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Abstract: The aim of this research was to study the possibility of using silver nanoflakes (SNFs) as
an antibacterial agent in polysulfone (PSF) membranes. SNFs at different concentrations (0.1, 0.2,
0.3 and 0.4 wt.%) were added to a PSF membrane dope solution. To investigate the effect of SNFs
on membrane performance and properties, the water contact angle, protein separation, average
pore size and molecular weight cutoffs were measured, and water flux and antibacterial tests were
conducted. The antimicrobial activities of the SNFs were investigated using Escherichia coli taken
from river water. The results showed that PSF membranes blended with 0.1 wt.% SNFs have contact
angles of 55◦, which is less than that of the pristine PSF membrane (81◦), exhibiting the highest pure
water flux. Molecular weight cutoff values of the blended membranes indicated that the presence of
SNFs does not lead to enlargement of the membrane pore size. The rejection of protein (egg albumin)
was improved with the addition of 0.1 wt.% SNFs. The SNFs showed antimicrobial activity against
Escherichia coli, where the killing rate was dependent on the SNF concentration in the membranes.
The identified bacterial colonies that appeared on the membranes decreased with increasing SNF
concentration. PSF membranes blended with SNF, to a great degree, possess quality performance
across several indicators, showing great potential to be employed as water filtration membranes.

Keywords: polysulfone membrane; silver nanoflake; good health; antibacterial activity; Escherichia
coli; water treatment

1. Introduction

Clean water scarcity has become one of the greatest global challenges that need to be
solved [1–3]. Different water separation technologies have been developed to tackle the
problem [4]. For this purpose, economical and efficient water separation technologies are
needed. Among other water separation technologies, such as flotation, skimming, ultra-
sonic treatment and coagulation [5–9], membrane separation has attracted more attention
due to its performance, high efficiency, low-cost fabrication and operation [10–12]. To date,
ceramic and polymeric membranes have been developed and used in water separation
technologies [13,14]. Compared to ceramic membranes, polymeric membranes display
outstanding performance, such as controllable membrane microstructures, good flexibility
and easy fabrication [4,15].

Filtration utilizing membrane-based polymer technology such as microfiltration (MF),
ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) is a potent solution
to overcoming the scarcity of the clean and safe water supply [16]. The outstanding
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combination of water flux and rejection have made polymeric membranes widely used in
various water filtration applications [17,18]. In addition, polymeric membranes possess a
microporous, open spongy morphology of tiny pores ranging from 0.03 µm to 10 µm in
diameter [19,20], which is suitable for all water filtration purposes.

Different types of commercial membranes have been used and developed using
common polymers, such as poly (vinylidene fluoride) (PVDF) [14,21], polyether sul-
fone (PES) [22,23], poly (acrylonitrile) (PAN) [24,25], polyimide (PI) [26,27], polyurethane
(PU) [28,29], poly (propylene) (PP) [30,31] and poly (sulfone) (PSF) [32,33].

Among those polymeric membranes, PSF is an ideal choice for membrane develop-
ment due to its availability, chemical stability and high mechanical strength and can be used
in a wide range of temperature and pH levels [34,35]. PSF has a tensile strength between
78 and 83 MPa; hence, it exhibits excellent mechanical properties that favor its usage as a
membrane in wastewater treatment [36]. However, hydrophobicity is considered to be a
disadvantage of PSF membranes, as it contributes to membrane fouling [37,38]. To further
improve the properties and filtration performance of PSF membranes, many modification
methods, such as polymer blending [39–41], incorporating nanoparticles [42,43], surface
chemical modification [42,44], interfacial polymerization [45,46] and the incorporation of
additives, have been conducted. It is known that the additives modulate the hydrophilicity
of the surface of PSF membrane and control its morphology and pore formation [47–49].

Recently, various types of additives have been used to modify the PSF membrane
and to attain material and filtration improvements in terms of water flux and solute
rejection. Kusworo et al. prepared PSF membranes by adding TiO2 nanoparticles to the
dope solution. The study revealed that the introduction of TiO2 nanofillers enlarged the
finger-like structure of the membrane, yielded a decreased contact angle and increased the
pure water flux [50].

