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Abstract: Keloid is a poorly understood fibrotic skin disease that commonly occurs during wound-
healing. As a polymer composed of nucleic acid and proteins, the structure of chromatin could
be dynamically regulated in the nucleus. In this study, we explored the dynamics of chromatin
accessibility and the transcriptome in dermal fibroblasts (DFs) in keloid formation. Compared
to normal samples, chromatin accessibility and transcriptome were extensively altered in keloid
DFs. In addition, changes in chromatin accessibility were closely associated with changes in gene
expression in DFs. Breast cancer type 1 (BRCA1) was significantly downregulated in keloid DFs,
and its knockdown promoted the proliferation and attenuated the migration ability of normal DF
cells. Mechanistically, BRCA1 suppression significantly reduced the expression of neuronal pentraxin
2 (NPTX2), a cell viability-related gene. BRCA1 binding affinity at the NPTX2 enhancer and the
chromatin accessibility in the same region were significantly lower in keloid DFs than in normal DFs,
which might contribute to NPTX2 inhibition. In conclusion, this study identified BRCA1 inhibition in
DFs as a novel pathological factor in keloids and preliminarily explored its potential mechanisms,
which will help us understand the formation of keloids.

Keywords: keloid; ATAC-seq; chromatin accessibility; BRCA1; NPTX2

1. Introduction

Wound-healing is a complex process which could be typically divided into three
successive overlapping phases: inflammation, proliferation, and remodeling [1]. In the
wound microenvironment, strict and frequent interactions, which are fundamental for cell
behavior decisions occur among different cell types, such as keratinocytes, fibroblasts, and
immune cells [2,3]. For example, the wound undergoes the dense recruitment of immune
cells during the inflammatory phase, and cytokines secreted by these immune cells activate
fibroblasts to produce the extracellular matrix (ECM) and collagen [4]. Keratinocytes com-
ply with dermal fibroblast (DF) signals, migrating and proliferating in a paracrine manner
during the remodeling phase [5]. Aberrant cell interactions can contribute to abnormal
wound-healing, resulting in defective or excessive healing. Keloid is a common fibrotic
skin disease caused by excessive ECM and collagen deposition, which is characterized
by scars beyond the original wound margin. Keloids can disfigure or even disable the
pathogenic part, and it is prone to relapse after treatment. Currently, there is still a lack
of effective therapeutic methods [6]. Some molecular events, such as the activation of
the transforming growth factor-beta (TGF-β) signaling pathway, are involved in keloids
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formation [7]. However, our understanding of the underlying mechanisms of keloids
remains limited, which is an obstacle to the development of effective therapies.

The morbidity of keloid differs among ethnicities. The prevalence of keloid in pop-
ulations with darker skin is significantly higher than that in demographics with lighter
skin and is heredofamilial, implying the importance of genetics in keloids [8]. Several
genome-wide linkage studies have identified some genomic loci whose variations were
statistically associated with keloid risk, such as the 2q23 and 7p11 chromosome regions
in Japanese and African American families [9] and 15q22.31–q23, 18q21.1, and 10q23.31 in
Chinese families [10]. However, the high genetic heterogeneity among different patients
makes it difficult to develop target loci. Epigenetic regulation is crucial in determining
gene expression through various mechanisms without gene sequence alterations, such as
non-coding RNA regulation and chromatin modification. Perturbed epigenetic regulation
can induce aberrant gene expression and underlies multiple diseases. Various epigenetic
perturbations have been implicated in keloid formation, including long or small non-coding
RNA dysregulation, abnormal DNA methylation, and histone modifications [11]. Chro-
matin is a polymer with different hierarchical structures. Chromatin accessibility represents
the most basic structure and the foundation of gene expression regulation by influencing
the binding of transcription factors (TFs) to the cis-regulating elements of genes, which is
regulated by multiple epigenetic mechanisms. For example, the histone acetylation and
binding of pioneer TFs can induce an open chromatin state, namely, more accessible chro-
matin for TFs, and is closely associated with transcriptional activation [12–14]. Alterations
in chromatin accessibility have been extensively reported in the pathogenesis of multiple
diseases, including cancer and autoimmune and inflammatory disorders [15–17]. However,
the exploration and understanding of chromatin state transformation in keloid formation
is currently limited.

