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Abstract: Corrugated pipes offer both higher stiffness and higher flexibility while simultaneously
requiring less material than rigid pipes. Production rates of corrugated pipes have therefore increased
significantly in recent years. Due to rising commodity prices, pipe manufacturers have been driven to
produce corrugated pipes of high quality with reduced material input. To the best of our knowledge,
corrugated pipe geometry and wall thickness distribution significantly influence pipe properties.
Essential factors in optimizing wall thickness distribution include adaptation of the mold block
geometry and structure optimization. To achieve these goals, a conventional approach would typically
require numerous iterations over various pipe geometries, several mold block geometries, and then
fabrication of pipes to be tested experimentally—an approach which is very time-consuming and
costly. To address this issue, we developed multi-dimensional mathematical models that predict the
wall thickness distribution in corrugated pipes as functions of the mold geometry by using symbolic
regression based on genetic programming (GP). First, the blow molding problem was transformed
into a dimensionless representation. Then, a screening study was performed to identify the most
significant influencing parameters, which were subsequently varied within wide ranges as a basis
for a comprehensive, numerically driven parametric design study. The data set obtained was used
as input for data-driven modeling to derive novel regression models for predicting wall thickness
distribution. Finally, model accuracy was confirmed by means of an error analysis that evaluated
various statistical metrics. With our models, wall thickness distribution can now be predicted and
subsequently used for structural analysis, thus enabling digital mold block design and optimizing
the wall thickness distribution.

Keywords: polymer processing; modeling and simulation; corrugated pipe; extrusion blow molding;
symbolic regression

1. Introduction

Extrusion blow molding (EBM) is a manufacturing process in which thermoplastics are
molten inside the extruder, and then the molten polymer is extruded through an annular
die head forming a hollow tube called a parison. The parison is subsequently captured by
cooled mold blocks, inflated into the mold cavity by pressurization (blowing air and/or
vacuum suction) and blown into its final desired shape. Inside the molds, the corrugated
pipe is then cooled down and solidified before it exits the corrugator. If necessary, further
active cooling can be applied before it is cut or rolled up. A schematic of the corrugated
pipe production line is depicted in Figure 1. Production of corrugated pipes is a typical
example of extrusion blow molding. The overall extrusion process resembles classic pipe
extrusion, with the difference that the extrudate is inflated and formed into its final shape
inside the corrugator. Forming of the pipe can be supported and optimized by using a
vacuum in the mold blocks [1].
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Figure 1. (a) Schematic of a corrugated pipe production line and of the corrugator with (b) the
die head.

Corrugated pipe technology is well-established and pipes can be made from a large
variety of material types, such as high-density polyethylene (HDPE), polypropylene (PP),
polyamide (PA), polyvinylchloride (PVC), and thermoplastic elastomers (TPE). Compared
with rigid and non-corrugated pipes, corrugated pipes offer higher flexibility and are
therefore more versatile and used in a wide range of applications, such as cable protection
and technical applications in the automotive industry, machine construction, healthcare,
telecommunication, households, land and road drainage, and sewerage and storm water
disposals. The available diameter range is from approximately 3 mm to 2400 mm. Other
advantages of corrugated pipes are high production speed due to low weight, material
economy due to specific structural design, easy handling, resistance to corrosion, high ring
stiffness compared with rigid pipes of the same weight, and excellent water flow due to the
smooth surface of the inner layer of double-wall corrugated pipes [1].

Particularly important for the performance of the pipes are wall thickness distribution,
pipe weight, and mechanical properties. A careful balance of these three parameters must
be maintained during the pipe manufacturing process, as they are highly interdependent.
The wall thickness distribution is a key factor in pipe design because it significantly impacts
the final quality of the pipe and the production costs. For example, thick pipe walls offer
additional strength, but during the cooling phase they tend to warp more and require
increased cycle time, and their weight increases material cost.

In recent years, many researchers have sought to predict the wall thickness of the final
blown part. Thibault et al. [2] developed a predictive preform geometry software and opti-
mal operating conditions for the stretch blow molding process. This numerical approach
uses a constrained gradient-based algorithm that iterates automatically over finite element
software to optimize the operating conditions. In thermoforming, Rosenzweig et al. [3]
developed a theoretical isothermal one-dimensional geometric model that predicts wall-
thickness profiles of vacuum- or pressure-formed products. The model is based on some
simplifying assumptions and is independent of material properties and forming conditions.

In extrusion blow molding, Debbaut et al. [4] carried out viscoelastic blow molding
simulations using a realistic viscoelastic constitutive model of the integral type. They
concentrated on the thickness distribution of the blown product and used a fluid membrane
element in a Lagrangian formulation combined with an efficient contact algorithm. With
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this approach, they were able to numerically simulate the blow molding process of an
industrial part with a relatively complex geometry. Further research [5-12] using computer
simulations, with a focus mainly on optimization of the wall thickness distribution, has
been conducted in extrusion blow molding.