Graphene oxide (GO) has also been evaluated as a nanofiller in PSF ultrafiltration
membranes. Differently shaped GO materials, flat and crumpled GO, were used in the
membrane fabrication via the phase inversion method. The experimental result shows
that the shape of the GO material affects the dispersion and viscosity of the dope solution
and results in changes to the membrane structures (surface hydrophilicity and porosity)
and performance (permeability and rejection) [51]. Alosaimi explored the effect of the
incorporation of oxidized carbon nanotubes (CNTOxi) into PSF membranes. The addition
of a hybrid nanocomposite improves the thermal stability, mechanical properties and
adsorption capacities of the membranes due to the good dispersion of organoclay and
carbon nanomaterials [52].

Cellulose nanocrystals were used as an additive to PSF to form nanocomposite mixed-
matrix membranes (NMMMs). It was reported that fabricated NMMMs have triple the pure
water flux and an improvement in the methylene blue (MB) rejection efficiency [53]. MOFs
have also been prepared as composite membranes. A high pure water flux membrane was
obtained by incorporating metal-organic framework (MOF) MIL-100 (Fe) nanoparticles into
a PSF composite membrane. In addition, fabricated PSF membranes have a 99% rejection
rate of MB and excellent anti-fouling performance [54].

In water treatment, bacterial and viral penetration is the obstacle to avoid. In order
to overcome this problem, silver nanoparticles (SNs) incorporated into PSF membranes
have been shown to exhibit antimicrobial properties. Silver is known for its good electrical
and thermal conductivity, chemical stability and antibacterial activity [55]. Its antibacterial
property is due to the availability of Ag+, which prolongs the prevention of bacterial ad-
hesion. In addition to its antibacterial property, as an additive, SNs improved membrane
hydrophilicity and reduced membrane fouling [56]. Moreover, membranes with incorpo-
rated nanosilver showed different porosities as a function of additive particle size [57]. Pal
et al. [58] reported that the toxicity of SNs to bacteria is affected by SN size and shape,
since in terms of the active facet, different shapes may have different effective surface
areas. Nanoflakes can be defined as nanoscale particles which have three dimensions
at the nanoscale [59], as shown in Figure 1. On the other hand, bacteria are susceptible



Polymers 2022, 14, 3600 3 of 16

to mechanical forces [60,61], and the sharp edges of nanoflakes could be beneficial in
penetrating the bacterial cell membrane. In the literature, there are several works related
to silver nanoflakes (SNFs); however, there is no scientific study about the characteristic
properties of SNFs incorporated in PSF membranes, particularly on the effect of SNFs on
the average pore size of the membrane, the separation of molecular weight protein solution
(egg albumin) and the ultrafiltration performance of the fabricated membrane.

Figure 1. Image of silver nanoflake powder.

This work focuses on preparing bare and composite PSF membranes. The membranes
were fabricated by introducing different quantities of SNFs (0, 0.1, 0.2, 0.3 and 0.4 wt.%)
to the PSF (22 wt.%) membrane solution. Contact angle and adhesion work were the
techniques used to characterize the membranes. Membrane performance was investigated
by using a water flux test, a protein rejection test, an average pore size assessment and a
molecular weight cutoff measurement. Finally, the antibacterial property was evaluated by
quantifying the number of Escherichia coli attached to the membrane surface.

2. Materials and Methods
2.1. Materials

The PSF dope solution was prepared using Udel P-3500 (Solvay SA, Brussels, Belgium).
Egg albumin (EA) (45 kDa) was obtained from HiMedia Laboratories Pvt Ltd., Mumbai,
Maharashtra 400086, India. Chromocult® coliform agar and N-Methyl-2-pyrrolidone
(NMP), used as a solvent, were obtained from Merck KGaA, Darmstadt, Germany. Silver
nanoflake powder (thickness of 80–500 nm), as shown in Figure 1, was obtained from
Nanostructured & Amorphous Materials, Inc. Katy, TX 77494, USA. Pure water was used
for the membrane’s fabrication and water flux test.

