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Abstract: In the presented article a generalization of Newton’s formula for the shear stress in a fluid
is carried out by giving it a power-law form. After the introduction of the corresponding strain rate
tensor, a generalization is made to the spatial case of flow and the rheological relation is presented
in tensor form. Depending on the power value in this rheological ratio, one can come either to a
description of a laminar flow regime (in the form of Navier–Stokes equations), or to a description
of the flow in turbulent regime. In the latter case, a set of differential equations with the no-slip
boundary condition is specified, which is significantly different from that for the laminar flow regime,
but which also allows one to obtain analytical solutions for simple shear flows and obtain the Blasius
resistance law for the flow in a pipe. Therefore, the considered approach to solving problems of
turbulent flows compares favorably with modern differential turbulence models. Solutions are given
for simple shear flows of a fluid, when there is only one longitudinal component of the velocity,
which depends on the transversal coordinate only. These solutions in terms of velocity profiles and
resistance coefficients are in satisfactory agreement with the experimental data.

Keywords: rheology; non-Newtonian fluids; power relation; resistance; Newton’s formula; Blasius
formula; Toms effect; laminar flow; turbulent flow; simple share flow

1. Introduction

The formation of hydrodynamics as a science is largely associated with research of
fluid flow in pipes [1,2]. A round pipe is the most common hydrodynamic object used for
theoretical solutions, as a huge amount of experimental data has been accumulated for the
flow in the round pipe, which makes it possible to evaluate the quality of one or another
obtained formulas for resistance coefficients and velocity profiles. At the same time, unlike
the laminar flow, there are no exact analytical solutions for the turbulent flow regime and
all formulas and relations are either empirical or semi-empirical in nature, which is based
on the concept of turbulent viscosity. With the help of this concept, L. Prandtl [2] developed
the theory of mixing length, the first phenomenological theory of turbulence, which has
been applied in the calculations of turbulent flow in pipes. The theory made it possible to
obtain methods for solving many applied problems, which are important for engineering
applications. Subsequently, semi-empirical theories of turbulence, based on the concept
of turbulent viscosity, were developed intensively and now they have acquired the form
of differential models of turbulence (“k− ε”, “k−ω”, etc.) [3]. For the numerical solution
of such problems, various methods could be used, including grid methods, which have
high computational complexity. At the same time, methods of parallelizing grid methods
on multiprocessor computing systems with shared and distributed memory are used. The
main methods for solving problems of near-wall flows can be found, for example, in the
articles [4,5].
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The empirical relation used in the modern theory of turbulence is a universal velocity
profile suitable for describing any near-wall fluid flows. It consists of several regions,
and each region is described by a corresponding formula. The central region in it is the
logarithmic one, the formula for which is given by Prandtl’s theory. This formula cannot be
extended to the flow zone near the wall, where the no-slip condition takes place. For this
reason, L. Prandtl and then T. Karman drew attention to the possibility of describing the
velocity profile using the following power-law formula: the dependency of velocity on the
distance to the wall in the 1/7 power [1,6]. That law was called «1/7 law», and it provides
the velocity distribution that ensures that the no-slip condition is satisfied and leads to the
power law of resistance in the Blasius formula form. The disadvantage of this law, like all
power-law velocity profiles, is that it leads to an infinite derivative of the velocity on the
wall and does not give a zero value of the derivative of the velocity on the pipe axis. In
general, this power-law formula for the distribution of averaged velocities in a pipe is not
worse than the logarithmic one, but both are unsuitable for describing the behavior of the
flow close to the pipe axis [1].

Power-law formulas have become widespread in hydrodynamics both in the study of
turbulent fluid flows and in the rheological relations for non-Newtonian fluids [7]. For non-
Newtonian fluids, when describing near-wall flows, the shear stress τ is presented [8–11]
as power-law dependency on the velocity gradient γ̇ = du

dy , where u is the longitudinal
velocity of a fluid particle and y is the transversal coordinate:

τ = kγ̇ n. (1)

Here n is the power, a non-dimensional quantity, k, [Pa · secn] is the proportion ra-
tio. Quantities n and k are experimentally determined for each type of non-Newtonian
fluid. A fairly large number of papers [8,11] are currently devoted to the generalization of
Formula (1) to the three-dimensional case of flow in tensor form.

In the theory of turbulence, the Blasius power-law formula is widely used for the
resistance coefficient of a fluid flow with kinematic viscosity ν in a straight round pipe of
radius R [1,8]:

λ =
0.3164

Re
1
4

, (2)

where Re = 2Ruav
ν is the Reynolds number, calculated by the average flow velocity uav.