In this study, we comprehensively analyzed and compared chromatin state alterations
in the DFs of keloid and normal samples by combining an assay of transposase accessible
chromatin sequencing (ATAC-seq) and a series of histone modification ChIP-seq data. We
identified breast cancer type 1 (BRCA1) as a potential keloid-associated gene by integrating
gene expression and cell experiments.

2. Materials and Methods
2.1. Study Subject

The derma of keloids and adjacent normal tissues on the back were obtained from a
67-year-old man with signed informed consent. The ethics committee of the PLA General
Hospital approved this study (Ethics Approval NO.: S2018–223–02).

2.2. DF Extraction and Cell Culture

DFs were isolated from keloid tissues and paired normal skin using an explant tech-
nique [18]. Briefly, dermal tissues were washed three times with phosphate-buffered saline
(PBS) (CellMax Inc, Sunnyvale, Sweden) and minced into small pieces (~1 mm). They
were explanted in Dulbecco’s modified Eagle medium (DMEM) (CellMax Inc, Sunnyvale,
Sweden) containing 10% fetal bovine serum (FBS) (CellMax Inc, Sunnyvale, Sweden) and
1% antibiotic–antimycotic solution (Gibco, Invitrogen Gibco Inc, Waltham, MA, USA) and
incubated at 37 ◦C in 5% carbon dioxide. The medium was changed every two days.
After 7–10 days, cells proliferating from the edge of the tissues were regarded as cultured
fibroblasts. The cells were passaged 1–2 times per week.

2.3. BRCA1 Knockdown

Recombinant lentiviruses expressing BRCA1 short hairpin RNA (shBRCA1) were
constructed by Gene Pharma (Shanghai, China). Concentrated viruses were used to infect
5 × 105 cells in 6-well plates with 6 µg/mL polybrene. After two days, puromycin was
added to the medium at a concentration of 2 µg/mL to select stably-transduced cells. The
shBRCA1 sequence was GAGTATGCAAACAGCTATAAT.
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2.4. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted using the SteadyPure Quick RNA Extraction Kit (AG) ac-
cording to the manufacturer’s instructions and used for first-strand cDNA synthesis using
the Evo M-MLV RT Mix Kit (AG). The quantification of all gene transcripts was performed
on a QuantStudio™5 Real-Time PCR Instrument (Applied Biosystems Inc, Foster City, CA,
USA) using the SYBR® Green Premix Pro Taq HS qPCR Kit (Rox Plus, Hu’nan, China) (AG),
and RNA levels were normalized to those of 18S rRNA. 2−∆∆ct was applied to analyze the
data. Three parallel duplicate wells were designed for the experiment, and all samples were
tested three times. Error bars represent the mean± standard deviation (SD) from three inde-
pendent experiments. The primer sequences used were as follows: 18S rRNA, forward: 5′-
GTAACCCGTTGAACCCCATT-3′, reverse: 5′-CCATCCAATCGGTAGTAGCG-3′; BRCA1,
forward: 5′-AGGAACCTGTCTCCACAAAGTG-3′, reverse: 5′-TCGTACTTTCTTGTAGGC
TCCTTT-3′; and NPTX2, forward: 5′-AGAAGTCCCTGCTGCACAAT-3′, reverse: 5′-TTAAA
GGCGCTATTGCCTCGC-3′.

2.5. ATAC-Seq

ATAC-seq was performed using the Chromatin Profile Kit for Illumina N248 (Novo-
protein Inc., Tianjin, China), according to the manufacturer’s instructions. The libraries
were subjected to paired-end 150 bp sequencing on a NovaSeq platform at GENEWIZ
(Suzhou, China).

