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Abstract: Purpose: We aim to investigate the use of covalent organic framework (COF) nanoparticles
in the local treatment of glaucoma, both as a means of protecting retinal ganglion cells (RGCs), and
as a carrier for delayed release of the medication rapamycin following a single intravitreal injection.
Methods: a water-dispersible COF, and a COF-based nanoplatform for rapamycin release (COF-Rapa)
was constructed. C57BL/6J mice were randomly divided into four groups: intravitreal injection of
1.5 µL normal saline (NS), COF (0.67 ng/µL), rapamycin (300 µM) or COF-Rapa (0.67 ng/µL-300 µM),
respectively. The ischemia–reperfusion (I/R) model was established to mimic high intraocular
pressure (IOP)-induced retinal injury in glaucoma. Labeling of RGCs by Fluoro-Gold and retinal
electroretinogram were used to evaluate retinal function. Immunohistochemistry and Western
blotting analyses of retinas were performed. Results: COF nanoparticles were delivered in vitro
and in vivo. Six weeks after the COF injection, the number of RGCs was unaffected. In addition,
the number of RBPMS-positive RGCs, GFAP-positive astrocytes and Iba1-positive microglia did not
differ from the normal control. COF could effectively reduce RGCs death, improve phototransduction
function and alleviate the overactivation of microglia compared to NS control after retinal I/R injury.
Within six weeks, the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in
the retinas could be inhibited by a single intravitreal injection of COF-Rapa. Compared with single
COF administration, COF-Rapa significantly reduced the inflammatory reaction after retinal I/R
injury. Conclusions: COF may act as both an RGC protection agent and a carrier for prolonged
rapamycin release. This research may lead to the development of novel RGC protection agents and
drug delivery techniques, as well as the creation of multifunctional COF-based biomaterials for
glaucoma retinopathy.

Keywords: covalent organic framework; rapamycin; retinal ischemia–reperfusion; glaucoma

1. Introduction

It is estimated that glaucoma will affect 111.8 million people by 2040 [1]. As a complex
neurodegenerative disease, glaucoma is a worldwide leading cause of irreversible vision
loss [2]. Previous studies have shown that the progressive loss of retinal ganglion cells
(RGCs), and thinning of the retinal nerve fiber layer can lead to visual field loss [1,2]. In
acute glaucoma, intraocular pressure (IOP) increases rapidly in a short time, in contrast
to the slow progression of the disease in other types, leading to retinal ischemia and
progressive RGC death [2], the exact mechanism is complicated and needs further research.
Nowadays, researchers are trying to find suitable targets and drugs or carriers to prevent
or attenuate the loss of RGCs in the pathological glaucoma.
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As an emerging class of porous crystalline materials, covalent organic frameworks
(COFs) have gained considerable interest due to their extensive applications in smart sens-
ing, catalysis, energy, and separation science [3–5]. Recent studies have revealed that COFs
can serve as drug-delivery carriers with high loading capacity and efficient drug-release
behavior [6–8]. Zhang et al. have synthesized a water-dispersible polymer-COF nanocom-
posite (denoted as PEG-CCM@APTES-COF-1) via the self-assembly of polyethylene-glycol-
modified monofunctional curcumin derivatives (PEG-CCM) and amine-functionalized
COF-1 (PEG-CCM@APTES-COF-1, abbreviated as COF) [8]. This water-dispersible polymer-
COF nanocomposite has been a smart drug delivery carrier with remarkable anticancer
therapeutic efficiency [8]. However, the effect and application of COF in eyes has not
been studied.