At this point, only a few wall thickness prediction models are available, especially
for corrugated pipes. Hence, we investigated the impact of mold geometry parameters
on the wall thickness distribution and developed a geometry-dependent wall thickness
model. All relevant independent geometry parameters were investigated and transformed
into dimensionless form by applying the theory of similarity and dimensional analysis. A
comprehensive parametrically driven finite element method (FEM) design study of the
blow-molding process was conducted for a wide parameter range. Based on these results,
approximation equations were derived by means of symbolic regression using genetic
programming. The accuracy of our models was evaluated using error analysis. The models
were further optimized, simplified, and also validated with an independent dataset that
was not previously considered in the modeling.

This hybrid approach was recently applied by our research group to investigate the
flow in metering sections of single-screw extruders [13-17], the flow of polymer melts
through melt filtration systems [18,19], and co-extrusion die flows [20]. The results showed
that the integrated approach is well suited to solving complex problems in the area of
polymer processing. Moreover, the created mathematical models are well suited for manu-
facturers as a smart tool for predicting the wall thickness distribution and the wall thickness
ratio of corrugated pipes.

2. Fundamentals
2.1. Geometry and Modeling

The geometry of the mold block considered in this study is given in Figure 2a. The
complex 3D model was simplified to obtain a 2D axisymmetric model to significantly
reduce modeling and analysis time. Due to the symmetry of the geometry, it is sufficient
to model only half the period of the corrugated pipe geometry. Furthermore, a single-
wall corrugated pipe is considered. Figure 2 shows all geometry parameters considered
for parameterization: mold block inner radius (R;), mold block outer radius (R,), crest
diameter (D7), valley diameter (D), half-profile width at crest (B4), half-profile width at
valley (Br), initial thickness of the extruded fluid parison (S), initial outer radius of the
fluid parison (Rs), and flank angle (x). As illustrated in Figure 2, the problem domain is
divided into two sub-domains (SD) and seven boundaries (BS). Subdomain 1 (SD1) and
subdomain 2 (SD2) represent the geometry of fluid parison and mold block, respectively.
The boundary conditions applied to the problem are as follows:

BS1 and BS3: symmetry

BS2: free surface, constant normal forces (vacuum pressure) imposed, contact detection
problem with the solid mold defined

BS4: free surface, constant normal forces (inflation air pressure) imposed

BS5: contact wall (contact between fluid parison and wall)

BS6, BS7 and BS8: no contact walls and free of force

The following assumptions were applied in this study:

e  The thickness of the extruded fluid parison, S, is constant in the initial state before the
blow molding process.

e  The temperature of the extruded fluid parison, S, is homogeneous and thus the
viscosity remains constant over the entire cross section.

e  The influence of the viscoelasticity, temperature, and pressures (air and vacuum) was
neglected as they are insignificant for the final wall thickness distribution. However,
they have an impact on the dynamics of the process, i.e., on how fast the molding
process takes place.
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e  The extrusion speed of the parison is exactly equal to the speed of the mold blocks.
Based on this assumption, it is allowed to neglect the dynamics of the process and
reduce the geometry to a half model.
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Figure 2. (a) 3D Mold block geometry on which the 2D axisymmetric model is based; (b) simulation
boundary conditions.

2.2. Dimensional Analysis and Similitude

The Buckingham [] theorem and the theory of similarity [21] are applied for con-
structing dimensionless parameters and ensuring geometric similarity in the problem.
Dimensional analysis is extremely useful for several reasons: it reduces the number of
influencing parameters needed to describe the problem and identifies the characteristic
independent influencing parameters. This considerably simplifies the parametric design
study that follows. Furthermore, generalized results are obtained in dimensionless repre-
sentation, being valid for any dimensional representation covered by the dimensionless
space by applying scaling rules.

Due to the assumptions made in the previous chapter, we were therefore able to focus
only on the geometric similarity in the problem and avoid having too many IT terms in
the final solution. The mold geometry in the problem was designed such that it can be
arbitrarily modified. The outer radius of the mold block (R 4) was selected as the scaling
parameter for defining the dimensionless parameters and therefore remained fixed.

Eight independent dimensionless parameters identified as influencing factors are
generated using the following equations by scaling them with R4 (except for o).

n
[1,= % n=Ri Br, Ba, Dy, Dy, S, Rs. )
A

a=a. @)

The target parameters in this analysis are the dimensionless wall thickness (Equation (3))
evaluated at one of the four representative positions ([Trp ;), as shown in Figure 3, and the
ratio of the wall thickness at the crest to the wall thickness at the valley (Equation (4)).

TP_i .
HTPJ. = R—;; i = Crest (C), Valley(V), Lower Flank (LF), and Upper Flank (UF). (3)

[Trp c

Ratio =
[Irp v

4)
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Figure 3. Wall thickness evaluation positions: crest, valley, lower and upper flank.

