermograms of PU matrices of different PEG molecular weights.

3.5. Structural Analysis

Figure 5 shows the XRD spectra of the PU matrix with different PEG molecular
weights. All of the PU matrices show three diffraction peaks centered at 26 = 20°, 21°, and
23°, indicating a semi-crystalline nature, except for in PU—-PEG 2000. The XRD spectra
of PU-PEG 2000 only show a broad diffraction peak centered at 26 = 21°, indicating
an amorphous nature. The degree of crystallinity of PU-PEG 10,000, PU-PEG 8000,
PU—-PEG 6000, PU-PEG 4000, and PU—PEG 2000 was 4.51%, 5.10%, 4.83%, 2.42%, and
0%, respectively. The degree of crystallinity was not significantly different from PU-PEG
10,000 to PU—PEG 6000, but significantly decreased from PU—-PEG 4000 to PU-PEG
2000. PEG is a semi-crystalline material and the crystallinity increased with the molecular



Polymers 2022, 14, 3603

8 of 16

weight [87,88]. As the molecular weight of the PEG increased, the degree of crystallinity
increased due to the low segmental mobility and a greater tendency to form an ordered
alignment [89,90]. The increase in the crystallinity as the PEG molecular weight increased
increases the crystallinity of the PU matrix. PU—PEG 2000 was amorphous despite PEG
2000 being semi-crystalline. This might be because there was a better dispersion of S—PANi
in PU—-PEG 2000, as mentioned earlier, preventing the polymer chain of PEG 2000 from
being aligned orderly.

1 20 21 .23

PU-PEG 10,000

A
A

1 o PU-PEG 8000

] \«/\ ; PU-PEG 6000
J PU-PEG 4000

PU-PEG 2000

G

Intensity (Counts/s)

2 Theta (°)
Figure 5. XRD spectra of PU matrices of different PEG molecular weights.

3.6. Gel Content

As shown in Figure 6, the average gel content increased significantly from PU—-PEG
2000 to PU—PEG 6000, and then became less significant from PU—-PEG 6000 to PU-PEG
10,000. The crosslinked networks are formed by the reaction between the —NH,/-NH
groups of S—PANi and the -NCO groups of MDI [91-94]. Hence, as the PEG molecular
weight increases, the -OH groups available to react with the -NCO groups decrease; there-
fore, more -NCO groups are available to react with the S—PAN]j, leading to more network
formation. This is supported by the NCO:OH ratio of the sample, where the NCO:OH
ratio for PU-PEG 10,000 is 12.0, PU-PEG 8000 is 9.6, PU-PEG 6000 is 7.2, PU-PEG
4000 is 4.8, and PU—PEG 2000 is 2.4. The insignificant increment of the crosslinking level
as the PEG molecular weight increases from 6000 gmol ! to 10,000 gmol~! is due to the
S—PANi becoming the limiting factor. An insufficient amount of S—PANI is available for
the crosslinking reaction with the -NCO group.
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75 | 7218 7313

70 | 67.18

63.22
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50
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Figure 6. Gel content of PU matrices with different PEG molecular weights.
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3.7. Polymer Matrix Absorbency, Electrical Property, and Electrochemical Property

The polymer matrix absorbency of the PU matrix with different PEG molecular weights
was measured (Figure 7). The polymer matrix absorbency decreased as the PEG molecular
weight increased. This trend is in accordance with the trend of the gel content or crosslink-
ing level. A high degree of crosslinking restricted the swelling ability of the PU matrix,
thereby reducing the polymer matrix absorbency [95,96].
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Figure 7. Polymer matrix absorbency, conductivity, and diffusion coefficient of PU matrices of
different PEG molecular weights.

The conductivity of the PU matrix of different PEG molecular weights was measured,
as shown in Figure 7. The conductivity decreased as the molecular weight of PEG increased
from 2000 gmol ! to 8000 gmol ! and then became constant. The conductivity trend was
similar to that of the polymer matrix absorbency trend. The conductivity of the PU matrix
decreased as the amount of the LE uptake by the PU matrix decreased [97]. This is because
fewer ions (Na*, I~ and I~3) and solvents were available to transfer the electron. This
is also because S-PANi is more homogenously distributed as aforementioned, providing
a more interconnected and continuous conductive path and leading to the increase in
conductivity [98].

The ion diffusion coefficient of PU matrices with different PEG molecular weights is
shown in Figure 7. The ion diffusion coefficient decreases as the PEG molecular weight
increases from 2000 gmol~! to 6000 gmol ! and becomes constant as the PEG molecular
weight increases from 6000 gmol ! to 10,000 gmol~!. The ion diffusion coefficient correlated
to the gel content, polymer matrix absorbency, and crystallinity level of the PU matrix. The
trend of the ion diffusion coefficient is similar to that of the crosslinking level and polymer
matrix absorbency trends. This is because ions are difficult to transfer through a highly
crosslinked PU matrix [99,100]. As the polymer matrix absorbency decreases, there are
fewer ions available to transfer; therefore, the ion diffusion coefficient decreases and vice
versa. Besides that, as mentioned above, there was more aggregated S—PANi found in the
PU matrix as the molecular weight of the PEG increased. The aggregated S—PANi hindered
the diffusion of the ions. The ion diffusion coefficient also depends on the physical state of
the polymer, i.e., whether it is amorphous or crystalline [69]. The ions are easy to diffuse in
the amorphous region as the segmental movement of the polymer helps to transfer the ions.
As aforementioned, the crystallinity of the PU matrix increased as the molecular weight of
the PEG increased.
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3.8. Charge Recombination of DSSCs

