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Abstract: Manufacturing polypropylene (PP) composites to meet customers’ needs is difficult, time-
consuming, and costly, owing to the ever-increasing diversity and complexity of the corresponding
specifications and the trial-and-error method currently used to satisfy the required physical properties.
To address this issue, we developed three models for predicting the physical properties of PP
composites using three machine learning (ML) methods: multiple linear regression (MLR), deep
neural network (DNN), and random forest (RF). Further, the industrial data of 811 recipes were
acquired to verify the developed models. Data categorization was performed to account for the
differences between data and the fact that different recipes require different materials. The three
models were then deployed to predict the flexural strength (FS), melting index (MI), and tensile
strength (TS) of the PP composites in nine case studies. The predictive performance results differed
according to the physical properties of the composites. The FS and MI prediction models with
MLR exhibited the highest R2 values of 0.9291 and 0.9406. The TS model with DNN exhibited the
highest R2 value of 0.9587. The proposed models and study findings are useful for predicting the
physical properties of PP composites for recipes and the development of new recipes with specific
physical properties.

Keywords: polypropylene composite; data categorization; machine learning; multiple linear
regression; deep neural network; random forest

1. Introduction

Composites are mixtures of two or more materials and generally consist of a matrix
that serves as a bonding material and a filler that serves as reinforcement. Polymerized
composites may be used directly, and their physical properties can be obtained by imple-
menting fillers or additives [1]. In particular, polypropylene (PP) composites are produced
by polymerizing PP with other materials. PP is used in research on various composites,
owing to its excellent moldability and mechanical properties.

PP composites are produced using the following steps. First, PP is mixed with sta-
bilizers, fillers, and other additives. Second, the mixture is extruded and then packaged.
In the first step, their physical properties vary depending on the type and quantity of
materials [2,3]. Dikobe and Luyt investigated the morphology, as well as thermal and
mechanical properties of blend composites. They found that wood powder has a higher
affinity for ethylene vinyl acetate than PP. Ismail and Suryadiansyah found that PP with
recycled rubber blends has high tensile strength and Young’s modulus, whereas PP with
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natural rubber blends has high elongation and stabilization torque. PP composites can
be used in various fields depending on their physical properties, and the development of
flexible recipes for their production is crucial. Hence, to quickly produce PP composites to
meet demand, most chemical companies preemptively research new recipes. The develop-
ment of recipes for manufacturing PP composites with new physical properties involves
experimentation or research using empirical data. Recipe development is performed by
adjusting the type and quantity of materials and testing the produced samples, which is a
time-consuming and costly process. In particular, the melting index (MI) of PP composites
needs to be measured because it is associated with the grade of the product; however, the
analysis requires 2–4 h, and the cost is high [4].

The development time and cost can be reduced when the recipes of already-produced
composites are applied to machine learning (ML). Jiang et al. predicted the MI of PP by
applying variables such as the mix ratio and polymerization temperature, which represent
the actual process conditions, to a relevant vector machine [5]. In like manner, predicting
the physical properties using a prediction model can save time and costs because new PP
composites can be produced quickly through a testing process only by omitting complex
experimentation and research processes. The implementation of ML is reasonable because it
is difficult for conventional theoretical models to identify the correlations between materials.

However, because ML-based models are typically trained via random sampling rather
than on every combination of materials, overfitting may occur when the model is applied
to predict the properties of PP composites with their materials. Moreover, the optimal
ML algorithms for the models depend on the correlations between the materials of the PP
composites and their properties. Therefore, when an ML-based model for predicting the
properties of PP composites with their materials is developed, numerous combinations of
materials have to be considered to overcome the overfitting problem, and the optimal ML
algorithm has to be selected for high performance of the model.

To solve these problems, we developed and compared ML-based models for the
flexible prediction of the physical properties of PP composites. In addition, we applied
categorization as data preprocessing to consider the numerous combinations of materi-
als. The physical properties used in this study are flexural strength (FS), MI, and tensile
strength (TS), which are the primary physical properties to evaluate the specifications of PP
composites, and the algorithms are multiple linear regression (MLR), deep neural network
(DNN), and random forest (RF).

The novel and major contributions of this study are as follows:

• This study proposed and compared prediction models by training recipe-based data
from a real PP composites plant.