As dimensionless influencing parameters, the dimensionless fluid parison thickness
[Is and the dimensionless parison initial outer radius []g_ are identified. However, as
long as the tube is blown up freely—this means it is not in contact with the mold—the
parison thickness decreases while the parison radius increases by maintaining its volume,
respectively cross-sectional area. Hence, these two parameters are not independent and
the dimensionless parison outer radius [ ]z, will be kept constant at [ ]g,_, and the dimen-
sionless initial parison thickness ] is selected as the independent influencing parameter.
A dimensional problem that is governed by a dimensionless parison initial outer radius
[1r, that is different than the defined []r, , can also be described by a dimensionless
representation with [, by transforming the dimensionless initial fluid parison thickness
I1s to I Ts« according to Equation (5), which is based on volume conservation:

[l = HRS* +\/HR5* _ZHRS [Ts+11s2 ®)

3. Numerical Simulation

In this work, a time-dependent and isothermal parison inflation process of an in-
compressible Newtonian fluid was simulated using the commercial FEM-based computa-
tional fluid dynamics (CFD) software package Ansys Polyflow [22]. Since—as previously
mentioned—shear plays a minor role during parison inflation, the Newtonian model was
chosen. Viscoelasticity can be omitted because the elastic properties will not influence
the final wall thickness distribution. However, it will have an impact on the dynamics
of the blow molding process, and hence on the shaping time. Our initial preliminary
study, conducted on a regular working notebook with Intel(R) Core (TM) i7-8550U CPU
@ 1.80GHz processor and 32 GB RAM, also indicated that simplifying the rheological
modeling approach from generalized Newtonian fluid (GNF) to Newtonian fluid model
was able to significantly reduce the computational time by 86.5% (see Figure 4a). Further
parameter optimization and geometry simplification could also optimize the simulation
time by 32.2% and 57.5%, respectively, without sacrificing accuracy of the wall thickness
distribution (see Figure 4b).

Since simulation software works only in dimensional representation, an equivalent
dimensional setup has to be constructed for each dimensionless parameter. For this pur-
pose, a mold block geometry for a medium-sized corrugated pipe with an outer diameter
of 200 mm (R4 = 102.95 mm) was selected as a reference. The molten parison was in-
flated inside the mold block and assumed to have a constant viscosity of 22,000 Pa.s and
a melt density o, of 728.5 kg/m3. For operational conditions, a constant vacuum and
inflation air pressure of 0.9 and 0.1 bar were applied, respectively, to the outer and inner
surfaces of the fluid parison. This non-linear problem was solved numerically and iter-
atively by a very robust algebraic multi-frontal (AMF) direct solver based on the Gauss
elimination method [22]. The final converged solution was obtained after performing the
time-dependent calculation with the assigned parameters needed by the iterative scheme.
Subsequently, the results are transformed back into a dimensionless representation. The
blowing process over time is exemplarily shown in Figure 5 for various time steps. It can
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be seen that at first, the parison is inflated uniformly until it gets in contact with the mold.
Then, the parison is further inflated into the mold, next getting into contact with the flanks
and subsequently with the crest. The upper flank radius is shaped last, after an inflation
time of approximately 1 s.
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Figure 4. (a) Optimization of the simulation time, (b) comparison study of wall thickness distribution
and simulation time.

t=0.025s t=0.05s t=0.075s t=0.1s

estim. THICKNESS [mm]

(b) SHEAR STRESS [MPa]

Figure 5. Simulation results of the blow-molding process showing that the parison is fully inflated
after an inflation time of 1 s: (a) wall thickness distribution, (b) shear stress distribution.

Prior to the parametric design study, a mesh-independence study was also performed
on an HP Z800 workstation with dual core Xeon processors and 48 GB RAM to determine
a mesh for the simulation that creates optimal solutions, which are independent of the
mesh resolution, as well as provide simulation results within reasonable times. In general,
the finer the mesh, the more accurate the solution and the longer the computational time.
For this analysis, as illustrated in Figure 6, a mold block and a fluid parison geometry
were discretized into a set of two-dimensional hexahedral and wedge mesh elements.
Meshes were generated by varying the edge size in the fluid parison subdomain within
a specified range. Subsequently, preliminary simulations were performed in order to
investigate significant differences in wall thickness that are due to mesh resolution. Since
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the fractional factorial parametric design study involved a large dataset with various
geometry configurations, we sought to minimize the number of elements generated for
each mesh to keep the simulation time as short as possible while ensuring that sufficiently
accurate results could be achieved. Table 1 shows the estimated wall thickness at some
evaluation points for various meshes.

Figure 6. Finite element meshes used.

Table 1. Mesh sensitivity analysis.

Parameter Mesh1l Mesh2 Mesh3 Mesh4 Mesh5 Mesho6
Edge Sizes [mm] 0.01 0.025 0.05 0.075 0.1 0.15
CPU Time [s] 5282 2300 1358 992 953 519

Wall thickness at crest [mm)] 0.3475 0.3470 0.3450 0.3447 0.3435 0.3417
Wall thickness at valley [mm] 0.8997 0.8992 0.8992 0.8987 0.8985 0.8976

The wall thicknesses estimated based on the various meshes were almost identical.
There were differences of only 0.6% at the crest and of less than 0.2% at the valley between
the results from the finest and coarsest meshes. Since computational time was also a crucial
factor in conducting the fractional factorial parametric design study, the mesh with an edge
size of 0.075 mm in fluid parison length was chosen to balance speed and accuracy. As
the simulation was parameterized completely in terms of mold geometry, solving of the
numerical problem of the fluid parison inflation process was automatically driven by the
simulation solver. Since the number of time steps might differ in each new calculation, we
considered only results from the selected upper time limit (end of inflation time at 1 s).