2.2. Membrane Fabrication

The PSF membrane was prepared using the phase inversion method. PSF, as a poly-
meric binder, was added to the solvent (NMP) until it was completely dissolved. Once
a homogeneous solution was formed, SNF powder was slowly added to the dope solu-
tion at different concentrations (0, 0.1, 0.2, 0.3 and 0.4 wt.%), as presented in Table 1, and
stirred with a hot plate magnetic stirrer. The dope solution of PSF/SNF was poured onto
a glass plate and casted using a film applicator (Elcometer, Manchester M43 6BU, UK) at
a thickness of 200 µm. The solution formed on the glass plate was gently transferred to
a gelatinization bath. The bath was composed of pure water (non-solvent), and during
the gelatinization process, an instantaneous liquid–liquid demixing process controlled the
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membrane surface and matrix phase inversion process, resulting in a membrane with a
finger-like structure and a dense skin on its surface, as illustrated in Figure 2 [62].

Table 1. Composition of the casting solution of PSF/SNF membranes.

Membrane
Blend Composition, wt.%

PSF SNF NMP

SNF 0 22 0 78
SNF 0.1 22 0.1 77.9
SNF 0.2 22 0.2 77.8
SNF 0.3 22 0.3 77.7
SNF 0.4 22 0.4 77.6

Figure 2. Membrane gelatinization process.

2.3. Membrane Characterization

Pure water at a fixed volume was deposited onto the surface of the dry membrane.
The image of the deposited water was captured using an AM73915MZTL Dinolite Edge 3.0
digital microscope. The angle of the water drop was calculated using AutoCAD software.
To guarantee a valid result, the contact angle for each membrane was measured three times
and the values were acquired by averaging the three repetitions. From the contact angle
values obtained, the work of adhesion (ωA), i.e., the surface energy required to drag water
from a membrane surface, can be determined as follows [63]:

ωA = γB(1 + cos θ) (1)

where γB is the water surface tension and θ is the contact angle.

2.4. Equilibrium Water Content

The fabricated PSF membranes were cut to the required size, immersed in pure water
for 24 h and weighed directly after wiping the free water from the membrane surface. The
membranes were then dried out and weighed again. The water content of the membrane
was calculated by the following [64]:

%WC =
Ww − Wd

Ww
×100 (2)

where Ww and Wd are the weights of the wet and dry membranes, respectively. The
measured data were then analyzed using one-way ANOVA with SPSS Software version 16,
SPSS Inc., Chicago, IL, USA, and the level of significance was set at 0.05.
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2.5. Filtration Experiments
2.5.1. Water Flux Test

Filtration experiments were conducted in a stirred dead-end cell (Sterlitech UHP-62,
Sterlitech Corp. Kent, WA, USA), as shown in Figure 3, with a diameter of 62 mm and
an effective membrane area of 30 cm2. Nitrogen gas at a pressure of 2 bar was delivered
into the dead-end cell to provide pressure to the tested water. Data acquisition was used
to record the weight of the permeate water passing through the membrane pores. The
following formulas were used to calculate the volumetric flux and permeability [65]:

Flux (Jv) =
Q

A∆t
(3)

Permeability
(

Lp
)
=

Jv

∆P
(4)

where Q is the quantity of the permeate water (in L) during the sampling time, ∆t (in h) is
the time difference, A is the area of the membrane (in m2) and ∆P is the pressure difference
(in bar).

Figure 3. Experimental setup of the water flux test.

2.5.2. Protein Separation

EA solution at a concentration of 0.1 wt.% was prepared in phosphate-buffered solution
(pH = 7.2). The protein rejection experiment was conducted at a fixed pressure of 2 bar
using the dead-end cell test. An N4S UV-visible spectrophotometer was used to measure
the concentration of the protein at a wavelength of 280 nm. Proteins contain amino acids
(tryptophan) that absorb light in the UV spectrum at wavelength of 280 nm [66]. The solute
rejection (SR) was determined with the following [67]:

%SR =

[
1 −

Cp

C f

]
×100 (5)

where Cp and C f are the protein concentrations in the permeate and feed solution, respectively.
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2.5.3. Measurement of Average Pore Size

The results from the ultrafiltration test were used to calculate the average pore size of
the membrane surface. To do so, the molecular weight of solutes with a solute rejection
(SR) of more than 80% was used in the equation below [68]:

R= 100
[ ∝

%SR

]
where R is the average radius of the pore size and ∝ is the solute radius, represented by the
Stokes radius acquired from the solute molecular weight.