• Categorization is applied as data preprocessing to overcome the overfitting issue.
• This is the first study to propose a suitable model according to physical properties.

Figure 1 shows a flowchart for the development of a new PP composite recipe. The
demand for the various types of PP composites can be quickly satisfied by replacing
experimentation and research with the developed models. To evaluate the model, the root
mean squared error (RMSE) and R2 values of the actual and predicted data were compared.
Then, for each physical property, the prediction model with the highest accuracy—the
smallest RMSE and largest R2—was selected.

The remainder of this paper is organized as follows. Section 2 discusses the related
work. Section 3 describes the three different ML models and presents the corresponding
mathematical background. Section 4 details the development of the proposed models,
including data preprocessing. Section 5 discusses the application and performance evalua-
tion of the three models. Finally, Section 6 summarizes the important results and provides
directions for future work.
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2. Related Work

Unlike single linear regression analysis, MLR can be used when two or more variables
influence the results. It is often deployed in data analysis, owing to its fast calculation speed
and high accuracy. Liu et al. estimated the mercury content in the leaves of phragmites
australis using MLR [6], and Ali et al. researched real-time wave height prediction [7].
Chen et al. proposed the MLR-based property prediction model using polymer data [8].

A DNN is a nonlinear regression method and is an advanced artificial neural network
(ANN) algorithm. In an ANN, which was inspired by the neural networks in the brain,
the nodes forming a network through the bonding of synapses solve problems through
learning. Because an ANN can produce data for a specific situation using learned data,
it has been applied to effectively solve many scientific and engineering problems that
require experiments or measurements [9]. Its effects have been verified through several
studies. Belalia Douma et al. predicted the properties of self-compacting concrete using an
ANN [10]. They successfully developed an ANN-based prediction model to predict the
slump flow, L-box ratio, V-funnel time, and the compressive strength of self-compacting
concrete. Kuhe et al. applied ANNs to predict global solar radiation [11]. They used feed-
forward backpropagation neural networks, radial basis function networks, and generalized
regression neural networks as an ensemble solution. Ultimately, they successfully predicted
solar radiation using their model and achieved an R2 of 0.998. Yılmaz et al. proposed
the Pi-Sigma artificial networks for effective performance [12]. Tran et al. used ANNs to
predict a variety of polymer properties [13]. In another study, de Sousa et al. verified the
accuracy of ANNs in genome selection [14].

Although the ANN is appropriate for simple prediction because of the small number
of hidden layers it possesses, its prediction ability is low in complex systems. Thus, a
DNN with an increased number of hidden layers was developed. The DNN exhibits higher
accuracy for complex prediction models than ANN, which uses one hidden layer [15].
Research on the DNN is still actively underway with respect to the prediction models
using AI. Singh et al. developed a prediction model for road accidents using a DNN [16].
They used the official records and a dataset of 2680 accidents for data-driven modeling.
They compared their DNN-based model to gene expression programming and random
effect negative binomial models and showed that the DNN-based model achieved the
highest performance. Lim et al. used a DNN to find the optimal blending ratio point of
waste seashells [17]. They found the best ratio of waste seashells for SOx capture using
a DNN-based surrogate model within a reasonable time. Qiao et al. proposed a DNN
with a strengthening response sparsity for application to high-dimensional data [18]. They
tried the strengthening response sparsity approach for deep learning to improve the sparse
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learning abilities and time complexity. They tested their model on the Fashion-MINIST
dataset and successfully improved the DNN-based prediction model.

Another popular ML technique is ensemble learning, which uses several decision
trees (DTs) for better prediction accuracy. For classification and regression analysis, the
RF ensemble learning method is often used. Existing DT models can obtain the result
closest to the goal in decision-making analysis, but they suffer from large variations in their
accuracy. To overcome this disadvantage, the RF algorithm—using multiple DTs—was
developed, which improved the generalization performance. Consequently, RF is used in
various prediction models. For example, Franco et al. used RF to validate their data [19],
and Shen et al. found that RF outperformed other commonly used classifiers, such as the
support vector machine and DT [20].