Rapamycin forms a gain-of-function complex with the 12 kDa FK506-binding protein,
which binds and acts explicitly as an allosteric inhibitor of mammalian target of rapamycin
complex 1 (mTORC1) [9,10]. Several studies have demonstrated the good protective effect
of rapamycin for glaucoma. Su et al. demonstrated that rapamycin was neuroprotective
in a rat model of chronic hypertensive glaucoma by inhibiting the release of neurotoxic
mediators and/or directly suppressing RGCs apoptosis [11]. Using a mouse model of
retinal ischemia, Rossella et al. demonstrated that rapamycin could induce autophagy
in the insulted retina to promote RGC survival [12]. Harder et al. found that mTORC1
activation occurs early in glaucoma using DBA2J mice with spontaneous glaucoma, and
rapamycin treatment protected them from glaucoma associated with decreased energy
consumption [13]. However, all the researchers administered rapamycin daily intraperi-
toneally (i.p.) or via drinking water at a dose of 2–10 mg/kg/d, lasting from one week to
six months. Long-term and high-dose systemic medication raises concerns about unknown
effects of rapamycin application on other organs. The intravitreal injection is a promising
route of administration of circumventing these obstacles, as it has an excellent local and sys-
tematic safety profile. However, a single intravitreal injection of rapamycin is effective only
within a short period, as shown by our following experiments, while repeated injection can
increase the risk of endophthalmitis, retinal detachment, and traumatic cataract, etc. [14,15].
Thus, finding a carrier that can hold and release rapamycin gradually is therefore crucial to
rapamycin’s effectiveness and safety in the treatment of glaucoma retinopathy.

In this study, we described a sustained release system for rapamycin based on
PEG-CCM@APTES-COF-1, which was an excellent approach to protecting RGCs in a
mouse model of acute glaucoma. To the best of our knowledge, this study is the first
to introduce the burgeoning field of polymer-COF assembly in the local management of
glaucoma retinopathy.

2. Materials and Methods
2.1. Synthesis and Self-Assembly of APTES-COF-1@Rapamycin/Null and PEG-CCM

Based on the steps and methods described before [8], we develop a facile synthesis of a
polymer-COF nanocomposite via the self-assembly of polyethylene-glycol-modified mono-
functional curcumin derivatives (PEG-CCM) and amine-functionalized COF-1 (APTES-
COF-1). The entire structure of nanocomposites can be regarded as a micelle with APTES-
COF-1 as the oil phase and PEG-CCM as the surfactant. APTES-COF-1 was synthesized,
and APTES-COF-1@Rapamycin/Null and PEG-CCM were assembled (abbreviated as COF-
Rapa and COF separately, encapsulated with rapamycin or not). Inside the cell, PEG-CCM
is unplugged, and rapamycin is released by COF-Rapa. COF-Rapa were dissolved in NS,
and finally, 0.67 µg/µL COF nanoparticles could carry 300 µM rapamycin.
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2.2. Transmission Electron Microscopy (TEM)

TEM samples were prepared as previously described by air-drying a drop of the
nanocarriers solution on the surface of an ultrathin carbon film supported on copper
grids [8]. TEM images were acquired on a JEM-2100 electron microscope (JEOL, Tokyo,
Japan) at an accelerating 100–120 kV voltage.

2.3. Cell Culture and Cell Viability

BV2, Neuro-2a (N2A) cell lines were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM; Gibco, USA) containing 10% (v/v) fetal bovine serum (FBS) (Gibco, Waltham,
MA, USA) and 100U penicillin/100 g streptomycin (Sigma-Aldrich, St. Louis, MO, USA).
Procell Life Science & Technology Co., Ltd. provided BV2 (Procell CL-0493). Shanghai
Zhongqiaoxinzhou Biotech supplied N2A (ZQ0207). The cells were grown at 37 ◦C in a
humidified 5% CO2 atmosphere. Cell viability was assessed by the Cell Counting Kit-8
assay (CCK-8, Dojindo, Japan). Cells were seeded in a 96-well plate with 8000 cells/well,
and treated with varying concentrations of COF (0–1.34 µg/mL) for 6 or 24 h. Then,
10 µL CCK-8 solution was well added to each and incubated, at 37 ◦C, for 1.5 h. An iMark
microplate reader (Victor3 1420 Multilabel Counter, Perkin Elmer, Waltham, MA, USA) was
used to measure the absorbance at a wavelength of 450 nm.

BV2 cells were divided into three groups to test whether COF or rapamycin could
inhibit microglial activation. After pre-treatment with COF (0.67 µg/mL) or rapamycin
(300 nM) (1 × PBS and 1.8 × 10−4 % DMSO as control separately) for 2 h, LPS (1 µg/mL;
Sigma-Aldrich, USA) and IFN-γ (100 ng/mL; Beyotime, Shanghai, China) were added for
18 h. Real-time quantitative PCR was used to test transcripts of pro-inflammatory factors.