4. Design Study
4.1. Screening Design

First, the dimensionless influencing parameters which significantly influence the wall
thickness distribution of the corrugated pipe are identified by a screening design study. To
this end, a statistical screening design of experiments (DoE) with center and star points that
represent the low and high values of the factors, respectively, was selected. A screening
design generally involves only a small number of experimental runs and is therefore more
efficient and less costly than a corresponding full-factorial design. A center point was
included in the design to increase efficiency and determine the curvature of the model.
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4.1.1. Screening Design—Procedure

In the screening design, the reference geometry was set as the center point of the multi-
dimensional design space. All seven independent geometry parameters were selected as
factors, and three levels were considered for each factor (see Table 2). For this analysis,
the wall thickness ratio (Equation (4)) was chosen as the target parameter as it indirectly
represents two wall thicknesses. The numerical results from this simulation study were
then exported and re-written in dimensionless form for further analysis.

Table 2. Range of geometry parameters in the screening design.

Parameter Unit Value

g, - 0.835 0.879 0.932
I1p, - 0.005 0.049 0.097
[1p, - 0.002 0.026 0.052
I, - 0.007 0.028 0.049
[, - 0.001 0.004 0.015
ITs - 0.009 0.011 0.030

« 1 7 17.5

To determine the significance of each individual influencing parameter, the simulation
output data were statistically analyzed. The probability value (p-value), which measures
the strength of the evidence against the null hypothesis, was chosen to identify those
geometry parameters that had a significant influence on the wall thickness distribution
ratio and those that could be ignored.

In this study, we followed the general p-value approach that has been widely adopted
in practice. If the p-value is less than the specified significance level (¢ = 0.05, which is
usually used in technical applications), the null hypothesis Hj is rejected, and it can be
concluded that the difference is significant. In other words, with a p-value < 0.05, the result
is statistically significant, and with a p-value > 0.05, it is not [23].

Multiple linear regression was used to capture the functional relationships between
dependent (wall thickness ratio) and independent parameters (all influencing geometry
parameters). The estimated regression equation is given by (Equation (6)):

Ratio = fo + ﬁl'HR, +h2 HD1 +ﬁ3'HD2 +ﬁ4'HBA +ﬁ5'HBT +ho [ Is +B7a, (6)

where By, Bi1, ... By are the regression coefficients. The first step in performing a test
of statistical significance is to define the null-hypothesis and alternative-hypothesis. The
constant B is not tested. The null-hypothesis for the other individual coefficient states that
the coefficient is zero (Equation (7)), and the alternative-hypothesis that the coefficient is
non-zero (Equation (8)).

Ho,l'Z,BiIO,izl...Z' (7)

1‘114,1'21[31‘7é 0,1217 (8)

In order to test our hypotheses, the simulation output data were collected, and the
t-test for checking the significance (p-value) of individual regression coefficients in the
multiple linear regression model was computed.

4.1.2. Screening Design—Results

The results of the screening design study revealed that the profile width at valley
(I'lg,) and valley diameter ([Ip,) (see Figure 7a,b) had little influence on the wall thickness
distribution compared to the other geometry parameters (see Figure 8a—e). In addition,
the results of multiple regression analysis of the screening design study, Table 3, also
confirmed the previous finding. Based on the usual p-value cutoff of 0.05, only five
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geometry parameters ([z,, [ Ip,, [1p,, I Is, and ) were found to be statistically significant,
and the other two ([, and []p,) were insignificant and were therefore discarded.

L a=7°, 1, = 0.049, I, = 0.026, 0 a=7°, 1, = 0.049, TI, = 0.011,
I, = 0.011, IT,, = 0.879, I1,, = 0.028 I, = 0.879, I, = 0.028, Tl = 0.004
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Figure 7. Ratio of wall thicknesses at crest and valley as a function of dimensionless (a) half profile
width at valley []p, and (b) valley diameter []p,.
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Figure 8. Cont.
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Figure 8. Ratio of wall thicknesses at crest and valley as a function of dimensionless (a) initial
thickness of fluid parison [Tg; (b) half profile width at crest [z, ; (c) crest diameter [p,; (d) mold
block inner radius [[g,; and (e) flank angle «.

Table 3. Multiple regression analysis output from the screening design study.

Term Estimated Regression Coefficient p-Value

[z, 0.0401725 6.25418 x 10~°
Ip, 0.0332355 0.000293
[1p, —0.013532 0.186159
I1s, 0.0775136 0.000227
[, —0.040225 0.226997
Is 0.0526789 0.020054
« 0.0092651 0.012899

4.2. Parametric Design Study

After the screening design study, a five-level parametric design study was conducted
by varying the selected independent geometry parameters as listed in Table 4. The selected
parameter range covers a very wide range of available mold-block geometries and pipe
dimensions commonly used in industrial corrugated pipe manufacturing.

Table 4. Geometry parameter ranges for the parametric design study.