A few other ML techniques, such as linear ridge regression (LRR), deep tensor neural
network (DTNN), grammar variational autoencoder (GrammarVAE), and kernel ridge
regression (KRR), can also be used for data-driven modeling [21,22]. However, in this study,
MLR, DNN, and RF are used for the data-driven modeling of PP composites.

3. Materials and Methods

To develop a prediction model for the physical properties of PP composites, this study
used data composed of 811 recipes. The MLR, DNN, and RF algorithms were deployed for
modeling three physical properties: the FS, MI, and TS, which are tested by the American
Society for Testing and Materials (ASTM) D 790, 1238, and 638, respectively. Each algorithm
is a representative algorithm for linear regression, nonlinear regression, and ensemble, and
each has different characteristics. Thus, the case studies were performed for 9 cases in total,
and the most appropriate prediction model for each physical property was determined.

3.1. Dataset

In total, 811 recipes were divided by the materials used and the mix ratios. A total of
90 types of materials were used to produce the PP composites: 41 types of PPs, 18 types
of fillers, 22 types of rubbers, and 9 types of other additives. The recipes were obtained
from GS Caltex Corporation, and because some of them are real PP products, specific
materials were replaced with alphanumeric characters due to confidentiality issues. We
have published some of the encoded data as supplementary information (SI). The raw data
are listed in Table 1 and illustrated in Figure 2, where P, F, R, and OTH denote PP, filler,
rubber, and others, respectively. The accompanying numbers are given to distinguish the
different materials. Numbers 0 to 100 correspond to the wt% values of the material content
included in the recipes of the PP composites. Figure 2 shows that there are some 0 wt%
in the material data and blanks in the property data. Table 1 shows the multiplicity of
materials that can be used for composites. This means that the dataset is incomplete for
data-driven modeling.

Table 1. The number of different materials used per PP composite component.

Component PP Filler Rubber Others Total

Number of
materials 41 18 22 9 90

FS is the maximum force that can bend a material without permanently distorting or
damaging it. In other words, it is the maximum stress acting on an external surface that is
subject to tensile stress at the moment of fracture. As a representative mechanical property
of PP composites [23,24], the measure of FS, σF, is calculated using Equation (1), where L, b,
and d denote the length, width, and height of the object, respectively; and F denotes the
vertical force acting on the object. Figure 3 illustrates the measurement of the FS.
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Figure 3. Schematic representation of FS acting on an object.

The melting properties of polymers are important because they are directly related to
the processability of products [25,26]. The MI is a representative parameter of the melting
property. It indicates the weight of the resin flowing through a capillary for 10 min at a
constant load and temperature. The measurement of the MI is illustrated in Figure 4. The
extrusion process is executed by the piston of the material in the melted state under a high
temperature. The die, test sample, and weight of the resin flowing for 10 min correspond to
the capillary, molten resin, and measured the MI, respectively. The factors that have the
largest effect on the MI are the molecular weight and its distribution. Because these two
values are difficult to measure, the mean molecular weight of the polymer is sometimes
estimated based on the MI.
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TS refers to the maximum stress when the material is fractured by a tensile load. TS
serves as a test for measuring various characteristics of a material under tension and is the
most general item among the mechanical property tests of plastics. It can be mathematically
calculated using Equation (2), where A and F denote the cross-sectional area of the specimen
and maximum force applied to the specimen, respectively. Figure 5 shows the strain–stress
curve, where σs corresponds to TS. As the strain, ε, of the material under a force increases,
the stress, σ, inside the material increases and then decreases, resulting in a fracture of
the material:

σS =
Ultimate Force

Original cross− ectional area
=

F
A

(2)
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3.2. Multiple Linear Regression

MLR comprises multiple independent variables. Hence, it is different from the single
linear regression analysis, which only describes the relationship between one independent
variable x and one dependent variable y. The basic mathematical expressions of single and
multiple linear regressions are shown in Equations (3) and (4), respectively, where m and e
denote the regression coefficient and error term, respectively.

y = m0 + mx + e (3)

yi = m0 + m1xi1 + m2xi2 + . . . + mkxik + ei, i = 1, 2, . . . , n (4)

To use MLR, one or more independent values must be inputted into Equation (4). This
requires the number of variables, n, used in the prediction to be equal to or greater than the
number of independent variables, k.