2.6. Cleavage under Targets and Tagmentation Sequencing (CUT&Tag-Seq)

A CUT&Tag assay was performed using the NovoNGS® CUT&Tag 3.0 High-Sensitivity
Kit N259-YH01 (NovoProtein Inc., Tianjin, China) according to the manufacturer’s instruc-
tions. Libraries were sequenced by GENEWIZ (Suzhou, China) using paired-end 150 bp
sequencing on the NovaSeq platform. The following antibodies were used: BRCA1 (sc-6954)
and normal mouse immunoglobulin G (IgG) (sc-2025) from Santa Cruz Biotechnology;
H3K4me3 (ab8580), H3K4me1 (ab8895), and H3K9me3 (ab8898) from Abcam; H3K27ac
(#8173) and normal rabbit IgG (#2729) from Cell Signaling Technology; donkey anti-mouse
IgG-AlexaFluor 288 (abs20014) from Abcam; and DyLight 488 AffiniPure Goat Anti-Rabbit
IgG (H+L) (E032220) from EarthOx.

2.7. RNA-Seq

RNA libraries were constructed using total RNA and were sequenced using paired-end
150 bp sequencing on the NovoSeq platform at GENEWIZ (Suzhou, China).

2.8. ATAC-Seq Analysis

Raw data were preprocessed using fastp version 0.19.6 [19] for adapters, low-quality
bases, and read removal. The preprocessed data were aligned to the GRCh38/hg38 ref-
erence genome using Bowtie version 2.4.3 [20] with a tolerance of one mismatch at most
and a 2000 bp maximum fragment length. Picard version 2.26.11 (https://broadinstitute.
github.io/picard/, accessed on 22 November 2021) was applied to remove duplicated
mappings and samtools version 1.15 removed the multiple alignments (https://www.
htslib.org/doc/samtools.html, accessed on 22 November 2021). The model-based anal-
ysis of the ChIP-seq version 2.2.7.1 [21] was used to identify nucleosome-free chromatin
regions based on a q-value < 0.05 threshold. Chromatin regions were annotated using the
ChIPseeker R package [22] with a promoter defined as a 3000 bp chromatin interval cen-
tered on the transcriptional start site (TSS). Differentially accessible analysis was conducted
using MAnorm [23] with the thresholds of an absolute log2-based signal ratio >1 and a
p-value < 0.05. The functional enrichment analysis of differentially accessible regions was
based on the Genomic Regions Enrichment of Annotations Tool (GREAT) version 4.0.4 [24]
with a p-value < 0.05.

https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://www.htslib.org/doc/samtools.html
https://www.htslib.org/doc/samtools.html
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2.9. CUT&Tag-Seq Analysis

The preprocessing and alignment methods for CUT&Tag-seq data were the same
as those used for ATAC-seq. However, the duplicated mappings were retained because
they are not PCR-biased, as in the traditional ChIP-seq library construction protocol, but
have biological meanings. The peak calling of both BRCA1 and histone modifications
was conducted by using Sparse Enrichment Analysis for CUT&RUN (23 November 2021,
SEACR) [25] with IgG as a control for read density normalization. The “stringent” mode
was used for peak significance determination. The ChIPseeker R package was used for peak
annotation with ATAC-seq. The DeepTools toolkit [26] was used to calculate, normalize, and
visualize the CUT&Tag-seq and ATAC-seq signals across the specified chromatin regions.

2.10. RNA-Seq Analysis

Fastp version 0.19.6, used for ATAC-seq data, was used to preprocess the raw sequenc-
ing data. Spliced Transcripts Alignment to a Reference (STAR) version 2.7.10a [27] was
used to align the preprocessed data to the GRCh38/hg38 reference genome with the default
parameters. HTSeq version 2.0.1 [28] was used to calculate the read number mapped to
the exons of each gene. Differential gene expression analysis was performed using the
DESeq2 R package [29] with a threshold of p < 0.05 and absolute log2-based fold change
>1. The functional enrichment analysis of differentially expressed genes (DEGs) was con-
ducted based on the Database for Annotation, Visualization, and Integrated Discovery
(DAVID) 2021 update (https://david.ncifcrf.gov/, accessed on 30 November 2021) with a
p-value < 0.05.