2.4. Animals

Adult male C57BL/6J mice (6 weeks old, weighing 20 ± 2 g) were purchased from
the model animal research center of Tongji Hospital. Mice were raised in a 12-h light/dark
cycle environment, with free access to water at the model animal research center of Tongji
Hospital. Animals were cared for and handled based on the ARVO Statement for the Use of
Animals in Vision and Ophthalmic Research and the Ethics Committee of Tongji Hospital
of Huazhong University of Science and Technology.

2.5. Acute Ocular Hypertension (AOH) Glaucomatous Model

In this model, transient acute elevation of IOP leads to retinal ischemia; thus, it is also
referred to as the ocular ischemia–reperfusion (I/R) model. The retinal I/R model was
established as described [16,17]. In brief, mice were anesthetized using an i.p. injection
of 5% chloral hydrate. The pupils were dilated with 1% tropicamide. The corneas and
conjunctivas were topically anesthetized with 2% lidocaine and cleaned with 0.5% iodophor.
The anterior chamber of the right eye was cannulated with a 30-gauge infusion needle
linked to a normal saline reservoir which was increased to 75 mmHg for 50 min [18,19].
The contralateral left eyes acted as controls. All experiments were performed at least three
separate times.

2.6. Intravitreal Administration

Intravitreal administration was established as described previously [20,21]. In brief,
after anesthesia and pupil dilation, a sclerotomy was created using a 30-gauge needle tip
at 2 mm posterior to the limbus. Then, 1.5 µL of normal saline (NS), COF (0.67 ng/µL),
rapamycin (300 µM) or COF-Rapa (0.67 ng/µL-300 µM) was injected into the vitreous body
by using a 5-µL micro-syringe fitted with a 35-gauge needle (Hamilton, Reno, NV, USA).
Injections were slowly delivered over 10 s with the needle left for 60 s to allow the diffusion
of the solution and equilibration of IOP before removing the needle. Mice were then raised
for 1–6 weeks before I/R injury or tissue collection.
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2.7. RGC Labelling and Quantification

After the mice were anesthetized and their scalps shaved, they were placed in a
stereotactic device (RWD Life Science, Shenzhen, China). The stereotaxic coordinates of the
superior colliculi were set as 1.0 mm lateral and 1.0 mm anterior to lambda, at a depth of
1.6 mm. Fluoro-Gold (FG) (1 µL per injection of 4% (w/v) (Fluorochrome, LLC, Denver, CO,
USA) was injected into both superior colliculi. It took nine days for retrograde transport of
FG before retina collection to ensure proper RGC labelling [22]. After retinal flat mounts
were prepared, FG-positive RGCs were identified using a fluorescent microscope (Olympus,
BX51Olympus Co. LTD, Tokyo, Japan). Three continuous images of the optic nerve edge
were collected using 40× objective lenses in two random quadrants. Surviving RGCs (gold
dots) were counted. At least six retinas from different animals were used for each group.

2.8. Electroretinogram (ERG)

After pre-treatment with NS or COF by vitreous injection, changes in retinal function
were assessed with scotopic ERGs one and four weeks after I/R injury. The mice were
anesthetized under red light after 24 h of dark adaptation. The pupils were dilated with
1% tropicamide. Reference electrodes were connected to the corneas. Scotopic ERGs were
recorded using a Diagnosys Celeris device (Diagnosys LLC 175 Cabot St., Beverly, MA,
USA). Scotopic responses were elicited with eight flash intensities 10 cd × s/m2. The peak
voltage of the a-waves (first negative ERG component) and b-waves (first positive ERG
component) were automatically recorded.

2.9. Immunofluorescence and Immunohistochemistry

Mice were sacrificed, and eyes were fixed in 4% paraformaldehyde at the designated
time points. Sections (5 µm) through the optic disk of the eye were treated with 10% donkey
serum albumin for 60 min at room temperature and incubated, at 4 ◦C, overnight with
combinations of primary antibodies (Table 1). For immunofluorescence, the sections were
incubated with Dapi and species-specific fluorescently labelled immunoglobulin G sec-
ondary antibodies (donkey anti-rabbit Alexa Fluor 594, Thermo, Waltham, MA, USA, 1:400)
in PBS at room temperature for 2 h. Then, the sections were examined using a fluorescent
microscope (Bx51, Olympus Co., Tokyo, Japan). In the case of immunohistochemistry, the
sections were incubated with 3,3′-diaminobenzidine and observed with a light microscope
(Bx53, Olympus Co., Japan).