3.3. Deep Neural Network

Unlike MLR, the DNN is a nonlinear regression. The DNN comprises hidden layers
that analyze the relationship between the input and output values based on mathematical
and statistical methods. Unlike ANN, which has one hidden layer, the DNN has multiple
hidden layers (three or more) between the input and output layers [27]. The DNN complex
prediction model yields a high accuracy when handling data that are not appropriate
for linear analysis, and many researchers have reported excellent predictive power and
successful application cases [28–31].

The DNN deployed in this study uses three hidden layers, as shown in Figure 6.
When an input value enters the hidden layer, the weight, w, and bias, b, of each input are
determined in the synapse between the input and hidden layers. While the determined
values pass through the hidden layer, the output is obtained through an activation function
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that converts the sum of input signals into output signals. Because the DNN in this study
consists of three hidden layers, this process is repeated three times before the y value is
called. A detailed mechanism is illustrated in Figure 7 [32]. If there are several inputs
and nodes in the input and hidden layers, respectively, the mechanism would be more
complicated, as shown in Figure 7. By forming several paths from the input layer to
the output layer, the DNN can express the relation between input and output variables
more precisely.
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There are many types of activation functions in a DNN, including the sigmoid and
tanh. This study uses the rectified linear unit (ReLU) function. The ReLU function outputs
the input if the input exceeds zero or outputs zero if the input is equal to or less than
zero, as deduced by Equation (5) and Figure 8 [33]. Thus, a low computing cost, simple
implementation, and fast computing speed are achieved [34].

ReLU(x) = max(0,x) (5)
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3.4. Random Forest

The RF is an ensemble learning method that implements multiple DTs and optimally
classifies data using the training data. Although the DT is effective for data classification,
its performance varies significantly, and it contains different errors, mainly because the
generated DT varies depending on the given training data. An RF algorithm was developed
to overcome this drawback.

Figure 9 shows an RF algorithm that is made of multiple DTs, where each DT has
slightly different characteristics owing to randomness. These characteristics improve
the generalization performance of the algorithm. Meanwhile, when the data are trained
to develop a prediction model using the RF algorithm, the stability, or accuracy of the
model may be reduced owing to the trees. Hence, bagging is mainly used to sample the
training data [35]. Bagging is an abbreviation for bootstrap aggregating, and it refers to
the process of generating a dataset of the same size as the existing dataset by allowing
duplicates in the training data. It improves the performance of RF by reducing variance
while maintaining the bias of the trees [36]. If bagging is not used, underfitting or overfitting
may be seen, owing to the high bias or high variance, respectively. This could further affect
the performance of the prediction model.
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4. Machine Learning Model Development
4.1. Overview of Model Development

An overview of the model development process is shown as a flowchart in Figure 10.
First, the blanks were removed from the 811 PP composite recipes, and the data were
divided into FS, MI, and TS data. Then, after categorizing the classified data, data split was
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performed at a ratio of approximately 7:1:2 for the training, validation, and testing datasets.
The training and validation data were standardized by the Z-score, and the corresponding
processes of the three prediction models were performed. Subsequently, the most suitable
prediction model for each physical property was selected by comparing the results obtained
using the testing data with those of the prediction model and calculating the RMSE and R2.
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4.2. Data Categorization

The general ML technique randomly samples data and classifies them into training,
validation, and testing datasets. However, underfitting, which refers to a state of not
approaching the decision boundary because the number of data is too small or the training
is not performed properly, occurred when the prediction model was created by random
sampling because the data used in this study consisted of 90 types of composite materials,
whereas the total number of recipes was 811. This issue must be resolved during the
development of a prediction model because it lowers the achieved accuracy. Furthermore,
although 90 types of materials are considered in this study, no composites comprise all
90 types simultaneously. Thus, it is difficult to identify the correlations between the
materials and physical properties. Consequently, the composites were classified by the
presence or absence of materials before creating the prediction model; this process was
defined as ‘categorization’. When the data are classified in advance through categorization,
underfitting can be avoided by training all types of data, and the correlations between the
materials and physical properties can be identified through the analysis of the physical
properties by type. The categorization process is illustrated in Figure 11 [37]; the same
annotations as those in Figure 2 are used. The details of categorization are shown in
Table S1 of the SI.
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A code we made, comprising T and F, was assigned to every recipe, depending on
the presence or absence of materials. The recipes with identical codes were classified as
the same type, and a total of 496 types were identified from 811 PP composite recipes. The
amount of data and the number of types for each physical property, excluding the blank
data, are shown in Table 2. The numbers of recipes and recipe types of FS data, excluding
the blank data, were 803 and 494, respectively. The amount of data related to FS was the
largest among the three properties. Next, the TS data, excluding the blank data, consisted
of 801 recipes and 493 recipes. The MI data, excluding the blank data, had the smallest
numbers, with 480 recipes and 339 recipes.
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Table 2. Amount of data for the studied physical properties.