Parameter Unit Value
[g, - 0.835 0.857 0.879 0.920 0.932
I1p, - 0.005 0.024 0.049 0.073 0.097
Iz, - 0.007 0.018 0.028 0.038 0.049
I1s - 0.009 0.011 0.017 0.024 0.030
o 1 3.5 7 10.5 17.5

Parametric Design Study—Results

Figure 9a-d shows that increasing the flank angle and the crest diameter will lead
to an increase in the wall thickness ratio and its distribution, specifically in the crest and
upper flank areas. A small positive influence was also found in the lower flank area due
to larger flank angles, but less impact due to crest diameter. In the valley area, neither
geometry parameter had an impact. A larger flank angle has the advantage of allowing a
smooth gradual change in wall thickness.
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Figure 9. Ratio of wall thicknesses at crest and valley and dimensionless wall thickness as functions
of (a,b) flank angle a and (c,d) dimensionless crest diameter []p, .

A more homogeneous wall thickness distribution between the crest and valley could
also be obtained by a larger profile width at the crest, as illustrated in Figure 10a. However,
as depicted in Figure 10b, a significant increase in wall thickness is observed only at the
crest and upper flank, while the increase is less significant at the lower flank area and
insignificant at the valley area. Figure 10c shows that the initial fluid parison thickness has
a similar influence on the wall thickness distribution as the flank angle. A thicker initial
fluid parison ensures an increase in wall thickness at all positions, as shown in Figure 10d.
However, a reasonable final weight of the pipe must be considered to save material.

Additionally, the ratio of the wall thicknesses at the crest and at the valley is improved
by a larger mold inner radius, as shown in Figure 11a; the distance between crest and valley
was reduced to avoid a large variation in wall thickness. Figure 11b shows that increasing
the mold inner radius would also increase the wall thickness in the crest and in the upper
flank area, but the wall thickness in the valley and the lower flank would decrease.
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Figure 11. (a) Ratio of wall thicknesses at crest and valley and (b) dimensionless wall thickness as

functions of dimensionless mold block inner radius []g, -

5. Regression Analysis Using Heuristic Approaches

The previous sections presented the results of the numerically driven parametric de-
sign study revealing the relationships between the dimensionless influencing parameters of
the mold geometry and the wall thickness distribution of the corrugated pipe. An analytical
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expression for the wall thickness distribution as a function of the dimensionless influencing
parameters is still missing. In order to avoid numerical simulations for further analysis and
enable prediction of the wall thickness distribution for any arbitrary combination of the
defined influencing parameters within the defined parameter space, multi-dimensional
mathematical models that describe wall-thickness distribution and ratio as functions of the
influencing mold geometry parameters were developed. These models can save develop-
ment time and reduce cost, resulting in industry-wide benefits. In addition, our analytical
models enable more efficient modeling and exploration of new rational and practical cor-
rugated pipe designs since the target values of new processes can be accurately predicted
even without product manufacturing. In addition, the models allow direct interpolation
between the data in multi-dimensional space since the simulations are only the discrete
points in space and the regression is a hypersurface.

5.1. Symbolic Regression—Modeling

In order to derive symbolic regression models that best describe the relationship
between the defined target parameters (wall thickness at thickness points) and of the
identified independent input parameters for corrugated pipes, heuristic approaches based
on genetic programming (GP) were employed. In this study, we used HeuristicLab [24], an
open-source software system for heuristic optimization that offers several metaheuristic
optimization algorithms and addresses several optimization problems.

In principle, symbolic regression is a data-based methodology the goal of which is
to discover functions that best describe a given dataset with minimal error [25]. Unlike
conventional linear or nonlinear regression methods that require a specific model structure
and pre-defined parameters, symbolic regression based on genetic algorithms searches
over the space of all possible formulas and their coefficients defined by a set of user-
specified mathematical objects that are arithmetic operators (+, —, *, /, etc.), mathematical
functions (trigonometric, exponential, logarithmic, etc.), and terminal sets (constant and
independent variable).

The use of GP evolves in the process for implementing the symbolic regression, and the
formulas are expressed as parse trees (see Figure 12). GP starts with the generation/creation
of a random initial population of individuals (i.e., mathematical models), and then com-
putes the fitness of each individual in this population. A new individual population of
models is created by using crossover and mutation until the stop criterion is met, and at the
end of the process, the output is the fittest model so far [26]. Throughout this evolutionary
process, variables that have more impact will also be identified and become significant. This
methodology has the advantages that the models generated are, firstly, able to express non-
linear relationships that are more complex than those of conventional regression methods,
and secondly, can be interpreted and inspected by domain experts [27]. Furthermore, the
predicted model is a mathematical expression and can thus be transformed, manipulated,
and easily incorporated into expert systems [24].

XaXs
X+ X7

f=05-x +08-(x;-x3) + —=

o a

/ \

OO0
[\ / .’
@ ® @ ® ® ®

Figure 12. Symbolic regression model in mathematical notation and in the form of a parse tree.
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The emphasis in this work was on generating mathematical models that predict wall
thickness distribution and ratio in corrugated pipes. These models should also be applicable
in practice to a broad range of materials and a wide range of geometries. The derived
models allow us to gain further insight into how changing certain factors (influencing
geometry parameters) affects the response behavior (wall thickness distribution and ratio).