Table 1. Primary antibodies used in this study.

Antigen Species Supplier Catalog
Number

Dilution
(WB)

Dilution
(IF/IHC)

Bcl2 Rabbit Proteintech 26593-1-AP 1:1000 -
BAX Rabbit Proteintech 50599-2-Ig 1:1000 -
pS6 Rabbit CST 5364 1:1000 1:500

RBPMS Rabbit Abcam ab194213 - 1:800
caspase3 Rabbit CST 9662 1:1000 -

Iba1 Rabbit Abcam Ab178846 - 1:800
TLR2 Rabbit Abcam Ab209217 1:1000 -
TLR4 Rabbit Sevicebio GB11519 1:1000 -

NLRP3 Rabbit Boster BM4490 1:200 -
GAPDH Mouse Proteintech 600004-1-Ig 1:10,000 -

Bcl2: B-cell lymphoma-2; pS6: Phospho-S6 ribosomal protein; TLR2/4: Toll-like receptor 2/4; Iba1: Ionized calcium
binding adapter molecule 1; RBPMS: RNA Binding Protein; TLR4: Toll-like receptor 4; NLRP3, Nucleotide-binding
oligomerization domain-like receptor family caspase-activation and recruitment domain containing 3; GAPDH:
Glyceraldehyde-3-phosphate dehydrogenase.



Polymers 2022, 14, 3265 5 of 15

2.10. Real-Time Quantitative PCR (qPCR)

The primers (5′-3′) for the target mRNAs were as follows: Interleukin-1β (IL-1β):
forward TGCCACCTTTTGACAGTGATG, reverse CCCAGGTCAAAGGTTTGGAA; in-
ducible nitric oxide synthase (iNOS): forward GCTTGTCTCTGGGTCCTCTG, reverse
CTCACTGGGACAGCACAGAA; tumor necrosis factor-α (TNF-α): forward ACGGCATG-
GATCTCAAAGAC, reverse AGATAGCAAATCGGCTGACG; β-actin: forward ATCTTC-
CGCCTTAATACT, reverse GCCTTCATACATCAAGTT. Total RNA of BV2 cells and retinas
(48 h after I/R injury) were extracted with Trizol reagent (Takara Biomedical Technology,
Beijing, China). The cDNAs were synthesized using PrimeScript RT Master Mix (TaKaRa).
Quantitative analysis was performed by real-time qPCR using SYBR Advantage qPCR
Premix Master Mix (TaKaRa) based on the standard protocol (Roche, Basel, Switzerland.).
The amount of mRNA in the samples was measured, and the comparative Ct method was
used to calculate the fold change in gene expression.

2.11. Western Blotting

Total protein was isolated from retinal samples by RIPA lysis solution (Beyotime,
China) at the designated time points after I/R injury. Samples were separated with
12% polyacrylamide gels and transferred to polyvinylidene difluoride (PVDF) membranes.
PVDF membranes were then blocked with 5% skimmed milk for 2 h, at room tempera-
ture, and incubated overnight, at 4 ◦C, with primary antibodies (Table 1) diluted in fetal
bovine serum blocking solution. Subsequently, the PVDF membranes were incubated with
species-specific horseradish peroxidase-conjugated secondary antibodies for one hour, at
room temperature. Chemiluminescence substrate kits (ECL Plus; PerkinElmer Inc., Covina,
CA, USA) were used to visualize protein expression levels. Target proteins were quantified
and normalized to GAPDH using the Image-Pro Plus software 6.0 (version 6.0, Media
Cybernetics). Relative changes in target proteins were calculated compared with the control
and expressed as the “x fold change”.

2.12. Statistical Analysis

Data were presented as mean± standard deviation (SD). One-way analysis of variance
(ANOVA), the multiple comparisons test of with Dunnett and paired/unpaired t-tests (two-
tailed) were performed using GraphPad Prism (version 8.0, GraphPad Software). p values
less than 0.05 were considered statistically significant.