Dark current analysis was conducted to investigate the charge recombination of the
DSSCs (Figure 8). There is no change in the forward bias voltage as the PEG molecular
weight increases. A high forward bias voltage indicates a low charge recombination and
vice versa [101,102]. The charge recombination is correlated to the amount of the triiodide
ion, whereas the amount of the triiodide ion is correlated to the polymer matrix absorbency.
The decrease in the liquid electrolyte absorbency as the PEG molecular increases indicates a
decrease in triiodide ion in the PU matrix, and suggests a decrease in charge recombination.
This is because there is less triiodide ion to receive the electron back transfer from TiO5.
It was found that the trend of charge recombination is not in accordance to the trend
suggested; this is because the charge recombination is also affected by the ion diffusion
coefficient. The decrease in the ion diffusion coefficient as the PEG molecular weight
increases suggests an increase in the charge recombination. A low ion diffusion coefficient
indicates slow ion movement in the PU matrix, which increases the chance of triiodide
ions to receive the electron at the interface of the electrolyte and TiO; layer. These factors
contributed to the insignificant changes in the charge recombination as the PEG molecular
weight varied.

800 -
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(2]
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D 700 -
®
g 675 -
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Molecular Weight of PEG, g mol!

Figure 8. Forward bias voltage of DSSCs based on PU matrices with different PEG molecular weights.

3.9. Photovoltaic Performance of DSSCs

Figure 9 shows the current density vs. the photovoltage curve (IV curve) of the
DSSCs based on the PU matrices with different PEG molecular weights. The V. and Jsc
were extracted from the IV curves, whereas the FF and the efficiency of the DSSCs were
calculated and presented in Table 2. The V. of DSSCs did not have any significant changes
as the PEG molecular weight varied, as it was affected by the charge recombination. A low
degree of charge recombination results in a higher V. and vice versa [103,104]. As the PEG
molecular weight increases, the Js. decreases up to 8000 gmol ! and then remains stable
as the PEG molecular weight increases further. The decrease in the J is attributed to the
decrease in the conductivity as the PEG molecular weight increases.

Table 2. Photovoltaic performance of DSSCs based on PU matrices with different PEG molecu-
lar weights.

Voo, mV Jsc, mAcm—2 FF 1 (%)
PU-PEG 2000 720 + 04 452 +0.11 0.63 £+ 0.02 3.41 +0.15
PU—-PEG 4000 721 £ 06 441 +0.16 0.63 £+ 0.01 3.33 +£0.18
PU—-PEG 6000 715 + 12 4.24 + 0.09 0.63 £+ 0.01 3.18 = 0.16
PU—-PEG 8000 716 £+ 05 4.13 £+ 0.06 0.63 + 0.01 3.11 £ 0.10

PU—-PEG 10,000 708 = 10 413 +0.14 0.65 £ 0.02 3.17 £0.16
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Figure 9. Current density-photovoltage curves of DSSCs based on PU matrices with different PEG
molecular weights.

The J. decreases as the PEG molecular weight increases up to 8000 gmol ! and then
remains stable as the PEG molecular weight increases further. It was in good agreement
with the conductivity trend as aforementioned. Higher conductivity indicates a faster
electron movement, thereby meaning a higher regeneration rate of the oxidized dye [105].
The Jsc increased as the regeneration rate of the oxidized dye increased. The difference in
the FF of all of the DSSCs was insignificant. The DSSC based on the PU—PEG 2000 showed
the highest efficiency, followed by the DSSC based on the PU—-PEG 4000, PU—PEG 6000,
PU—-PEG 8000, and lastly, the PU-PEG 10,000.

3.10. Lifespan of DSSCs

Figure 10 shows the lifespan of DSSCs based on the liquid electrolyte (LE), PU-PEG
10,000 and PU—PEG 2000: normalized efficiency vs. day. Normalization changes the values
of efficiencies to a common scale without distorting differences in the ranges of values. This
allows an improved qualitative and quantitative comparison in graphical displays. The
results indicated that the lifespan of the DSSCs based on the QSE (PU—PEG 10,000 and
PU—PEG 2000) was improved tremendously if compared to the DSSC based on the liquid
electrolyte (the composition of the LE was similar to the LE absorbed by PU—PEG 10,000
and PU—PEG 2000). The results also indicated that the lifespan of the DSSC with PU-PEG
10,000 was similar to that with PU—PEG 2000.

1.2 —=—PU-PEG 10,000
—=—PU-PEG 2000

- E

1.0
0.8
0.6
0.4
0.2

Normalized Efficiency

0.0

0 5 10 15 20 25 30
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Figure 10. Lifespan of DSSCs based on PU matrices with different PEG molecular weights for 30 days.
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4. Conclusions

Reducing the PEG molecular weight improved the efficiency of the DSSC. The effect
of the PEG molecular weight on the lifespan and stability of the DSSC was insignificant.
However, it was significantly improved as compared to the DSSC based on a liquid elec-
trolyte. The improvement in the efficiency was mainly due to the improvement in the Jg.
Reducing the PEG molecular weight led to an increase in the polymer matrix absorbency
and decrease in crystallinity, which contributed to the improvement in the conductivity
and ion diffusion coefficient.
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