In our study, a variant of single-objective symbolic regression using an offspring-
selection genetic algorithm (OSGA) [28] was employed. In order to speed up the solving
process, only about two thirds of the full dataset (2083 design points)—collected randomly
from numerical simulation results—was loaded into HeuristicLab. Since the model was
to be trained on training data and then applied to the test dataset, the input dataset was
split before we set up other parameters. In our implementation, the modeling dataset
partition was 66% for training and 34% for testing to assess the performance of our model.
Furthermore, some constraints on mathematical building blocks were set by limiting the
functions to be used in the predictions such that the search space of all possible equations
in symbolic regression was also limited and computational time reduced. Table 5 shows
the optimized parameter settings that were used with the heuristic algorithm after several
preliminary experiments. To account for statistical variations in the initial population,
experiments were run in 20 independent repetitions with the same parameter setting until
the solution converged to the best derived models.

Table 5. OSGA parameter configurations.

Parameter Value
Population size 100
Selected parents 200
Crossover probability 90%
Mutation probability 25%
Maximum tree depth 30
Maximum tree length 100
Fitness function Pearson R’
Maximum generations 75
Maximum selection pressure 100
Operators +,—, %,/

Power functions (square)

5.2. Symbolic Regression—Results

The symbolic regression equations derived for the wall thickness ratio and for the
dimensionless wall thickness at crest and valley are:

2
. A
Ratio= | A1 + 2 URY: Aqp + Axs. 9)
<A5+(A7+ 2109) >
Az + A+ As + yoom
B, ((Bs + By (Bs Bs + B7))? + Bs)
[Iipc=Bi+ By : (10)

C 2
[Trp v =(CCC+Ci)Cs (Ci) Cs + Co. (11)
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Similar models were also derived for the dimensionless wall thickness in the lower
and upper flanks.

HTP_LF =E1+Ey(Es+E4+Es)+ Eg+ Ey. (12)
b F F\?
HTP_LIF =h+ D7 + (F()> F. (13)

Here, A; — A13, By — By, C; — Cy, E; — E7, and F; — F; in Equations (9)—(13) are sub-
functions that contain some constants agy — asg, boo — b2z, coo — 32, oo — €32, and  foo — f29
(see Appendix A).

Comparisons of all symbolic regression models with the numerical simulations results
are presented in Figure 13a—f for the most significant influencing parameters ([ Ig,, [ 1p,
and [, ), and in Figure 14a—d for two other geometry parameters (][5 and «). As can be
seen, the models are in excellent agreement with the simulation results.
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To determine how our models perform on new data, we additionally evaluated
them on previously unseen validation datasets (not used in model training) comprising
273 design points that were randomly chosen from Table 6.

Table 6. Geometry parameter ranges for the validation dataset.

Parameter Unit Value
g, - 0.846 0.868 0.899 0.926
I1p, - 0.015 0.036 0.061 0.085
I, - 0.012 0.023 0.033 0.043
I1s - 0.010 0.014 0.021 0.027
o ° 2.25 5.25 8.75 14

Afterwards, the global accuracy of the derived models was also evaluated on val-
idation data prior to the practical application by performing some error analyses. The
coefficient of determination—Pearson R? (Equation (14))—which describes how close the
values estimated by our models are to the measured values, and is indicative of the response
variation explained by a model, was utilized to determine the model quality.

YN (i — )
RZ=1- == I (14)
Y (yi — ]7[)2

where N is the number of observations, y; is the real value for observation i, §; is the
predicted value of y for observation i, and ¥; is the mean value of the real value. A high R?
value (=1) indicates that the predictions agree perfectly with the measured values, and a low
R? value (=0) means that the predictions are poor and that the model is to be discarded [26].

In addition, the mean absolute error (MAE) (Equation (15)) and the mean relative error
(MRE) (Equation (16)) were also analyzed for the derived models.

1 N .
MAE = <} 0o i = 3l (15)
_ 1y Jyi—dil
MRE = 53 | T (16)

The scatter plots in Figure 15a—e illustrate that most of the values calculated using the
regression models (Equations (9)-(13) accord well with the numerically obtained simulation
results. Most of the data points are within the range of maximum relative error of +5%.
Some outliers visible in Figure 15b,e are due to numerical errors and non-converged
solutions, but their influence on the model is minimal.

Generally, it can be concluded that the predictive models are in very good agreement,
as a high coefficient of determination R? was achieved after final model evaluation. Sub-
sequently, the statistical accuracies of all derived models based on validation data set are
given in Table 7. As indicated, the models given by Equations (9)—(13) achieved relatively
small MAE values and MRE < 1.632%, as well as the coefficient of determination R? > 0.996.
The error analyses thus confirm that the derived models are statistically highly accurate.
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Figure 15. Scatter plots of (a) wall thickness ratio, (b) dimensionless wall thickness at the crest,
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Table 7. Results of the error analysis of the wall thickness prediction models.