3. Results
3.1. Synthesis and Characterization of COF Nanoparticles

COF-based nanoparticles were prepared in the same manner as previously described
steps and methods in Figure 1A, similar to previous study [8]. The entire structure of
nanocomposites can be thought of as a micelle with APTES-COF-1 acting as the oil phase
and PEG-CCM acting as the surfactant. The nanoparticles dissolve in water and form a
yellow suspension (Figure 1B). With a fluorescence microscope, the suspension showed
fluorescence spots under the green channel excited at 488 nm and collected between 510 and
550 nm (Figure 1C). Transmission electron microscopy of the COF nanoparticles represented
showed a scattered structure, with width ranging from 120 to150 nM (Figure 1D), similar to
the previously described structures [8]. In addition, as previously stated, the nanoparticles
were extremely stable in water and phosphate-buffered saline buffer (pH7.4) [8].
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Figure 1. Schematic representation of COF and its characteristics. (A): Schematic structures and
synthesis of PEG-CCM@APTES-COF-1 (abbreviated as COF). (B): Digital photographs of dispersions
of COF; (C): Representative green channel image recorded for COF dispersion; (D): Transmission
electron microscope of COF nanoparticles.

3.2. The Safety and Effect of COF Delivered In Vitro and In Vivo

We used CCK8 to test the effect of COF on BV2 and N2A to identify the influence
of COF on cell viability, representing microglia cells and neuron cells in a mouse retina,
respectively. Figure 2A shows that the cell viability of BV2/N2A cells treated with COF for
6 or 24 h exhibit no significant differences compared with control groups. COF was found
to have anti-inflammatory properties by downregulating IL-1β, TNF-α and iNOS in BV2
cells using quantitative PCR. (Figure 2B) In in vivo experiments, the retinas were collected
at one to six weeks after injection of COF into the vitreous cavity. Western blotting of
retinas showed that the ratio of BCL2/BAX (a maker for anti/pro-apoptosis) [23] increased
significantly at one week after COF injection. (Figure 2C) The number of RBPMS-positive
RGCs (within 1 mm from the optic nerve) was not infected at three weeks and six weeks
after COF injection, as confirmed by one-way ANOVA (n = 4, p < 0.05). (Figure 2D)
Furthermore, anti-GFAP (maker for astrocytes) and anti-Iba1 (maker for microglia) showed
no discernible differences 1–6 weeks after COF injection. (Figure 2E) The findings indicate
that COF may be a safe drug or carrier in vitro and in vivo.

3.3. COF Could Efficiently Attenuate RGC Death, Increase Phototransduction Function and
Alleviate the Overactivation of Microglia after Retinal I/R Injury

We aimed to investigate whether COF could protect RGCs from retinal I/R injury.
Mice were randomly divided into two groups, whose both eyes were injected with 1.5 µL
NS and COF, respectively. One week later, FG was injected into both superior colliculi of the
mice. After three days, the right eyes of the mice were subjected to I/R injury, while the left
eyes served as controls. Then, the eyes were collected and fixed in 4% paraformaldehyde
(Figure 3A). Retinal flat mounts of FG-positive RGCs revealed that the survival rate of
RGCs in the acute ocular hypertension group was significantly lower than in the left control
group (0.999 ± 0.074 vs. 0.494 ± 0.112, n = 6, p < 0.01, Figure 3B,C). COF application
may improve the RGC survival rate after I/R injury when compared to the NS control
(0.698 ± 0.060, n = 9, p < 0.01; 0.777 ± 0.089, n = 12, p < 0.01).
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RBPMS-positive RGCs in retinas three and six weeks after single intravitreal injection COF. (n = 4). 
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images of anti-GFAP and anti-Iba1 in retinas one to six weeks after single intravitreal injection COF. 
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Figure 2. The effect of COF delivered in vitro and in vivo. (A): The viabilities of N2A and BV2
cells, co-cultured with COF (0–1.34 µg/mL) for 6 and 24 h, were measured by CCK-8 assay kit
(n = 6). (B): Quantitative PCR of IL-1β, TNF-α and iNOS in BV2 cells, pretreated with normal saline
or COF (0.67 µg/mL), following stimulated by LPS (1 µg/mL) and IFN-γ (100 ng/mL) for 18 h
(n = 3). (C): Western blotting and statistical graph of BCL2/BAX of retinas after intravitreal injection
normal saline and COF. (D): Representative immunohistochemical images and statistical graphs of
the number of RBPMS-positive RGCs in retinas three and six weeks after single intravitreal injection
COF. (n = 4). Scale bar = 50 um. * indicates p < 0.05, ** indicates p < 0.01. (E): Representative
immunohistochemical images of anti-GFAP and anti-Iba1 in retinas one to six weeks after single
intravitreal injection COF. (n = 4).