From considerations of dimensionality, T. Karman showed that this power-law of resistance
corresponds to a power-law velocity profile:

u
umax

=
( y

R

) 1
7 , (3)

where y is the distance between the pipe axis and the wall. Blasius’ formula is a special case
of the general power-law resistance law: λ = Const

Rem , which corresponds to the power law of
velocity u

umax
=
( y

R
)n. There is a relation between m and n parameters [1], which ultimately

leads to the law of resistance λ = Const
Re2n/(n+1) . Now if we assume n = 1

7 the Blasius’ formula

λ = Const
Re0.25 will be obtained.
Interest in the flow in round pipes in the turbulent flow regime is still shown at the

present time. This is due to the fact that for engineering applications, the most important
task is to assess the head losses to overcome the hydraulic resistances arising from the
movement of fluids in the pipelines. Accurate accounting of these losses largely determines
the reliability of technical calculations, the degree of perfection and economic feasibility
of engineering decisions taken during their design. Therefore, a search for more and
more perfect methods for calculating flows in pipes is still relevant. At the same time,
along with the algebraic rheological relations using the L. Prandtl foundation, modern
differential models of turbulence are also used [12,13] and even power-law formulas for
velocity profiles [14,15].
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2. Generalization of Newton’s Formula

Newton’s law for shear stress in flow around a flat surface is as follows:

τ = ρν
du
dy

, (4)

where ρ is the density, ν is the kinematic viscosity; the Formula (4) can be generalized as
follows [16]:

τ = ρχn

(
ν

du2n−1

dy

) 1
n

. (5)

In this expression, the power n may take n ≥ 1 values, χn is a non-dimensional
coefficient, depending on this power value. For n = 1 when χn = 1, the Formula (5)
leads to Newton’s rheological ratio and, as a result, to Poiseuille formula for laminar
flow in the pipe. For n = 4 and χn = 0.019746, this formula leads to the rheological
relation for turbulent fluid flow in the pipe and then to the Blasius’ formula for resistance
coefficient. Formula (5) can also be represented in the following form, convenient for
further generalization:

τ = ρχn (2n− 1)1/n(u2)
n−1

n

(
ν

du
dy

) 1
n

. (6)

A generalization of the Formula (5) to the spatial case of flow makes it possible to
acquire the corresponding rheological relation in tensor form [17]. As a result, the system of
differential equations arises, similar to the system of Navier–Stokes equations, which makes
it possible to solve boundary value problems in fluid mechanics. The obtained system
of equations for arbitrary values of the power can also be used to describe the behavior
of fluids under various flow regimes of both Newtonian and non-Newtonian fluids. For
arbitrary values of the power n and the corresponding values of the χn coefficient, this
system has the following form in the Cartesian rectangular coordinate system, disregarding
the mass forces:

ρ
dVi
dt

= − ∂p
∂xi

+ B
∂

∂xk

[(VjVj√
Y2

) n−1
n
(

∂Vi
∂xk

+
∂Vk
∂xi

)]
, (7)

where the following notations are introduced for brevity:

B = ρχn(2n− 1)
1
n ν

1
n , (8)

and Y2 is the second invariant of the strain rate tensor S = 1
2 (∇~V +∇~VT), ~V is the velocity

vector, ∇ is the Hamilton operator, “T” is the transportation symbol [17]:

Y2 =
1
2

S : S =
1
2

Sij Sji, (9)

or in expanded form:

Y2 =
1
2

[(
∂Vx

∂x

)2
+

(
∂Vy

∂y

)2

+

(
∂Vz

∂z

)2
]
+

+

(
∂Vx

∂y
+

∂Vy

∂x

)2

+

(
∂Vy

∂z
+

∂Vz

∂y

)2

+

(
∂Vx

∂z
+

∂Vz

∂x

)2
.

For each power n value, the non-dimensional parameter χn is determined by experience.
For n = 1 and χn = 1, there is a common Navier–Stokes equation describing the

laminar flow regime:
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ρ
dVi
dt

= − ∂p
∂xi

+ ρν

(
∂2Vi

∂xk∂xk
+

∂2Vk
∂xk∂xi

)
. (10)

A particular case of Equation (7) for n = 4 and χn = 0.019746 would be the differential
equation describing turbulent flows for the “Blasius” range of Reynolds numbers (for a
flow in a pipe, which leads to the Blasius’ formula when 104 < Re < 106):