Model R2 (-) MAE (-) MRE (%)
Ratio 0.99942 3.101 x 1073 0.720
TT7p Crest 0.99903 6.255 x 107> 1.232
ITrp_vatiey 0.99985 2.550 x 1075 0.194
IIrp 1F 0.99649 1.058 x 10~* 1.073
Irpr ur 0.99828 9.235 x 107 1.632

6. Conclusions

Multi-dimensional regression models of the wall thickness distribution as a function
of mold geometries in extrusion blow molding of corrugated pipes were developed using
heuristic approaches. The influences of major geometry parameters on the parison inflation
process were identified and investigated by applying the theory of similarity, dimensional
analysis, and a parametric design study. Screening design results revealed that the impacts
of valley profile width and diameter on wall thickness distribution were relatively small
compared with those of other mold geometry parameters. This was confirmed by a null
hypothesis test. Three independent geometry parameters (mold inner radius, profile width,
and diameter at crest) were identified as having the most significant influences on the wall
thickness distribution; two further independent geometry parameters (flank angle and
initial thickness of the fluid parison) were identified as having a less significant positive
influence on wall thickness distribution. The correlations between independent and target
parameters can be established and utilized to estimate the wall thickness and its distribution
in corrugated pipes. Moreover, the comparison of numerical simulation results and model
predictions also confirmed the validity and feasibility of the regression models developed
in this work. Considering the identified correlation between geometry and wall thickness
distribution, these models are also suitable for optimizing mold blocks and pipes: high-
quality pipes can thus be constructed using less time and material. First comparisons
with experimental trials delivered promising results. These results showed that the wall
thickness predictions capture the reality as long as the velocity of the extruded parison
approximately equals the line speed of the corrugator. Currently, further experiments are
planned for subsequent validation.

For new processes, the proposed method may prove to be a valuable tool for mini-
mizing the number of expensive and time-consuming experiments when evaluating (new)
pipe designs and may add value well before the final product is produced. The developed
models allow a target variable (of the corrugated pipe geometry) to be predicted without
manufacturing and prototyping of a product. In addition, the regression models can cover
a wide range of geometry variations as they are dimensionless, and as long as the new
geometry is within the chosen dimensionless geometry parameter range. For very small
and very large corrugated pipes, there is some risk that the dimensionless parameters fall
within the extrapolation range for various reasons.
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Appendix A
Appendix A.1. Sub-Functions for the Regression model Predicting Ratio