To investigate the alternations in the retina after I/R injury and explore the mechanism
of neuroprotective effect of COF nanoparticles, we performed RNA-seq analysis of retinas
from control mice and I/R mice with or without COF treatments (Supported by Novogene
Co., Ltd., Beijing, China). We analyzed differentially expressed genes, and found GO and
KEGG enrichment. As is shown in Figure 3D, the top 20 GO terms were visualized in the
bubble diagram, and the most enriched pathways were related to neuromuscular processes,
axonogenesis and cell morphogenesis, among other things. The top 20 KEGG pathways
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enriched are visualized in Figure 3E. It suggests that COF may play a significant role in
energy metabolism, apoptosis (p53 and HIF1-α signaling) and phototransduction.
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Figure 3. COF could efficiently attenuate acute elevated-IOP-induced RGC death. (A): Schematic
representation of treatments before retina patching. (B): Representative continuous images (40×)
of Fluoro-Gold labelled RGCs in entire mount retinas. (C): Quantitative analysis showed that the
number of surviving RGCs increased significantly in COF injected ischemic eyes compared to NS
control (n = 6–12). (D,E): GO ad KEGG pathway enrichment analysis in ischemic retinas 5 days after
reperfusion between COF group and NS control. ** indicates p < 0.01.

We assessed the phototransduction function using the scotopic flash ERG, a massed
rod photoreceptor response and rod-driven post-receptor neural retinal function [8]. The
main components of the dark-adapted ERG are the cornea negative a-wave generated by
the rod photoreceptors and the cornea-positive b-wave generated by the post-receptor
activity [24]. The right eye underwent the acute glaucoma model, and the left ones served
as non-I/R control after pre-treatment of vitreous injection of 1.5 µL NS or COF in both eyes
for one week. Scotopic ERGs were examined one week (Figure 4A,B) after the I/R injury,
and reductions in a wave and b wave were calculated between I/R and their controls.
It shows that a-wave and b-wave responses are diminished in all groups in I/R eyes
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compared to none-I/R ones. The wave reductions were significantly smaller in the COF
group, compared with the NS group at one week (Figure 4B). 

2 

 Figure 4. COF could efficiently increase phototransduction function and attenuate microglia acti-
vation after I/R injury. (A): Representative traces by scotopic flash ERG one week after ocular I/R
or without. The eyes of mice received an intravitreal injection of 1.5 ul NS or COF one week before
the I/R model. Then, the right eye underwent the ocular I/R injury, and the left served as control.
(B): The reduction in a/b-wave voltage = a/b-wave of control minus a/b-wave of I/R eye. (n = 5).
(C,D): Representative immunofluorescence image and quantitative analysis of Iba1+ microglia in
control, ischemic retinas and retinas with COF pre-treated 72 h after reperfusion. (n = 3–5). * indicates
p < 0.05. ** indicates p < 0.01.

Increasing evidence suggested that overactivated microglia may play pivotal roles in
triggering neurotoxicity in the retina by producing pro-inflammatory factors [16,25,26]. We
wanted to determine whether COF could play a role in inhibiting microglia overactivation
in vivo. The representative retinal immunofluorescence image demonstrated an apparent
decrease in iba1-labelled activated microglia following COF pre-treatment (Figure 4C,D).
These findings demonstrated that COF may efficiently minimize the declines of the a-wave
and b-wave in the scotopic responses, downregulate excessively activated microglia, and
ultimately restore the function of RGCs.