ρ
dVi
dt

= − ∂p
∂xi

+ ρχn(7ν)
1
4

∂

∂xk

[(VjVj√
Y2

) 3
4
(

∂Vi
∂xk

+
∂Vk
∂xi

)]
. (11)

In projections on the axises of the Cartesian rectangular coordinate system, we have a
system of three partial differential equations:

ρ dVx
dt = − ∂p

∂x + C
[

∂
∂x Φ(2 ∂Vx

∂x ) + ∂
∂y Φ( ∂Vx

∂y +
∂Vy
∂x ) + ∂

∂z Φ( ∂Vx
∂z + ∂Vz

∂x )
]
,

ρ
dVy
dt = − ∂p

∂y + C
[

∂
∂x Φ(

∂Vy
∂x + ∂Vx

∂y ) + ∂
∂y Φ(2 ∂Vy

∂y ) + ∂
∂z Φ(

∂Vy
∂z + ∂Vz

∂y )
]
,

ρ dVz
dt = − ∂p

∂z + C
[

∂
∂x Φ( ∂Vz

∂x + ∂Vx
∂z ) + ∂

∂y Φ( ∂Vz
∂y +

∂Vy
∂z ) + ∂

∂z Φ(2 ∂Vz
∂z )
]
.

(12)

For the notation brevity, it is denoted that:

C = ρχn(7ν)
1
4 , Φ =

(
V2

x + V2
y + V2

z√
Y2

) 3
4

. (13)

To close the set of Equation (12) in the case of an incompressible fluid flow, it is also
necessary to add continuity equation ∇ · −→V = 0, which in coordinate form is as follows:

∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0. (14)

The boundary condition for this system of equations is the no-slip condition. It is
necessary to note that, as with all other power rheological relations, the proposed general-
ization of Newton’s formula is not invariant with respect to the Galilean transformation.
Therefore, the area of possible applications of the set of Equations (12)–(14) is limited to
cases of flow over stationary walls.

Problems of turbulent fluid flows around bodies of random geometry can be solved
on the basis of Equation (12). The calculation results will be valid and agree with the
experimental data for a relatively narrow “Blasius” range of Reynolds numbers, which,
for example, is 104 < Re < 106 for the flow in a pipe and 105 < Re < 108 for flow over a
flat plate.

For steady-state simple shear flows, there is one longitudinal velocity component Vx,
which depends on one transversal coordinate y. Denoting Vx = u from the first equation of
(12) equation and considering that Y2 = ( du

dy )
2,
√

Y2 =
∣∣∣ du

dy

∣∣∣:
0 = −dp

dx
+ ρχn[ν(2n− 1)]1/n d

dy


 u2∣∣∣ du

dy

∣∣∣
 n−1

n
du
dy

. (15)

When du
dy ≥ 0 and the modulus of the velocity derivative is positive, the expression in

square brackets in (15) for the near-wall simple shear flow can be transformed as follows: u2∣∣∣ du
dy

∣∣∣
 n−1

n
du
dy

=

(
u2(n−1) du

dy

) 1
n
=

(
1

2n− 1
du2n−1

dy
.
) 1

n

.
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As a result, for such near-wall simple shear flow, the equation of motion (15) takes the
form:

− dp
dx

+ ρχn
d

dy

[
ν

du2n−1

dy

] 1
n

= 0. (16)

In the case of negative du
dy after expanding the modulus in the Equation (15), further

similar transformations should be performed.

3. Steady State Flow in a Circular Cylindrical Pipe at Arbitrary Value of the n Power

A steady flow in a circular cylindrical pipe of radius R, with transversal coordinate
y, which is measured from the wall (0 ≤ y ≤ R) was studied in the article [16]. Here we
briefly describe the main results obtained. Non-dimensional coordinate and velocity are
introduced: {

η = y
R , 0 ≤ η ≤ 1,
V = u

V∗ , (17)

where V∗ is the friction velocity, expressed in terms of shear stress τw on the wall, obtained
from the equation of fluid motion in stresses [18]:

|τw| =
d
4

∆p
l

, V∗ =

√
|τw|

ρ
. (18)

In these expressions, d = 2R is the pipe diameter, ∆p is the longitudinal pressure
drop along the pipe of l length. Then, considering notations (17), expression (5) can be
represented as follows:

τ = ρχn

(
ν

V∗2n−1

R
dV2n−1

dη

) 1
n

= ρχnV2
∗

(
ν

V∗R
dV2n−1

dη

) 1
n

. (19)

This non-negative expression can also be associated with the non-negative value of the
shear stress τ = τw(1− y

R ) obtained from equation of motion of the continuous medium in
stresses, i.e., the ρV2

∗ (1− η) parameter:

ρχnV2
∗

(
ν

V∗R
dV2n−1

dη

) 1
n

= ρV2
∗ (1− η). (20)

Then:

dV(2n−1)

dη
=

Re∗
χn

n
(1− η)n, (21)

where Re∗ = V∗R
ν is Reynolds number, computed by the friction velocity.