3. Results
3.1. Keloid DFs Exhibited Extensive Chromatin State Changes

A high-throughput ATAC-seq assay was applied to the DF samples from keloid and
adjacent normal tissues to acquire their accessible chromatin regions, namely those with-
out nucleosome encapsulation. Quality control in terms of sequencing fragment length
distribution indicated that the high-quality sequencing library for the nucleosome-free and
mono-, di-, and tri-nucleosome fragments predominated the library pool (Figure S1). Peak
calling statistically identified 100,952 and 92,208 accessible chromatin regions in keloid
and normal DFs, respectively. As Figure 1A shows, promoter, intron, and distal inter-
genic regions represent the most enriched genomic features of the accessible regions. We
performed high-throughput CUT&Tag-seq for various histone modifications, including
H3K4me1, H3K4me3, H3K9me3, and H3K27ac, in keloid DFs and calculated their signals
at “distal intergenic”-annotated chromatin regions to determine whether those distal in-
tergenic regions were enhancers. H3K4me1, a robust enhancer marker, was prominently
enriched in the distal intergenic regions along with H3K27ac, an active chromatin marker
(Figure 1B). The heterochromatin marker H3K9me3 was significantly depleted in distal
intergenic regions (Figure 1B). This indicated that the accessible distal intergenic regions
were active enhancers. We conducted a differentially accessible region analysis to estimate
the chromatin state changes in keloid formation, which statistically identified a total of
4951 tighter and 4347 looser chromatin regions in DFs from keloids compared with those
from normal tissues (Figure 1C). The stratification analysis of histone modification signals
showed significant H3K27ac enrichment and depletion in keloid samples at chromatin
regions that were looser and tighter, respectively. This demonstrated the reliability of the
differentially accessible analysis (Figure 1D). Additionally, the H3K4me1 signal showed
strong enrichment across these differential chromatin regions but was biased to the looser
regions in keloids, implying that enhancers made up most of the perturbed chromatin
regions in keloid formation (Figure 1D). Functional interpretation of the looser (Figure S2A)
and tighter regions (Figure S2B) identified many keloid-related pathways, such as epithelial
cell migration and collagen metabolic processes, implicating the importance of chromatin
accessibility changes in keloid formation.

https://david.ncifcrf.gov/
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Figure 1. Comparative analysis of chromatin accessibility landscape between dermal fibroblast (DF)
of keloid and normal skin tissues. (A) Genomic feature distribution of accessible, namely nucleosome-
free, chromatin regions in normal (upper left panel) and keloid (upper right panel) DF. The bottom
panel provides a stack plot illustrating the proportions of different sets of accessible chromatin regions
stratified by their distance to the gene’s transcriptional start site (TSS). (B) Signal profiles of ATAC-seq
in normal and keloid DF and CUT&Tag-seq of a series of histone modifications in keloid DF across the
accessible chromatin regions that annotated as “distal intergenic” in normal and keloid DF. (C) MA-
plot illustrating the normalized mean ATAC-seq signal values of keloids and normal DF (A values
in X-axis) and log2-based ratio of ATAC-seq signal values of keloid DF to normal DF (M values in
Y-axis) across the combined accessible chromatin regions in normal and keloid DF samples. Red and
blue dots represent chromatin regions that are accessible only in keloids and normal DF, respectively.
Dark grey dots are the merged chromatin regions of overlapped accessible regions in normal and
keloid DF. (D) Signal profiles of ATAC-seq in normal and keloid DF and CUT&Tag-seq of a series
of histone modifications in keloid DF across the differentially accessible regions stratified by their
accessible state in keloid DF relative to normal DF. Keloid_down and keloid_up represents chromatin
regions that are significantly tighter and looser in keloids than normal samples, respectively.