Ay = ago s + ao 7Tp, + a2 & + Ao 7, + a3 (A1)
Ay = + aps. (A2)
a4 TR,
Az = age 75 + ag7 TR, + dog 7tg, + o9 7Tp, + a1o «. (A3)
2
a3 « 1
Ay = (1111 s + a2 7g, + B= + 1115) . (Ad)
TR, 14 7TR;
2
As = mp, (a16 7tp, + a177p, )" + azs. (A5)
Ag = a1g & + aq9 7, + a0 7Tp, - (A6)
A7 = a1 TR, + . (A7)
I ag TR,
dygq X
Ag = ax» TTp, + a3 Mg + ————. (A8)
7'L'Rl 7TR1
(a26 700, + 27 ) i
a6 7Tp agy 7ts
Ag = | a5 0 + ! + TR, @ azg | - (A9)
(ﬂzs TTp, + a29 7TBA)
A9 = az1 7tp, + as; 7, (A10)
A11 = d34 7TRI. (A11)
Ay = az7, A3 = asg. (A12)
Table A1l. Rounded values of the constant for Equation (1).
Constant Value Constant Value Constant Value Constant Value
0o 5.102 a1 —7.786 x 1072 a0 5.052 a3 —2.894 x 101
an —3.763 x 107! a1 5.775 an 1.388 s 6.817
an —1.967 x 1073 a1 —7.779 A 4.833 as 1.197
a3 —1.588 a3 —1.202 x 1072 a3 1.754 as3 —6.157 x 1071
g4 —1.909 x 1071 a4 —1.103 o —3.799 x 1073 a34 6.009
g5 5.199 a5 6.869 x 107! ars 2.320 x 1071 a3s 8.257 x 107!
a6 8.229 a16 3.796 A —3.956 x 1071 a36 1.114
agy —8.324 x 1071 a7 1.562 x 10! ayy 4.595 azy 8.906 x 107!
aos 7.659 a8 4.302 x 1071 arg 1.890 asg 1.002 x 1071
apg 5.134 aq9 —7.264 a9 5.028
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Appendix A.2. Sub-Functions for the Regression Model Predicting [Irp ¢
1 2
B = (boo 7ts + b TR, + bop g, + bos « + ) + byy. (A13)
bos 7Ts
B2 = Tis bzo. (A14)
B3 = bos TR, + TTp, (bo(, Tp, + b07). (A15)
By = bpg o + byg. (Al6)
Bs = g, ms (bio a + b1y 75 + b12). (A17)
2
bismp, +bum
Bg = (br3 705, + b1g 52 + byy. (A18)
bis 7g, +b16 7D,
Us
By = big, Bg = byo. (A19)
Table A2. Rounded values of the constant for Equation (2).
Constant Value Constant Value Constant Value Constant Value
boo 2.283 boy —1.010 x 107! b1y 1.874 by 8.775 x 1072
by 7.534 x 1072 bos 5.358 x 10~ b5 7.546 x 1072 by 4.176 x 1072
boa 1.808 x 101 boo —0.112 big 3.625 x 1072 bys 1.293 x 10~*
bos 4289 x 1074 bio —1.602 x 1071 by —1.189 x 10 by —3.388 x 1072
boa -1.917 x 10° b —2.469 x 1071 big 2.060 bys —1.225 x 107!
bos —8.858 x 1071 bip 2.468 big —1.189 by 31.48
boe —8.320 x 1071 bi3 —1.094 byo 1.762 x 102 byy 4.664 x 1073
Appendix A.3. Sub-Functions for the Regression Model Predicting [Irp v
C = (CO TR, +C1 7'L’BA). (A20)
C = (Cz x+ (C3 TR, +C4)2 (C5 TR, +C6)2(C7 Tg, + 7ts 7D, Cg) (Cg ®+ ClO) +C11). (A21)
Cs = (c12 s + c13 7R, ). (A22)
Cy=rcu (A23)
Cs = (c15 s + 16 7R, )- (A24)
Ce = (c17 7p, + c18)- (A25)
2
C7 = <C19 TR, + 7Tg TTR; €20 + (C21 Us:n + 7TB, TtDy C22) <(C23 an)Z +Cz4> +Cz5>. (A26)
Cy9 TT
Cg = (Czs &+ Co7 Ttp, + Cog TR, + % + C30> C31- (A27)
S
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Cy = c3p. (A28)
Table A3. Rounded values of the constant for Equation (3).
Constant Value Constant Value Constant Value Constant Value
Co0 1.355 Co9 —2.382 x 1071 C18 —21.15 Co7 —10.48
o1 —1.756 C10 11.28 C19 1.566 x 102 28 —19.62
co2 —7.893 x 1072 c11 11.22 Co0 —1.540 x 102 C29 3.222
o3 17.11 12 1.925 o 1.750 x 102 30 —2.579 x 102
Co4 —11.62 c13 1.002 x 1071 c» 3.369 x 10~1 c31 1.004
€05 17.19 14 —3.621 3 10.13 3 8.134 x 1073
Co6 —11.62 C15 1.739 Co4 17.24
oy —7.048 x 1073 16 2974 x 1073 o5 8.078 x 102
cos —1.687 x 1071 c1y —2.246 26 —2.228 x 1071
Appendix A.4. Sub-Functions for the Regression Model Predicting [Irp
E1 = €pp 7Ts- (A29)
Ez = 7Tg €12. (A30)
E3 = ep1 « + egn 7tp, + €3 7tp, + €o4 TTs. (A31)
€06 7TD, 2
Ey=|epsa+——+ep7 | . (A32)
7t
2
Es = 7, eos + (oo & + €10 7Tp, + €11 7Ts) " (A33)
E¢ = (e13 75 + €14 7Tp, + €15 7R,
+(€16 «+ ey Tp, +e18 g, + 7T527'(RI e19 + 620) (621 o+ ex TTs (A34)
+ep3 T, + €24 T, + €25 ) +e€26 ) €27
2
E; = (628 7ts + €9 7Tp, + €30 TR, + 631) + e3p. (A35)
Table A4. Rounded values of the constant for Equation (4).
Constant Value Constant Value Constant Value
€00 4114 x 1071 €11 1.461 €22 2.473
eo1 6.584 x 1073 e 1.219 23 1.736
o 3.588 x 1072 e13 8.923 x 1071 4 7.159 x 107!
€03 9.938 x 1071 e14 —1.334 x 107! eos —1.772 x 1071
eos —2.344 eis —8.782 x 107! €26 7.645 x 1071
eos —5.395 x 1073 €16 2443 x 1073 ex7 —1.009
€06 —1.518 x 1072 e17 1.046 erg —1.245
eo7 1.876 x 1071 e1s 1.730 ex9 —1.074 x 1071
eos —3.506 €19 —10.680 €30 —1.016
€09 —2.727 x 1073 e —1.563 x 101 ez 8.869 x 10~!
e10 8.860 x 107! en1 5.067 x 1073 e —1.991 x 1074
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Appendix A.5. Sub-Functions for the Regression Model Predicting [Trp r

Fi = (foo 7R, + for 7o, + fo2 7s) + foo. (A36)

B =g <f03 ® + fos 7R, + fos 7tp, + 7B, 7R, (7B, TR, fos + fo7) + %ﬁ

) (A37)
2 2
o ) fo (o )+ i) ).
F3 = (fi2 ts + f13 R, + fra a + 7, (7B, 7R, fi5+ fi6))- (A38)
Fy = fi7 7R, + bith (A39)
7'[[)1
2
2 2
F5 = 75 (f19 TR, + f20 75 + & ((le TTR;) +f22) f23 + (f2a 7TR;) ) (A40)
Fs = fos 7R, + f26 7B, + f27 D, - (A41)
F; = fos. (A42)
Table A5. Rounded values of the constant for Equation (5).
Constant Value Constant Value Constant Value
foo —4.410 x 1073 fi1 —1.41418 faz —-1.925
for —2.280 x 1073 fi2 2.249 f3 —2.795 x 1072
fo2 —3.333 fi3 4547 fou 1.276
fo3 9.931 x 1073 fia 1.510 x 1072 fos 2415 x 1072
foa 1.222 fis —139.413 fa —~1.762
fos 2.486 x 1071 f16 17.694 fo7 —1.129
fos 62.361 fiy 1.106 fas 1.041
for —7.463 fis 1.913 x 107! fa9 4270 x 1073
fos 1.443 x 107! f19 —1.521
foo —1.890 x 102 f20 2.146
fio 1.327333 for 1.616
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