The boundary condition for this equation is the no-slip condition: η = 0, V = 0.
Integration of Equation (21) with this boundary condition leads to the following

expression:

V2n−1 =
Re∗

χn
n(n + 1)

[
1− (1− η)n+1

]
,

from which non-dimensional velocity profile takes the form:

V =

(
Re∗

(n + 1)χn
n

) 1
2n−1 [

1− (1− η)n+1
] 1

2n−1 . (22)
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The average non-dimensional velocity over the pipe cross section [8,19],

Vav = 2
1∫

0

V(η)(1− η)dη,

leads to the following expression:

Vav = 2
(

Re∗
(n + 1)χn

n

) 1
2n−1

Y(n), (23)

where Y(n) has the following form for a flow in a circular cylindrical pipe:

Y(n) =
1∫

0

[
1− (1− η)n+1

] 1
2n−1

(1− η)dη. (24)

This parameter is expressed through hypergeometric functions, its values for different
power values are shown in the Table 1. For other n values, Y(n) can be found in reference
materials. It is useful to note that when n→ ∞, Y(n)→ 0.5.

Table 1. Values of Y(n) function.

n 1 2 3 4 5 20

Y(n) 0.25 0.403067 0.447761 0.467138 0.477358 0.498156

True Reynolds number Re = 2RVav
ν computed by the non-dimensional average velocity

Vav can be calculated [18,19] in terms of Re∗ number using friction velocity:

Re = 2Re∗Vav.

Then, taking into account the Formula (23), we have:

Re = 4Y(n)
(

1
(n + 1)χn

n

) 2n
2n−1

Re
2n

2n−1
∗ . (25)

Hence, we can express Re∗ inversely in terms of Re:

Re∗ =
((n + 1)χn

n)
1

2n

(4Y(n))
2n−1

2n
Re

2n−1
2n . (26)

The square of the non-dimensional average velocity is written as:

V2
av =

2
2(n−1)

n Y(n)
2n−1

n

χn(n + 1)
1
n

Re
1
n . (27)

Resistance coefficient λ = 8|τw |
(ρu2

av)
can be represented in terms of the square of the

non-dimensional average velocity as λ = 8
V2

av
, which, considering (23) expression, leads to

a formula for this coefficient at an arbitrary n value:

λ = 2
n+2

n
(n + 1)

1
n

Y(n)
2n−1

n

χn

Re
1
n

. (28)

Expressions (23)–(28) make it possible to describe the velocity field and resistance
coefficient of a flow in the straight round pipe for any values of n power.
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4. Special Cases for Different Values of the n Power

In special cases of n = 1 and n = 4, the obtained formulas lead to expressions for the
laminar and turbulent flow regimes, respectively. Let us consider these cases in details.

When n = 1 and χn = 1, formula (5) leads to Newton’s viscous friction formula:

τ = ρν
du
dy

. (29)

In this case, the non-dimensional velocity profile according to (22), takes the form:

V =
Re∗

2

[
1− (1− η)2

]
. (30)

This formula corresponds to the Poiseuille profile, which can be obtained after the
transition to cylindrical coordinates:

η =
y
r
=

R− r
R

= 1− r
R

,

u =
1
2 RV∗

ν

(
R2 − r2

R2

)
V∗ =

1
2

R
ν

V2
∗

(
R2 − r2

R2

)
=

=
1
2

R
ν

1
2ρ

δp
l

R
(

R2 − r2

R2

)
=

1
4µ

(
−dp

dz

)
(R2 − r2).

Non-dimensional velocity averaged over the pipe cross section according to expression
(27), considering that Y(1) = 0.25, is:

Vav = 0.25Re,

and the relation between the Reynolds numbers according to (25) will be

Re =
1
2

Re2
∗.

The resistance coefficient according to expression (27) for n = 1 and χn = 1 will be as
follows:

λ =
64
Re

, (31)

as was expected [1,20,21]. Thus, for n = 1 and χn = 1, rheological relation (5) describes the
laminar flow regime.