3.2. Chromatin State Transformation Is Related to Gene Expression Changes in Keloid Formation

RNA-seq was performed on DF samples from keloids and normal tissues. We iden-
tified 171 significantly downregulated and 104 upregulated genes in keloid samples.
Figure 2A shows a volcano plot of the differential expression analysis with the ten most
significant genes labeled. Previous reports have implicated some of the DEGs in keloids or
other fibrotic diseases, such as collagen genes in keloids [30] and SNCA in kidney fibro-
sis [31]. Figure 2B shows the relative gene expression levels of these DEGs as a heatmap.
The functional enrichment analysis of these DEGs identified many keloid-related pathways
(Figure S3A) and biological processes (Figure S3B), including focal adhesion, ECM-receptor
interaction, and apoptotic process regulation. We performed a cross-analysis between gene
expression and chromatin accessibility to explore whether gene expression changes were
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associated with chromatin state transformation in keloid formation. Looser and tighter
regions in the keloid DF samples were annotated to their nearest genes, followed by inter-
section analysis with DEGs. There were 23 and 14 intersections of upregulated genes with
looser and tighter regions and 44 and 16 intersections of downregulated genes with tighter
and looser regions, respectively (Figure 2C). Additionally, the expression fold changes of
looser and tighter region-associated genes were significantly different. Briefly, genes within
looser and tighter regions tended to be up- and downregulated in keloid samples, respec-
tively (Figure 2D). A more accessible chromatin state was associated with more active gene
expression and vice versa. These results indicate that the chromatin state transformation
could, at least partially, underlie gene expression changes in keloid formation.
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Figure 2. Integrated analysis of chromatin accessibility and transcriptional landscape uncovered
influence of chromatin state transformation on gene expression alteration in keloid formation. (A) Vol-
cano plot showing the log2-based fold change (X-axis) and significance (Y-axis, −log10 (p value))
of differential gene expression analysis between keloids and normal DF samples. Blue and red
dots represent genes that are significantly down- and upregulated in keloid DF relative to normal
DF, respectively. Dark grey dots are non-significantly differential expression genes. (B) Heatmap
illustrating the z-score normalized expression values of the differentially expressed genes (DEGs) in
normal and keloid DF samples. (C) Overlaps between DEGs and differentially accessible chromatin
region-associated genes stratified by their changes in keloid DF relative to normal DF. Peak_Down
and Peak_Up represent genes annotated by chromatin regions that are tighter and looser in keloid
DF compared with normal DF, respectively. DEG_Down and DEG_Up are genes that are significantly
down- and upregulated in keloid DF compared with normal DF, respectively. (D) Distribution of
log2-based fold changes of Peak_Down and Peak_Up genes in keloid DF relative to normal DF.
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3.3. BRCA1 Suppression Is Potentially Associated with Keloid Pathogenesis

We performed a protein–protein interaction (PPI) analysis of 275 DEGs, which divided
the DEGs into two densely connected gene groups (Figure 3A). BRCA1, a well-known
tumor suppressor with high mutation rates in multiple cancers that was downregulated
in keloid samples in this study, is highly connected to the PPI network. We confirmed
its downregulation in keloid samples by RT-PCR (Figure 3B). To investigate whether its
suppression was associated with DF behavior, we transfected normal DFs with shBRCA1
or control short hairpin RNA (shSCR) and performed cell viability and wound-healing
assays. ShBRCA1 significantly repressed BRCA1 expression (Figure 3C). As a result, the
cell viability assay indicated no significant chance of the proliferative ability of DFs after
BRCA1 inhibition (Figure 3D). However, BRCA1 inhibition significantly attenuated the
migration ability (Figure 3E) of normal DFs. Effective DF migration is a prerequisite for
efficient wound-healing. We inferred that BRCA1 suppression might induce keloids by
promoting DF deposition and prolonging the wound-healing process.
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Figure 3. Suppressed BRCA1 expression is a potential pathogenic factor in keloid. (A) Protein–
protein interaction (PPI) network of DEGs based on STRING database. More lines between two
genes indicates more reliable interactions between them, and line color represents evidence type
for their interaction. BRCA1 as a hub gene, i.e., highly connected in the network, is highlighted
by a red arrow. (B) Validation of down-regulation of BRCA1 in keloid DF compared with normal
DF, as well as in shBRCA1 and shSCR DF samples by RT-PCR. (C) Validation of the suppression
of BRCA1 by small hairpin RNA (shRNA) by RT-PCR in normal DF. (D) Relative cell viability of
normal DF that transfected with shRNA for BRCA1 (shB1) or control (shSCR) quantified by CCK-8
method. (E) Wound-healing ability of normal DF that transfected with shB1 or shSCR and quantified
by scratch test. The left panel shows the representative DF wound-healing examples and the right
panel illustrating the wound closure percent of shB1 and shSCR DF at different time points. Error bars
represent the mean ± standard deviation (SD) of three independent experiments. n.s., not significant;
* p value < 0.05.