Number of Recipes Number of Composite Types

FS 811→ 803 496→ 494
MI 811→ 480 496→ 339
TS 811→ 801 496→ 493

4.3. Preprocessing

After categorization, the data were classified into training, validation, and testing
datasets. To improve the accuracy of the prediction model, the training dataset must
include all types of data. Thus, as shown in Table 3, certain rules were applied to prevent
underfitting and overfitting, and the classified data were randomly selected and divided
based on a 7:1:2 ratio, approximately, for the training, validation, and testing datasets.
When the categorized data were analyzed, one type included 1 to 12 recipes. For example,
for a 12-recipe type, 9 recipes were classified into the training set, 1 recipe into the validation
set, and 2 recipes into the testing set. Table 4 shows the exact ratios of the data classified by
applying the abovementioned rules.

Table 3. Number of datasets after data classification.

Number of Recipes
in a Type

Number of Training
Datasets

Number of
Validation Datasets

Number of Testing
Datasets

1 1 0 0
2 1 0 1
3 1 1 1
4 2 1 1
5 3 1 1
6 3 1 2
7 4 1 2
8 5 1 2
9 6 1 2
10 7 1 2
11 8 1 2
12 9 1 2

Table 4. Percentage of datasets per physical property.

Property Training Data Validation Data Testing Data

FS 71.6% 8.3% 20.1%
MI 73.6% 6% 20.4%
TS 71.2% 8.4% 20.4%

To reduce the influence of the outliers in the preprocessing process, a Z-score standard-
ization method was used. Because the data of the PP composites include many outliers,
Z-score standardization was applied to reduce the impact of the outliers. The Z-score
standardization is expressed in Equation (6):

Z =
(x− x)

σ
(6)

where Z denotes the standardized score, x denotes the original score, x denotes the sample
mean, and σ denotes the standard deviation of the samples. If the absolute value of Z
exceeds 3, it is considered an outlier.

The standardization of the TS data is shown in Figure 12 as an example. The numbers
on the x-axis refer to the recipe numbers introduced for distinguishing the PP composites.
Figure 12a shows the TS data distribution chart before standardization. Figure 12b,c present
the TS data distribution chart immediately after standardization for different y-axis scales. It
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can be seen that, after Z-score standardization, outliers gather near Z = 0, thus diminishing
the differences with the mean TS. Subsequently, the performance of the prediction model is
improved by reducing the numerical influence of outliers. Because the outlier data in this
study represent the values of actual PP composites, they were considered meaningful data.
Therefore, only the standardization was performed without removing outliers. After the
model learned the standardized data, the results were restored to the original scale and
evaluated accordingly.
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4.4. Modeling

The input variables that were used to develop the model for predicting the physical
properties were set as the ratio (wt%) of the 41 types of PP (P001–P041), 18 types of filler
(F001–F018), 22 types of rubber (R001–R022), and 9 types of other additives (OTH1–OTH9)
that constituted the composites. The output variables to be predicted were set as the physi-
cal properties (FS, MI, and TS). Because every algorithm is used to predict the properties,
the models are regressors, which predict the continuous values. Table 5 shows a list of hy-
perparameters that need to be set. All the hyperparameters are tuned heuristically using the
validation dataset in this study. After training the model with different hyperparameters,
the performances were compared using the validation dataset. Then, the hyperparameters
which showed the highest R2 were selected as the final hyperparameters in this study. The
model performances on the training and validation datasets are shown in Table 6.

Table 5. Values of the hyperparameters set for DNN and RF.