For n = 4 and χn = 0.019746, rheological relation (5) takes the form:

τ = ρχn

(
ν

du7

dy

) 1
4

. (32)

Non-dimensional velocity profile according to (22) is as follows:

V =

(
Re∗
5χ4

n

) 1
7 [

1− (1− η)5
] 1

7 . (33)

Cross-section average velocity:

Vav = 2
(

Re∗
5χ4

n

) 1
7

Y(4), (34)

where Y(4) = 0.467138.
The relation between Re∗ and Re numbers is provided by (25) formula, which takes

the following form for n = 4:
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Re =
4Y(n)

(5χ4
n)

1
7
(Re∗)

8
7 = 13.985077 (Re∗)

8
7 , (35)

and backwards:

Re∗ =
5

1
7 (χn)

4
7

4Y(4)
Re

7
8 = 0.102335Re

7
8 . (36)

For the average velocity over the cross section of the pipe and according to (28), there
is:

V2
av = 25.2844 Re

1
4 , Vav = 5.0283596 Re

1
8 .

The resistance coefficient, according to (28) for n = 4 and χn = 0.019746 will be as
follows:

λ = 2
3
2

5
1
4

0.467138
7
4

0.019746

Re
1
4

.

Thus, we obtained the Blasius’ Formula (2), λ = 0.3164
Re1/4 .

Rheological relation (5) for n = 4 and χn = 0.019746 allows the description of the
turbulent flow in the “Blasius” range of Reynolds numbers, which is 104 < Re < 106 for a
flow in a pipe. At the same time, unlike the modern approaches to turbulence modelling,
the velocity profile here is obtained in the form of a single curve similar to the Poiseuille
profile in the laminar flow regime. In case we need to describe flow outside of the “Blasius”
Reynolds numbers range, it is possible to use, for instance, the power value n = 6 and
χn = 0.00910904. As a result, it is possible to obtain the Prandtl–Nikuradze resistance curve
as the envelope of family of resistance curves for various values of the parameters n and χn,
consisting, for simplicity, of a set of piecewise-smooth functions. For smooth conjugation
of solutions, it is necessary to use additional conditions for their connection.

In dimension form, the velocity profile after some transformations of the expression
(33), taking into account the expression for the friction velocity and the fact that η = 1− r

R ,
takes the form:

u = 0.93677
1

ν
1
7

(
1
ρ

∆p
l

) 4
7
(R5 − r5)

1
7 . (37)

This formula can be obtained in a common way, operating with dimensional quantities.
Considering that the shear stress is τ < 0 , dp

dz < 0,
∣∣∣ dp

dz

∣∣∣ = ∆p
l for a flow in the pipe, from the

comparison of expressions for τ from the rheological relation (32) and from the equation of
fluid motion in stresses, we can write down that:

χnν
1
4

(
du7

dy

) 1
4

=
1
2

∣∣∣∣dp
dz

∣∣∣∣(R− y),

hence the differential equation follows:

du7

dy
= A(R− y)4,

where for brevity it is denoted that:

A =
1

ν(2χnρ)4

(
∆p
l

)4
. (38)

Integration of this differential equation considering the no-slip condition provides:
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u7 =
A
5
(R5 − (R− y)5),

or, taking into account that R− y = r, where r is the radial coordinate measured from the
pipe axis:

u7 =
A
5
(R5 − r5).

Hence the velocity profile is as follows:

u =

(
A
5

) 1
7
(R5 − r5)

1
7 .

After substituting the “A” parameter into that expression, according to (38), we have:

u =

(
1

80χ4
n

) 1
7 1

ν
1
7

∣∣∣∣∣
1
ρ dp

dz

∣∣∣∣∣
4
7

(R5 − r5)
1
7 , (39)

which is equivalent to the formula (37).
All power-law rheological relations, including V. V. Novozhilov’s theory [19], lead to

the derivative of the velocity on the wall being an infinitely large value:

du
dy
|y=0 = ∞,

but at the same time du7

dy |y=0 = AR4 , i.e., this value is finite, which provides a finite value
of the velocity u on the wall. The non-dimensional velocity profile in the pipe according to
the expression below:

u
umax

=
V

Vmax
= (1− (1− η)5)

1
7 , (40)

is presented in Figure 1, where the dots specify the experimental data observed by L.S.
Artjushkov [11] for the Reynolds number Re = 3.24 · 106.

Figure 1. Non-dimensional velocity profile of a turbulent flow in comparison with laminar Poiseuille
profile (dash line) and experimental results by L.S. Artjushkov [11] (shown as dots).
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There is no dependency on the Reynolds number for this profile, as well as for the
laminar profile as the Blasius laws for the resistance coefficient and the corresponding
velocity profile are suitable for a limited range of Reynolds numbers (104 < Re < 106).