2.6. Molecular Weight Cutoff (MWCO)

There is a linear correlation between MWCO and the membrane’s pore size. In every
case, the membrane MWCO is investigated by identifying an inert solute of the smallest
molecular weight that shows a protein rejection of 80–100% in an ultrafiltration test. In this
study, EA was selected as a protein due to its percentage rejection of the PES/SNF-blended
membrane [69].

2.7. Antibacterial Experiment

The PSF membranes were evaluated for the Gram-negative bacteria Escherichia coli
in the untreated river water. Feng et al. [70] and Dadari et al. [71] found that heavy met-
als such as silver have been verified to be effective in antibacterial performance against
Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. This is because the
presence of silver in bacterial cells may start protein deposition in cells and may deacti-
vate them. Either Gram-negative or Gram-positive experiments yield identical outcomes.
Therefore, coliform agar was selected to grow Escherichia coli instead of Staphylococcus
aureus. Untreated water, such as irrigation water or river water in populated areas—with
some people having limited access to water supply still needing to fulfill their daily water
intake—may have been contaminated by bacteria and viruses [72,73].

Prior to the test, coliform agar was prepared by autoclaving the liquid media (25.6 g
of coliform agar in 1 L of pure water) and cooling it down in the Petri dish. During the
antibacterial experiment, the fabricated membranes were used to filter out bacteria in the
contaminated water (river water). The water sample was taken from the Trasi River in
Sleman, Yogyakarta province, Indonesia, which is used for irrigation purposes. The tested
membranes were then placed on the surface of the prepared coliform agar. The EMB agar
plates were then incubated at 35 ◦C for 24 h. Table 2 presents the properties of the river
water used in this study.

Table 2. Properties of sample water (river water).

pH TDS
(ppm)

Salinity
(%)

Electrical
Conductivity (µS/cm)

Temperature
(◦C)

8.5 143 0.01 293 28.1

The number of bacteria present on the membrane surface was analyzed with ImageJ
software. For the ImageJ analysis, the images of the membrane surface were converted to
8-bit mode. Brightness and contrast were then adjusted to eliminate noise in the image
background. Automatic thresholding was then utilized to convert images to binary (black
and white), where the black areas represent the bacterial colonies and white areas represent
the surface of the membranes [74,75].

3. Results and Discussion
3.1. Contact Angle Analysis

To examine the effect of SNF on surface hydrophilicity, the contact angles of the
fabricated membranes were measured. Figure 3 presents the water contact angle of the
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PSF membranes at different concentrations of SNFs. As shown in Figure 3, bare PSF
membranes (0 wt.% SNFs) have the highest contact angle, whilst the most hydrophilic
surface was achieved at an SNF concentration of 0.1 wt.%. The addition of SNFs to
polysulfone membranes caused a reduction in the water contact angle of the modified
membranes. This is in accordance with the study of Kasraei et al. [76]. The contact angle of
SNF-PSF membranes slightly increased with the increase in SNF concentration. This result
indicates that the introduction of SNFs could improve the hydrophilicity of the membrane in
comparison to the bare PSF membrane. However, the membrane hydrophobicity increases
when the SNF concentration is amplified from 0.1 to 0.4 wt.%. This is possibly due to
the creation of stacked nanoflake particles at SNF concentrations that exceed 0.1 wt.%,
forming clusters of SNFs on the membrane surface, thus leading to an increase in the water
contact angle. Subsequently, the contact angle values were used to calculate the work
of adhesion, as presented in Figure 4. The highest value of the work of adhesion was
obtained for the PSF membrane with 0.1 wt.% SNFs. These results indicate that at a certain
concentration, the addition of SNFs improves the surface hydrophilicity of the membrane
to its maximum value.

Figure 4. Contact angle and work of adhesion of the fabricated membranes at different SNF
concentrations.

Contradictory to the result in this study, Bouchareb et al. [77] reported that the mem-
brane contact angle decreases with increasing silver nanoparticles-graphene oxide (GO)
concentration. They combined silver nanoparticles with graphene oxide as the additive in
their study. The residual hydrophilic oxygen-based functional groups of graphene oxide
and silver nanoparticles were attributed to the decrease in the superficial retention of
the membrane.