3.4. Construction of COF-Rapamycin Nanoparticles: Single Intravitreal Injection,
Long-Lasting Effect

APTES-COF-1 was synthesized, and APTES-COF-1@Rapamycin/Null and PEG-CCM
were assembled (abbreviated as COF-Rapa and COF, respectively, encapsulated with ra-
pamycin or not) (Figure 5A). Inside the cell, PEG-CCM is unplugged, and rapamycin is
released by COF-Rapa due to the pH (acid)-triggered disintegration of COF, for example,
in the case of nanoparticles being endocytosed by cells and shuttled to acidic compart-
ments [8]. Thus, rapamycin was gradually released when the COF-Rapa were injected into
the vitreous cavity.
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Figure 5. Duration of sustained release of rapamycin by COF with single intravitreal injection.
(A): Schematic structures and synthesis of PEG-CCM@APTES-COF-1@Rapamycin (abbreviated as
COF-Rapa). (B,C): Western blotting images of retinas one week after intravitreal injection of NS
(control), COF, COF-Rapa or rapamycin. Phosphorylated S6 ribosomal protein (pS6) was significantly
inhibited in the COF-Rapa group (n = 3). (D,E): Representative Western blotting of retinas at one-to-
six weeks after single intravitreal injection COF-Rapa. The pS6 activity was significantly inhibited for
at least six weeks. (F): Representative immunohistochemical images of retinas at one-to-six weeks
after single intravitreal injection COF-Rapa. The arrowhead points to the pS6-positive cells. GCL,
ganglion cell layer; ICL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer;
ONL, outer nuclear layer. Scale bar = 50 µm. ** indicates p < 0.01.

In the present study, phosphorylated S6 ribosomal protein (pS6), a downstream marker
of mTORC1 pathway activity, was used to detect the effect of released rapamycin [10,27].
We delivered NS (control), COF, COF-Rapa, or rapamycin into mice eyes separately to
test whether they could affect the activity of the mTORC1 pathway for a few days after
the intravitreal injection. One week later, retinas were collected, and the Western blotting
analysis indicated that only COF-Rapa could downregulate pS6 significantly compared
with control (n = 3, p = 0.004) (Figure 5B,C). A single dose of rapamycin could not inhibit
the activity of mTORC1 for even one week (n = 3, p = 0.202) (Figure 5B,C). In addition,
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COF showed a negligible effect on mTORC1 activity compared with normal saline (n = 3,
p = 0.073). (Figure 5B,C)

The retinas were collected one to six weeks after injection to ascertain the duration of
rapamycin releasing from the COF-Rapa system in the vitreous cavity. Western blotting
showed that pS6 was inhibited within six weeks after the COF-Rapa injection by one-way
ANOVA (n = 4, p < 0.05). (Figure 2D,E) Immunohistochemistry also revealed that pS6 was
downregulated at different layers of the mice retinas within six weeks after the intravitreal
injection. (Figure 2F) Therefore, rapamycin from a single injection might not be effective
for very long, while the COF-Rapa system might work for at least six weeks.

3.5. COF-Rapa Could Efficiently Alleviate the Inflammatory Reaction in Retinal I/R Injury

As before, mice were randomly divided into four groups, and both eyes were delivered
with 1.5 µL NS, COF, COF-Rapa (300 µM), or rapamycin (300 µM). After one week, both
eyes experienced I/R injury. Two days later, the mice were killed, and the retinas were used
to extract RNA or proteins. As is shown, transcripts of pro-inflammatory factors, including
IL-1β, TNF-α, and iNOS, were reduced in the eyes after I/R injury with COF-Rapa and
COF injection, compared to NS control ones. (Figure 6A)
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(A): Quantitative PCR of IL-1β, TNF-α and iNOS in control and ischemic retinas 48 h after reperfusion,
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pre-treated with 1.5 µL NS, COF, COF-Rapa or rapamycin. (n = 3). (B): Western blotting of control
and ischemic retinas 72 h after reperfusion, indicating decreased expression of pS6, TLR2/4 and
NLRP3 in COF-Rapa-injected eyes (n = 3). (C): Schematic representation of the effect of COF-
Rapa in attenuating RGCs injury in the mouse model of acute glaucoma. * indicates p < 0.05,
** indicates p < 0.01, ns = not significant.