5. Flows at Other Values of the n Power

Power-law rheological relation (5) can be used to describe flows of weakly concentrated
aqueous solutions of polymers demonstrating the Toms effect [20]. This effect is connected
with the deviation of the resistance curve from the Prandtl–Nikuradze resistance law with
access to a section equidistant to the resistance curve λ = 64

Re for the laminar flow regime.
The range of Reynolds numbers where the Toms effect occurred depends on the type of
polymer, its concentration, and the diameter of the pipe. Numerical values for this range,
depending on these factors, are contained in the article [16]. For the Virk limit curve [21], at
which the resistance curves of various polymer concentrations depart after deviating from
the turbulent resistance law for smooth pipes, we shall assume n = 2 and χn = 0.032146,
which provides:

τ = ρχn

(
ν

du3

dy

) 1
2

. (41)

Hence, the velocity profile in non-dimensional form, according to (22) is as follows:

V =

(
Re∗
3χ3

) 1
3
(1− (1− η)3)

1
3 . (42)

Then, it is possible to determine expressions for Vav, Re, Re∗ and the resistance law
can be obtained in the form below:

λ =
0.87

Re
1
2

. (43)

This law is limited to flows of weakly concentrated aqueous solutions of polymers
demonstrating the Toms effect [22], and the corresponding resistance curve is called the Virk
limit curve. Note that in the article [21], this curve is described by the λ = 2.36

Re0.58 equation,
with which the relation (43) practically coincides in the range of Reynolds numbers, where
the Toms effect proves itself.

For a flow in rough pipes, one can take n = 1000, which gives an almost “horizontal
line” in coordinates “logarithm of Reynolds number – logarithm of resistance coefficient”,
i.e., “log10Re− log10(100λ)”. The power relation (5) when n = 1000 provides for shear
stress the expression below:

τ = ρχn

(
ν

du1999

dy

) 1
1000

.

Here, for the best agreement with experimental data, one should use χn = 0.02
m1/3 , where

m = R
k is the roughness parameter, k is the bumps of roughness height. Hence, the velocity

profile in non-dimensional coordinates, according to the expression (22), is:

V =

(
Re∗

1001χ1000

) 1
1999

(1− (1− η)1001)
1

1999 ≈ 1√
χn

(1− (1− η)1001)
1

1999 .

The average value of the non-dimensional velocity:

Vav =
2√

χn Y(1000)
=

2√
χn
· 0.5 =

1√
χn

.

For the roughness parameter values m = 15; 60; 507, Vav = 11.6; 14.4; 20.2 could be
computed, which is in good agreement with the experimental data [23]. The relation
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between Reynolds numbers for average and friction velocities for flow in rough pipes is as
follows:

Re = 2Re∗Vav =
2Re∗√

χn
, Re∗ =

√
χn

2
Re.

According to expression (28), the resistance coefficient is:

λ =
8χn

Re0.001 ,

or approximately λ ∼= 0.16
m1/3 , which is in satisfactory agreement with experimental data for

flow in rough pipes [1,23].
The power-law rheological relation (5) for other values of the power n can be used to

describe the behavior of non-Newtonian fluids by calculating the χn based on the results of
experiments.

6. Turbulent Flow in a Flat Channel

Let us consider the solution to the problem of turbulent fluid flow in a flat channel
(slot) bounded by two parallel planes, with a distance between them of 2 h. Transversal co-
ordinate y will be measured from the lower wall 0 ≤ y ≤ 2 h . For n = 4 and χn = 0.019746
the equation of motion (15) has the form:

− dp
dx

+ ρχnν
1
4

d
dy

(∣∣∣∣du7

dy

∣∣∣∣)
1
4

= 0. (44)

As the derivative of the velocity changes sign on the channel axis for such flow, then
the velocity modulus will be equal to du

dy when 0 ≤ y ≤ h and − du
dy when h ≤ y ≤ 2 h.

For the lower flow zone, the equation of motion has the form below:

− dp
dx

+ ρχnν
1
4

d
dy

(
du7

dy

) 1
4

= 0. (45)

The first integration gives the next expression:

(
du7

dy

) 1
4

=
1

ρχnν
1
4

dp
dx

y + C1.

From the condition of symmetry of the flow relative to the channel axis, the below
condition is satisfied:

y = h,
du7

dy
= 0,

then C1 = − 1
ρχnν0.25

dp
dx h, and as a result we have:

du7

dy
= −

(
dp
dx

)4 1

ρχnν
1
4
(h− y)4.