3.2. Equilibrium Water Content Study

Figure 5 shows the equilibrium water content of the membranes with different con-
centrations of SNFs. The bare PSF membrane has a maximum water content of 65.4 ± 0.9%.
The water content of the membrane slightly increases with the increase in SNF concen-
tration. At an SNF concentration of 0.1 wt.%, the membrane achieved the highest water
content (67.2 ± 0.6%), as presented in Table 3, and became the most hydrophilic membrane
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compared to the others. When the membrane hydrophilicity increases, the membrane is
capable of transporting more water through, hence increasing the water content of the
membrane [67,78].

Figure 5. Equilibrium water content of the fabricated membranes at different SNF concentrations.

Table 3. Performance of PSF/SNF membranes.

Membrane Code Water Content (%) Average Pore Radius,
R (Å)

Egg Albumin
Rejection (%)

SNF 0 65.4 ± 0.6 36.9 ± 1.2 84.2 ± 2.6
SNF 0.1 67.2 ± 0.9 36.7 ± 1.6 87.4 ± 3.3
SNF 0.2 66.8 ± 1.5 38.1 ± 2.2 73.3 ± 7.7
SNF 0.3 66.5 ± 0.4 37.8 ± 3.6 78.9 ± 12.1
SNF 0.4 65.1 ± 0.5 37.3 ± 2.3 79.7 ± 10.8

A one-way ANOVA test was conducted to determine if there is a significant difference
in the equilibrium water content between at least two groups. The results showed that
p = 0.023, below the significance level of 0.05, as presented in Table 4. Therefore, we reject
H0 and conclude that there was a statistically significant difference in equilibrium water
content between at least two groups.

Table 4. ANOVA statistical analysis of membrane equilibrium water content.

Equilibrium
Water Content

Sum of
Squares

Degree of
Freedom

Mean
Square F Values Significance

Between Groups 10.533 4 2.633 4.581 0.023
Within Groups 5.748 10 0.575

Total 16.281 14

3.3. Pure Water Flux Test Experiments

Figure 6 shows the pure water flux of the fabricated membranes measured at different
concentrations of SNFs. As shown in Figure 5, pure water flux was increased from 88 to
116 L m−2 h−1 bar−1 by adding 0.1 wt.% SNFs, which is the highest amongst all the
tested membranes. This is attributed to the improvement in membrane hydrophilicity,
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which is one of the essential factors in the enhancement of pure water flux. This result
is consistent with Bilici et al. [79], who stated that the increase in pure water flux was
probably due to the increase in hydrophilicity. However, at higher SNF concentrations, the
pure water flux started to decline. At higher concentrations, as more SNFs cover and block
the membrane pores since extra SNFs are introduced, more SNFs that are present in the
membrane tend to cause extra blockage of the pores, compliant with what has been reported
by Mollahosseini et al. [80] where pore blockage occurred due to higher SNF content.

Figure 6. Pure water flux of the fabricated membranes at different SNF concentrations.

3.4. Protein Separation

Figure 7 shows the egg albumin (EA) rejection of the fabricated membranes, whose
numerical rejection values are summarized in Table 3. As presented in Figure 6, the PSF
membrane at 0.1 wt.% SNFs has a slightly higher EA rejection compared to the bare PSF
membrane (0 wt.% SNFs). However, EA rejection of the PSF/SNF blended membrane
slightly decreases at higher concentrations of SNFs. It can be observed that the EA rejection
is not significantly changed at various concentrations of SNFs, since the addition of SNFs is
less than 0.5 wt.% and the percentage increment is only 3.4%.

Contrary to the results of the present study, Mollahosseini et al. [80] reported that less
protein macromolecules could pass through the membranes when the silver nanoparticle
concentration in the membrane increased. They utilized higher concentrations of silver
nanoparticles in their research, which included 0, 0.5, 2 and 4 wt.%. It is possible that the
addition of more than 0.5 wt.% silver nanoparticles into the polysulfone dope solution
caused pore reduction, further resulting in higher protein rejection.
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Figure 7. Effect of SNF concentration on EA rejection.

3.5. Measurement of Average Pore Size

Figure 8 presents a summary of the average pore size of the membranes. Based on the
EA rejection data, all membranes have a protein rejection value between 86 and 89%, where
the PSF membrane with 0.1 wt.% SNFs has the highest rejection (89.9%). These results can
be further accounted for given that those membranes have an average pore size in the range
of 36 Å–38 Å. There are no significant changes to the membranes’ average pore size at SNF
concentrations between 0.1 and 0.4 wt.%. This is due to the relatively low concentration of
SNFs in the dope solution, as supported by the membrane surface morphology presented
in Figure 9.