TLR2/4 was reported to be the upstream genes triggering pyrosis and apoptosis, and
nucleotide-binding oligomerization domain-like receptor family caspase-activation and
recruitment domain containing 3 (NLRP3) is the principal inflammasomes involved in
ocular I/R injury [16,19,28]. The Western blotting showed that TLR2/4 and NLRP3 were
downregulated in COF-Rapa-treated eyes, accompanied by the inhibition of pS6 compared
with other groups (Figure 6B). These results reflect that rapamycin, which was delivered by
COF, inhibited inflammatory reactions by downregulating TLR2/4-NLRP3 pathways and
lowering pro-inflammatory factors, hence preventing the loss of RGCs (Figure 6C).

4. Discussion

In our study, a water-dispersible COF-based nanoplatform was created. The COF
nanoparticles appear to be a good drug itself because they can improve retina function and
reduce microglia overactivity, finally effectively attenuate RGC death following retinal I/R
injury. Additionally, COF might serve as a carrier for medication release to protect RGC in
glaucoma models.

The rapamycin-loaded, COF-based nanoparticles appear to have a number of bene-
fits when used locally to treat glaucoma and other ocular ailments. First, the COF-Rapa
and COF nanoparticles were highly dispersed and stable in water with a pH of 7.4 and
could be stored at room temperature [8]. Second, the release of encapsulated rapamycin
depends on the pH-triggered disintegration of COF in the acidic environment, and this
characteristic determines that it can play a role both in vitro and in vivo [8]. Notably,
COF-Rapa can take effect in two different ways when injected into the vitreous cavity. On
the one hand, the cells endocytosed nanoparticles and could transport them into acidic
compartments. By releasing pro-inflammatory substances, microglia, which have a high
phagocytic function in the retina, play a critical role in causing neurotoxicity [16,25,26].
Thus, we tested the effect of our nanoparticles on inhibiting microglia overactivation fol-
lowing retinal ischemia/reperfusion injury. The findings imply that microglial endocytosis
of nanoparticles may advantageously allow for attenuation of retinal function by lowering
pro-inflammatory factors. On the other hand, disorders or injuries, such as diabetes, I/R
and retinal arterial occlusion, can result in acidosis in the retina [29–31]. Increased H+ in
the tissue may also cause disintegration of COF and rapamycin release, too. So, rapamycin
may possibly directly affect ganglion cells in addition to microglia. Third, our findings in-
dicate that COF-loaded medications can have a long-lasting effect with a single intravitreal
injection in vivo, avoiding the need for a high dose of systemic treatment for eye disease
and lowering the risk of consequences from repeated intravitreal injection.

Last but not least, rapamycin, a potential medicine for RGC protection, can produce a
more noticeable effect when delivered through COF carrier than when it is in pure lipophilic
form. In addition to suppressing overactive microglia, the released rapamycin may directly
affect RGCs and lessen their damage through autophagy and glucose metabolism, as
reported before [12,13]. Rapamycin may also inhibit the degradation of sirtuin1, which is
an NAD+-dependent deacetylase important for stress responses and cell survival [32–34].
Additionally, the MAPK pathway could be affected by mTORC1 activity [35,36] and might
be connected to RGC survival by COF nanoparticles in our glaucoma model.

Our study also has some shortcomings. The IOP induced here is higher than that
measured in most patients with glaucoma, and the anatomy of the mouse optic nerve is
different from that of humans [37,38]. Whether these results apply to glaucoma in human
beings remains unclear. In addition, even though the sustained-release duration of COF-
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Rapa was measured, more specific pharmacodynamics needed to be quantified. More trials
are required to test the safety of COF for different tissues in the eye.

5. Conclusions

A water-dispersible COF-based nanoplatform was constructed for the release of ra-
pamycin. With just one intravitreal injection, it was successful in attenuating RGC death and
preserving retinal function for an extended period of time. This research may lead to the de-
velopment of novel local glaucoma therapies and inspire the fabrication of multifunctional
COF-based biomaterials for ocular disorders.
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IOP Intraocular pressure
I/R Ischemia–reperfusion
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