Hyperparameter Value

MLR Intercept fitting True

DNN

Type Regressor

Number of nodes in hidden layer1 45
Number of nodes in hidden layer2 10
Number of nodes in hidden layer3 10

Optimizer Adam
Learning rate 0.001

Batch size 3
Loss mean_squared _error

Epochs earlystopping

earlystopping
monitor val_loss
patience 10
verbose 1

RF

Type Regressor

Number of estimators 100
Bootstrap True

Max depth 10
Min samples leaf 3
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Table 6. Values of the hyperparameters set for DNN and RF.

Algorithm Property Training Data Validation Data

MLR
FS 0.9717 0.9793
MI 0.9193 0.9426
TS 0.9559 0.9445

DNN
FS 0.9796 0.9850
MI 0.9854 0.9321
TS 0.9801 0.9472

RF
FS 0.9852 0.9862
MI 0.9607 0.8904
TS 0.9837 0.9585

In MLR, the intercept fitting was set to “True”, and in the DNN, three hidden layers
were used, which comprised 45 nodes in the first layer and 10 in the second and last layers.
In addition, Adam was used as the optimizer, and the batch size was set to 3. For the
epochs, the earlystopping function, which stops the training process in a specific condition,
was used. For the RF, 100 estimators were used, and the maximum depth and minimum
samples leaf were set to 10 and 3, respectively. We developed our models in Python 3.7.7
using scikit-learn 1.0 and Tensorflow 1.15.

5. Results and Discussion
5.1. Validation of Categorization

To verify the validity of the categorization process, parity plots for the MLR-predicted
values and actual values, before and after categorization, are shown in Figure 13. Before
categorization, 80% of the data were used for the training data, and 20% for testing,
through random sampling. In the left graphs of Figure 13, the predicted values that are
significantly different from the actual values are marked by red squares. Large errors
appear because the amount of data used was small, and the physical properties were
predicted using the untrained data type. Owing to the large errors, the other predicted
values were represented by 0 in the graph. To solve this problem, the physical properties
were predicted again using MLR after data categorization; the results are shown in the right
graphs of Figure 13. The solid red lines indicate a perfect agreement between the actual
and predicted values. A small distance between the blue dots and the red line indicates
a high-performing prediction. It was found that the differences between the actual and
predicted values were small when the data, after categorization, were used. The outline
change in the graph confirms that the errors, due to the insufficient number of training data
and inaccurate training, were eliminated through categorization. Before categorization, the
training dataset, and test dataset may have recipes including different materials, which
signifies “input variable inconsistency.” After categorization, the training dataset and test
dataset have recipes that include the same materials. Therefore, categorization reduces the
error of variable inconsistency.

5.2. Comparison of Prediction Model Performance

The results of the MLR, DNN, and RF prediction models for each physical property
are illustrated in Figure 14. The solid red line signifies the perfect agreement between
the actual and predicted values. A small distance between the blue dots and the red line
indicates a high-performing prediction model. Examining the MLR and DNN prediction
results of FS indicates that the distances between the red lines and blue dots are generally
small. In contrast, the RF prediction result of FS shows that, regardless of the size of the FS
values, the accuracy was lower than that of the other two models. Similar behavior was
observed for the TS prediction results. Further, the prediction results of the MI show that
the degree of aggregation of the blue dots near the red line was low in the RF model and
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high in the MLR and DNN models. Consequently, MLR achieved excellent accuracy in the
FS and MI modeling, whereas the DNN was the most effective for TS prediction.
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To select a prediction model with excellent performance for each physical prop-
erty, the RMSE and R2 between the actual and predicted values were calculated using
Equations (7) and (8), respectively. The results are summarized in Table 7.

RMSE =

√
∑N

i=1 (Sim − Sip)
2

N
(7)

R2 = 1− ∑N
i=1 (Sim − Sip)

2

∑N
i=1 (Sim − Sip)

2 (8)

Table 7. RMSE and R2 by prediction model for the three physical properties.