Figure 8. Effect of SNF concentration on the membrane average pore size.
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Figure 9. Surface SEM micrographs of (a) bare PSF (b) PSF-SNF 0.1 wt.%, (c) PSF-SNF 0.2 wt.%,
(d) PSF-SNF 0.3 wt.% and (e) PSF-SNF 0.4 wt.% membranes.

In contrast to the result in this study, Li et al. [81] found that the average pore size of
the membranes increased due to the increase in the total solid content (1–5 wt.%). This is
possibly due to the amount of additives added to the membrane casting solution, where, to
suppress defects, the small amount induced a denser skin layer, whereas the large amount
of particles added led to a looser skin layer.

3.6. Molecular Weight Cutoff Measurement

In this study, EA with a molecular weight of 45 kDa was used to investigate the
membrane MWCO. Based on the results obtained, the membrane MWCO is not affected
by the introduction of SNFs at concentrations of 0.1–0.4 wt.% (Table 3). The size of the
nanoflakes was still within the range of the permitted concentrations used in the membrane
dope solution; therefore, the MWCO value remains the same.

Coincidently, similar results have previously been reported by Mahmoudi et al. [80].
Their research claimed that the addition of silver nanoparticles–graphene oxide nanoplates
has no significant effect on the protein rejection of the membranes due to the low concentra-
tion of the additives (0.1–0.5 wt.%). Furthermore, the results indicated acceptable rejection
values for the membranes.

3.7. Evaluation of the Antimicrobial Activity

Figure 10 presents the results of the antibacterial test for the fabricated membranes
at different concentrations of SNFs. The images of the membrane area contaminated by
bacterial colonies were taken and quantitatively measured using the image processing
method. The images were then binarized and adjusted to detect the colonies’ growth. Both
the obtained images and the binarized images were compared to ensure detection validity.
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Figure 10. Results of the bacterial test on the fabricated membrane at different SNF concentrations:
(a) 0 wt.%, (b) 0.1 wt.%, (c) 0.2 wt.%, (d) 0.3 wt.% and (e) 0.4 wt.%.

Based on these observations, the number of bacterial colonies on the PSF membrane at
0.0 wt.% SNFs was higher compared to the membranes blended with SNFs. Figure 10b–e
verifies that the number of bacterial colonies decreased with the increase in SNF concentra-
tion. Quantitative observation indicated that the numbers of bacterial colonies appearing
on the membrane surface were 497, 448, 377, 169 and 82 for membranes at SNF concentra-
tions of 0, 0.1, 0.2, 0.3 and 0.4 wt.%, respectively. This result is in agreement with previous
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findings in which silver nanoparticles decrease the number of bacterial colonies. Silver
can modify the metabolism of bacterial activity by altering their DNA so that it loses its
replication ability; hence, proteins become inactivated and the bacteria enter the death
phase [81,82]. In addition, a significant reduction in the colonies formed was observed at
0.4 wt.% SNFs in the membrane. This can be explained by the higher SNF concentration
leading to more surface contact between the silver and the bacteria. These findings conform
to the statement that exposing bacteria to a higher concentration of nanoparticles will lead
to a more dramatic decrease in the extent of the colonies’ growth [83,84].

4. Conclusions

In this study, we provided laboratory evidence for the efficacy of SNF-blended PSF
membranes for water filtration purposes. We demonstrated that the introduction of SNFs
changed the membrane surface hydrophilicity, pure water flux, protein rejection and an-
tibacterial activity, resulting in PSF membranes with improved properties. The blended
membrane with 0.1 wt.% SNFs exhibited low contact angles (55◦) and the lowest antibacte-
rial capability against Escherichia coli, as well as higher pure water flux and rejection against
egg albumin. The best antibacterial property was related to the 0.4 wt.% SNF membrane.
The blended PSF membranes developed in this study have a potential use in the water
filtration process. Challenges regarding the optimal SNF concentration at their full scale
and long-term usage remain and should be addressed in a pilot study.
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