We conducted an RNA-seq of normal shBRCA1 and shSCR DFs to explore the molec-
ular influences of BRCA1 inhibition on normal DFs, which revealed 97 downregulated
and 104 upregulated genes in shBRCA1 DF samples (Figure 4A,B). The functional enrich-
ment analysis of these DEGs revealed many Gene Ontology (GO) terms and pathways
(Figure 4C,D) that could influence keloid formation, such as collagen fibril organization and
the negative regulation of cell proliferation. Additionally, Gene Set Enrichment Analysis
(GSEA) identified many activated and repressed hallmarks associated with keloid forma-
tion after BRCA1 inhibition (Figure S4). This implies that BRCA1 suppression could induce
the perturbation of keloid-related molecular events in normal DFs, potentially representing
a keloid pathogenesis factor.
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Figure 4. BRCA1 associates with molecular events related to keloid formation in normal DF. (A) Vol-
cano plot illustrating the log2-based fold change (X-axis) and significance (Y-axis, log10-based p value)
of differential expression analysis between shB1 and shSCR DF samples. Blue and red dots are signif-
icantly down- and upregulated genes in normal shB1 DF relative to normal shSCR DF, respectively.
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normalized expression values of DEGs in normal shB1 and shSCR DF. (C) and (D) represent the
significantly enriched GO terms and KEGG pathways of DEGs, respectively. CEMT, cardiac epithelial
to mesenchymal transition.

3.4. NPTX2 Is a Potential Target in Keloid Formation Induced by BRCA1 Suppression

Previous reports have implicated BRCA1 in transcriptional regulation through multi-
ple molecular mechanisms. Therefore, we explored whether BRCA1 suppression induced
keloid formation by regulating other genes. We intersected DEGs in keloid samples and
shBRCA1 normal DF samples and obtained 13 overlaps, including some well-known keloid
or other fibrotic disease-related genes, such as COL11A1 [32] and NEDD4L [33] (Figure 5A).
Interestingly, NPTX2, a synapse formation-related gene recently implicated in abnormal
cell proliferation and migration in multiple cancers [34,35], was significantly inhibited in
keloids and shBRCA1 normal DF samples (Figure 5B). This indicated that BRCA1 might
influence DF behavior by regulating NPTX2. We performed a BRCA1 CUT&Tag-seq in
keloids and normal DFs to further investigate the regulatory relationship between BRCA1
and NPTX2. We found a significant BRCA1 binding signal in the NPTX2 enhancer region
of the normal DFs but not keloid DFs (Figure 5C). Furthermore, the ATAC-seq signal in this
region in normal DFs was higher than that in keloid DFs. The GeneHancer database [36]
illustrated a reliable interaction between this enhancer and the NPTX2 promoter (Figure 5C).
Given the previous reports on BRCA1 in chromatin remodeling [37], we proposed that
BRCA1 suppression in keloids attenuated the accessibility of the NPTX2 enhancer and
dismissed the interaction between the NPTX2 enhancer and promoter, resulting in NPTX2
repression. To further validate the role of BRCA1 in chromatin remodeling, we visualized
the binding signal of BRCA1 at TP63, a popular target of BRCA1, in both the normal
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and keloid DF samples along with the H3K4me1 and H3K27ac CUT&Tag as well as the
ATAC-seq signals. As a result, consistent with the signal landscape at NPTX2, the binding
signal of BRCA1 at TP63 is lower in keloid DF than normal DF and the chromatin is denser
at the corresponding region in keloid DF (Figure S5).
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Figure 5. BRCA1 might regulate NPTX2 expression by manipulating its enhancer accessibility
and influencing enhancer–promoter interactions in normal DF. (A) Heatmap of the log2-based fold
change of genes that significantly affected differential expression in both shB1 normal DF compared
with shSCR normal DF and keloid DF compared with normal DF. LFC, log2-based fold change.
(B) Validation of down-regulation of NPTX2 in keloid DF relative to normal DF (upper panel) and
shB1 normal DF relative to shSCR normal DF (bottom panel). (C) Density profile of H3K27ac and
H3K4me1 CUT&Tag-seq in keloid DF, ATAC-seq in normal and keloid DF, BRCA1 CUT&Tag-seq in
normal and keloid DF at NPTX2 as well as its associated enhancer region. Interaction between NPTX2
enhancer and promoter predicted based on GeneHancer database is shown in bottom. H, normal
DF; K, keloid DF. The promoter-associated enhancer that exhibits looser chromatin organization and
higher BRCA1 binding signal is highlighted by purple background. ShB1, shBRCA1.