FS MI TS

RMSE R2 RMSE R2 RMSE R2

MLR 8.3122 0.9291 2.4072 0.9406 6.2689 0.9334
DNN 8.5404 0.9254 3.3413 0.9297 4.9358 0.9587

RF 9.9609 0.8981 4.9732 0.8442 5.9648 0.9397



Polymers 2022, 14, 3500 16 of 19

In the above equations, N denotes the number of data units, Sim denotes the actual
values, and Sip denotes the predicted values of the ML model. The RMSE value, calculated
using Equation (7), represents the degree of error of the prediction model. Thus, the RMSE
values closer to zero reflect a high prediction performance. The R2 value, calculated using
Equation (8), is an indicator that quantifies the relative performance of the prediction model
by comparing the predicted value to the actual value. It is difficult to directly determine
the performance solely based on the RMSE because the value differs from the data scale.
Contrarily, R2 allows intuitive interpretation because it represents the relative performance.
In the prediction performance evaluation, an R2 value exceeding 0.7 is generally considered
a good performance. Based on Table 7, for the FS modeling, MLR showed the best prediction
performance with an RMSE of 8.3122 and R2 of 0.9291, followed by the DNN and RF. MLR
and the DNN exhibited similar prediction performances, whereas the RF model achieved
a lower prediction performance than the other two models, with an RMSE of 9.9609 and
R2 of 0.8981. For the MI modeling, MLR showed the best prediction performance, with
an RMSE of 2.4072 and R2 of 0.9406, followed by the DNN and RF. Although the trends
between the FS and MI modeling were similar, the prediction performance for the MI was
higher than that for the FS. In contrast, for the TS modeling, the DNN showed the best
prediction performance, with an RMSE of 4.9358 and R2 of 0.9587, followed by RF and
MLR. Unlike the prediction performances for the FS and MI, MLR achieved the lowest R2

for the TS. This suggests that MLR is more appropriate for predicting the FS and MI of PP
composites, whereas the nonlinear regression models (DNN and RF) are more suitable for
predicting the TS. Therefore, different prediction performances can be obtained depending
on the physical property, even if the same prediction model is used and vice versa. Hence,
to accurately predict physical properties, a prediction model that is most appropriate for
each physical property must be developed.

Additionally, the relative variable importance (RVI) for each property is calculated to
analyze the sensitivity. The RVI can be calculated using the coefficients of MLR, as shown
in Equation (9). The coefficient quantifies the impact of the material on the properties in
MLR, and the quantified values indicate the sensitivity of each property.

RVIi =
Coe fi

max|Coe f | −min|Coe f | (9)

where RVIi is the relative variable importance of the ith material in the recipe and Coe fi
is the coefficient of the ith material in the MLR equation. Figure 15 shows five materials
with high RVIs for the MI, FS, and TS. Figure 15a shows four types of rubber that possess a
high RVI for the MI. Therefore, these four types of rubber can be used to control the MI of
the PP composites. In Figure 15b,c, it can be seen that filler and other additives contribute
more to the FS and TS than PP and rubbers. Therefore, it is considered that filler and other
additives can control the FS and TS of PP composite.
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6. Conclusions

In this study, models were developed for the prediction of the physical properties
of PP composites using the MLR, DNN, and RF algorithms. Typically, prediction models
are trained via random data sampling, which results in poor performance. To address
this issue, we categorized the data during preprocessing for the first time. The predic-
tion model using the categorized data showed a higher performance than the prediction
model using the uncategorized data. Furthermore, it was verified through recipes that
categorization is essential for developing a prediction model for the physical properties
of PP composites. The performance of the prediction model was further enhanced by the
Z-score standardization to reduce the influence of outliers during model training. When
the performances of the prediction models for the three physical properties of the FS, MI,
and TS were compared, the MLR, DNN, and RF showed R2 values of 0.8 or higher, thus
satisfying the standard value of 0.7 for using the prediction model. Among them, MLR
showed the highest performance in the FS and MI prediction, with RMSE and R2 values
of 8.3122 and 0.9291 and 2.4072 and 0.9406, respectively. The DNN achieved the highest
performance in the TS prediction, with RMSE and R2 values of 4.9358 and 0.9587, respec-
tively. Based on the results, we verified that even when the same prediction model is used,
its performance varies depending on the physical property to be predicted. Therefore, the
appropriate prediction model can predict each physical property of the PP composites with
high accuracy. Thus, new recipes for PP composites with the desired physical properties
can be developed by the results obtained in this study.
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