The second integration leads to the next expression:

u7 = −
(
−dp

dx

)4 1

(ρχn)
4ν

1
5
(h− y)5 + C2.

The no-slip condition provides u = 0 for y = 0, therefore the arbitrary constant C2 is:

C2 =

(
−dp

dx

)4 h5

5(ρχn)
4ν

.

Hence:
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u7 =

[(
1

ρχn
∗ dp

dx

)4 1
5ν

][
h5 − (h− y)5

]
,

and the velocity profile is determined by the expression:

u =

[(
1

ρχn

dp
dx

)4 1
5ν

] 1
7 [

h5 − (h− y)5
] 1

7 . (46)

For the upper zone, when h ≤ y ≤ 2 h, i.e., 1 ≤ η ≤ 2, the motion Equation (12),
taking into account that the modulus of the derivative will be equal to − du

dy , leads to the
velocity profile in the following form:

u =

[(
1

ρχn

dp
dx

)4 1
5ν

] 1
7 [

h5 − (y− h)5
] 1

7 ,

which is symmetrical to the lower profile relative to the channel axis. If the non-dimensional
quantities are introduced, as non-dimensional coordinate η and non-dimensional velocity

V, in terms of the friction velocity V∗ =
√
|τw |

ρ =

√
1
p

(
− dp

dx

)
h, i.e.,

η =
y
h

, 0 ≤ η ≤ 2, V =
u

V∗
,

and also Re∗ = hV∗
ν , which is the friction velocity Reynolds number, then the expression for

the non-dimensional velocity profile can be obtained for 0 ≤ η ≤ 1:

V =

(
Re∗

5χn4

) 1
7 [

1− (1− η)5,
] 1

7 , (47)

coinciding with the expression for the velocity profile in a circular pipe. The velocity profile
for 1 ≤ η ≤ 2 is as follows:

V =

(
Re∗

5χn4

) 1
7 [

1− (η − 1)5
] 1

7 .

The average value of the velocity over the channel cross section is determined by the
expression:

Vav = 2
1∫

0

V(η)ηdη,

which, after substituting the profile (47) into it, provides:

Vav = 2
(

Re∗
5χn4

) 1
7
Y, (48)

where Y is:

Y =

1∫
0

[
1− (1− η)5

] 1
7
ηdη.

It is expressed in terms of hypergeometric functions and equals Y = 0.495849.
The resistance coefficient is determined by the formula:

λ =
8|τw|
ρu2

av
=

8
V2

av
,
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where the value Re∗ can be expressed in terms of the Reynolds number Re = 2hVav
ν :

Re = 2Re∗Vav =
4Y

(5χn4)
1
7

Re
8
7 , Re∗ =

(
5

1
7 χn

4
7

4Y

)
Re

7
8 .

Since n = 4 and χn = 0.019746 for this turbulent flow, then considering the Y = 0.495849
there are:

Re∗ = 0.0943795Re
7
8 , Vav = 5.297762Re

1
8 .

Then, finally, for a turbulent flow in a flat channel, the resistance coefficient will be as
follows:

λ =
0.285

Re
1
4

, (49)

which is in good agreement with experimental data [8,19]. Let us note that the expression
(49) can also be obtained from the formula (28).

7. Plane Couette Flow

For the unpressurized plane Couette flow, when the lower plate is stationary and the
upper one moves parallel to it with the V0 velocity, the motion Equation (15) for a given
flow leads to the following common differential equation:

ρχn

(
ν

du7

dy

) 1
4

= C,

where the constant of integration C is the shear stress. After introducing non-dimensional
parameters:

η =
y
h

; 0 ≤ η ≤ 1, V =
u
V0

, Re =
V0h

v
,

where h is the distance between the plates, this equation takes the form below:

dV7

dη
=

(
C

ρV2
0 χn

)4

Re. (50)

The boundary conditions will be:

η = 0 : V = 0; η = 1 : V = 1.