4. Discussion

Keloid is a common fibrotic skin disease, but its underlying mechanisms are poorly
understood. Here, we report that alterations in chromatin accessibility may underlie keloid
formation, and BRCA1 suppression might contribute to the regulation of keloid formation
by manipulating the accessibility of the amplifier by NPTX2.

Abnormal cellular behaviors, such as the excessive proliferation of fibroblast induced
by impaired communication among keratinocytes, immune cells, and DFs, represent the
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most popular interpretation of keloid formation in wound-healing [5,38]. However, the
underlying molecular mechanisms are not fully understood. An open chromatin environ-
ment, namely a nucleosome-free environment, is a prerequisite for normal gene expression
because most TFs cannot bind directly to nucleosomes. Aberrant chromatin-accessible
states, containing looser and tighter nucleosome organization, constitute many pathological
cellular behaviors and could result in homeostasis loss, giving rise to multiple disorder
states, including cancer and fibrotic diseases [39,40]. Many factors are implicated in the
regulation of chromatin accessibility, including the linkage of pioneering factor, histone
modification, DNA methylation, and sequential mutations [41–43], some of which are
thought to be involved in the formation of keloids [44]. However, comprehensive stud-
ies on alterations in chromatin accessibility in keloids have rarely been reported. In this
study, we compared the state of chromatin on a genome-wide basis between keloid and
normal DFs using ATAC-seq and identified numerous chromatin regions that were more
or less well organized in keloid samples. By combining the signals of various histone
modifications quantified by CUT&Tag-seq, we found that most of these differential chro-
matin regions were cis-regulating elements, including H3K4me1-enriched enhancers and
H3K4me3 enriched promoters, which laid the foundation for transcriptional gene reg-
ulation. Additionally, as expected, changes in the level of chromatin accessibility were
positively correlated to changes in gene expression in keloids, implying that alterations in
chromatin state could at least partially underlie the changes in gene expression in keloid
formation. Therefore, the identification of chromatin state regulators in the formation of
keloids could shed new light on its pathogenesis and help develop therapeutic targets.

One of the most studied tumor suppressors, BRCA1, has mutations that are closely
related to the incidence rate of breast cancer and ovarian cancer [45]. Its most well-known
molecular function is DNA damage repair, which is essential for maintaining genome
stability [46]. Recent investigations have also uncovered its role in regulating chromatin
organization and gene expression [47]. In this study, BRCA1 expression was significantly
repressed in keloid samples, implying that BRCA1 might inhibit keloid formation in the
wound-healing process. This conclusion is also supported by the enhanced proliferation
capacity of normal DFs induced by BRCA1 inhibition. Unexpectedly, BRCA1 inhibition
significantly repressed the migration ability of normal DFs, meaning that BRCA1 should
promote DF migration during wound-healing, a cell event that might enhance keloid for-
mation, according to some previous studies [48,49]. Wound-healing is a complex process
involving inflammation, proliferation, and remodeling. DFs are attracted to the wound
site during the inflammatory phase by platelet-derived growth factors (PDGFs) and in-
terleukin (IL)-1β and secrete collagen and other ECMs necessary for wound closure [50].
Additionally, DFs recruited on the wound bed produce growth factors that can stimulate
keratinocyte migration and proliferation to enhance the regeneration of the new epithe-
lium [51]. Therefore, suppressed DF migration may induce a protracted wound-closure
process, a canonical cause of keloid formation [52]. We conclude that BRCA1 repression
inhibits the migration of DFs to the wound site, prolonging wound closure and further
enhancing keloid formation.

NPTX2 is a PTX-encoded neuronal gene that is crucial in the formation of excitatory
synapses. Its dysfunction has been implicated in various diseases of nervous system,
such as Alzheimer’s disease [53] and Down’s syndrome [54]. Recent studies also widely
reported associations between NPTX2 and cancer progression or treatment response, and
high NPTX2 expression was closely related to enhanced cancer cell proliferation, migration,
and invasion abilities [55,56]. We found that the inhibition of BRCA1 in normal DFs let to a
significant decline in NPTX2 regulation. NPTX2 was also heavily regulated downwards
in keloid DFs compared with normal samples. BRCA1 binds directly to an amplification
region associated with the NPTX2 promoter in normal DFs but not in keloid DFs. This en-
hancer region showed a significantly looser organization in normal DFs than in keloid DFs,
which might contribute to its repression of keloid expression. The chromatin remodeling
functions of BRCA1 have rarely been reported via multiple mechanisms, such as interac-
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tions with the chromatin remodeling complex [57] or the direct influence on the structure of
chromatin loop [37]. In our study, BRCA1 inhibition indeed induced the downregulation of
several genes along with their loss of ATAC-seq signal in there cis-regulation elements but
not most of BRCA1 targets. We speculated that certain compensatory mechanisms might
contribute to the maintenance of the chromatin structure of some BRCA1 targets. Hence,
we proposed that BRCA1 inhibition in normal DFs might attenuate NPTX2 enhancer acces-
sibility, dismissing the interaction between the NPTX2 enhancer and promoter followed by
NPTX2 repression, eventually resulting in slowed DF migration during the inflammation
phase of wound-healing. Considering the difficulties of the current therapeutic method
in eradicating keloid and the potential role of NPTX2 inhibition in keloid formation, we
proposed the development of NPTX2 agonist might represent a novel option for keloid
clinical treatment. However, extensive in vitro as well as in vivo experiments are indeed
needed before its clinical use.

5. Conclusions

Chromatin represents a polymer comprising nucleic acid and protein. Chromatin
structure is dynamically regulated through multiple mechanisms that underlie the tran-
scriptional regulation. In this study, we systematically compared chromatin accessibility
and transcriptional landscapes between normal and keloid DFs and uncovered the as-
sociation between chromatin state transformation and gene expression dysregulation in
keloid formation. Additionally, BRCA1 has been identified as a participant in regulating
the structure of the chromatin polymer, and it could inhibit the wound-healing process of
the wound, which in turn induces the formation of keloids by extending the wound closure
process by reducing the accessibility of the NPTX2 amplifier. This will shed new light on
keloid occurrence and provide clues for therapeutic development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14163391/s1, Figure S1 Fragment length distribution of
ATAC-seq of keloid (A) and normal (B) DF sample; Figure S2 Significantly enriched KEGG pathways
of looser (A) and tighter (B) chromatin regions in keloid DF samples compared with that of normal
samples; Figure S3 Circle plot of significantly enriched KEGG pathways (A) and GO terms (B) of
DEGs in keloid DF samples compared with that of normal samples. Dots represent genes and
different color represents the down- or up-regulation; Figure S4 GSEA plot of significantly enriched
KEGG pathways in shBRCA1 DF samples; Figure S5 IGV visualization of ChIP-seq signal of BRCA1,
H3K4me1, H3K27ac as well as ATAC-seq signal on TP63, a conventional target of BRCA1. Both the
H3K4me1 and H3K27ac ChIP-seq are in keloid DF samples. H, Health; K, Keloid.
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