For the Couette flow, when the lower wall is stationary and the upper one moves with
the velocity V the velocity profile has an inflection point at which the second derivative
changes sign. Therefore, it is convenient to divide the flow region into two zones: close
to the lower wall (with velocity Vlower) and near the upper wall (with velocity Vupper), and
the obtained solutions for these zones must be joined. At the joint point for the velocity
profiles near the lower and upper walls, the conditions of equality of the velocities and
their first derivatives are satisfied:

η = ηw, Vlower = Vupper,
dV
dη

∣∣∣∣
lower

=
dV
dη

∣∣∣∣
upper

. (51)

Equation (50) describes the flow near the stationary lower wall, the boundary condition
for which will be the no-slip condition:

η = 0, V = 0. (52)

For brevity, the right-hand side of Equation (50) is denoted as a:
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a =

(
C

ρV2
0 χn

)4

Re. (53)

Then Equation (50) can be written as:

dV7

dη
= a. (54)

The parameter a is still unknown and should be found in the process of solving the
problem. Integration of this equation considering the boundary condition (52) gives an
expression for the velocity profile near the lower wall:

V = (aη)
1
7 . (55)

Since the proposed generalization of Newton’s formula is not invariant under the
Galilean transformation, the velocity profile near the upper wall can be found by assuming
it to be stationary, and the lower one moving relative to it with the same velocity, but in
the opposite direction. The transversal coordinate s will now be measured from the upper
wall towards the lower one. Then, for the non-dimensional fluid velocity w relative to the
upper plate, an equation similar to (55) can be written, taking into account the lower plate
moving in the opposite direction:

w = −(as)
1
7 . (56)

In terms of V and η, when the origin is related to the lower wall, taking into account
that

s = 1− η, w = V − 1, (57)

the expression (56) takes the following form:

V − 1 = −(a(1− η))
1
7 .

From which the fluid velocity near the upper wall is:

V = 1− (a(1− η))
1
7 . (58)

Solutions for the upper and lower walls velocities are to be joined. At the joint point
ηc there is the equality of velocities (55) and (58) and their derivatives:

(aηc)
1
7 = 1− (a(1− ηc))

1
7 , (59)

a
1
7

ηc
6
7
=

a
1
7

((1− ηc)
6
7

. (60)

From relation (60), the coordinate of the joint point is ηc = 0.5, which was expected
because of the problem symmetry. From Equation (59), a = 1/26 is obtained.

The velocity profile will have an inflection point η = 0.5, at which the second derivative
changes its sign.

Thus, the velocity profile for the considered Couette flow has the form:

V =

{
(aη)

1
7 , i f 0 ≤ η ≤ 0.5

1− [a(1− η)]
1
7 , i f 0.5 ≤ η ≤ 1,

(61)

or, considering that a = 1/26, the velocity profile can be expressed as:
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V =

{
0.552 η

1
7 , i f 0 ≤ η ≤ 0.5

1− 0.552 η
1
7 , i f 0.5 ≤ η ≤ 1.

(62)

It coincides with that given in the monograph [6] and is in good agreement with the
experimental data from this monograph. The shear stress C according to the notation (53)
can be expressed in terms of the Reynolds number, after which the resistance coefficient
takes the form:

λ =
2C

ρV2
0
=

2χna
1
4

Re
1
4

=
0.014

Re
1
4

, (63)

which is in the satisfactory agreement with the experimental data by [6].
Thus, the proposed set of equations of turbulent fluid motion can be useful for at least

obtaining the preliminary and estimated characteristics of turbulent flow before starting
numerical simulations using differential turbulence models. The proposed rheological ratio
for some power values can also be used to describe the behavior of power-law fluids, as
well as fluids with small additives of polymers when the Toms effect is observed.

8. Conclusions

Thus, depending on the power value in the proposed rheological ratio, one can come
either to a description of a laminar flow regime (in the form of the Navier–Stokes equation),
or to a description of a flow in a turbulent regime. In the latter case, there is a system
of differential equations with the no-slip boundary condition, which significantly differs
from that for the laminar flow regime, but which also allows the finding of the analytical
solutions for simple shear flows and obtain the Blasius resistance law for a flow in a pipe.
Therefore, the considered approach to a solution to turbulent flows problems compares
favorably with modern differential turbulence models. The solutions obtained for the
problems of turbulent fluid flows in terms of the velocity profiles and resistance coefficients
are in satisfactory agreement with experimental data. However, this agreement is slightly
worse than when differential turbulence models are used, which is connected with more
accurate results due to many empirical constants in such models, often selected for solving
a specific problem. It also necessary to note that the proposed generalization of Newton’s
formula, as all other power rheological relations, is not invariant with respect to the Galilean
transformation, and therefore the area of possible applications of this generalization is
limited to cases of flow over stationary walls. Thus, the proposed set of equations of
turbulent fluid motion can be useful at least for obtaining the preliminary and estimated
parameters of turbulent flow over stationary walls before numerical simulations using
differential turbulence models. The proposed rheological ratio for some power values can
also be used to describe the behavior of power-law fluids, as well as fluids with small
additives of polymers where the Toms effect is observed.
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