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Abstract: This investigation has shown the feasibility of modulation in physical properties for
multiple outsole designs with 3-, 4-, and 6-pointed star-shaped patterns and various thicknesses for
5, 7.5, and 10 mm, which were fabricated with a FDM 3D printer using lightweight TPU filament,
where the physical and foot pressure distribution properties were evaluated to confirm the best
quality and comfort outsole. Through varying the structural pattern designs in combination with
optimal 3D-printing parameters, the physical properties of the TPU LW-3, 4, and 6-PS outsoles were
confirmed with enhanced properties along with increased thicknesses. In this study, the morphology
images revealed a lower foaming state, a better-fused interlayer, and fewer microvoids in the TPU
LW-3, 4, and 6-PS outsole, as the thickness developed, indicating enhanced density and rigidity. The
best physical property was confirmed at LW 3-PS-10 with 0.706 specific gravity, 68.3 g weight, 0.232 µs

static coefficient and 0.199 µk dynamic coefficient, 236% NSB abrasion, 127 mm3 DIN abrasion, 30%
ball drop and 28% pendulum resilience, verifying the most high-quality, safe, and durable prototype.
Regarding comfort, the 3-PS-10 also was regarded as comfortable concerning the wearable parts by
virtue of its excellent physical properties, as well as its having the largest pressure area and the lower
pressure force; meanwhile, the 4PS and 6PS also exhibited similar conditions for different thicknesses.
Since not much distinct difference in pressure distribution compared to others was exhibited, it is
suggested to explore optimization solutions to update the comfort of the footwear in future research.

Keywords: 3D-printed outsole; n-pointed star shape; lightweight thermoplastic polyurethane;
durability; pressure distribution

1. Introduction

Research on functional footwear parts using the 3D-printing manufacturing system
is being reported [1–10]. The fused deposition modeling 3D-printing process involves
addictive manufacturing layer by layer to create 3D objects [4]. The development of
emerging 3D-printing technology realizes users’ footwear customization and personality
requirements [5]. Kasovi et al. reported that the physical properties of 3D-printed (3DP)
soles made of TPU material can be tuned by developing variable density and stiffness,
allowing the reaction value to be controlled with regard to the sole design concerning
planar pressure [6]. The selection of sole material and geometry properties influences gait
biomechanics and comfort. The optimized TPU material with adjustable properties could
achieve the flexibility of the original recovery after load deformation [7]; in applications
of the footwear outsole, for absorption, slip resistance, abrasion, and rebound resilience
functionality, this material was recommended as suitable for an outsole adapted for the
FDM 3D-printing method. Lightweight footwear is highly regarded for its ability to pro-
vide comfort to the feet, yet there are conflicts between the requirements for lightweight
characteristics and high energy-absorption capacity. The assumption is that a star-shaped
porous outsole manufactured with a 3D FDM printer utilizing appropriated TPU material
may meet the customization and personal design requirements of users or patients while
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providing high-performance physical properties and comfort. Star-shaped perforation
structures were first claimed as auxetic material, also known as noble mechanical metamate-
rial with the capacity to exhibit activity in both tension and compression. The LW 3-, 4-, and
6-PS structures were mechanical metamaterial structures with unique mechanical features
derived from novel geometric design, a negative Poisson’s ratio, and tunable mechanical
properties. In recent years, many researchers have paid much attention to the cushion effect
and comfort parameters of 3D-printed porous-metastructure soles; studies addressing the
plantar pressure analysis method confirmed ultrahigh stiffness, high damping capability,
and negative Poisson’s ratio characteristics [8,9]. Nike Inc. first outlined three-pointed
star-shaped structures and footwear with soles comprised of polygonal structure patterns
in 2015. A footwear outsole comprised of three-pointed star-shaped apertures designed
with remarkable auxetic characteristics was introduced [10]. However, there have been
no studies addressing the star-shaped porous outsole design, related physical property
evaluations, or applications in orthotic footwear. In addition, there is a lack of research
concerning 3D-printed LW TPU 3-, 4-, and 6-pointed porous outsole prepared with various
3D-printing conditions, also there is a lack of discussion of the 3DP metastructural TPU
orthotic outsole manufacturing process with the 3D FDM printing method, and no research
could be found on the physical properties of the star-shaped porous outsole used in such
operations. All in all, it is vital to investigate a sort of highly effective and appropriate
outsole with high-performance, lightweight, wearability, and durability features for cus-
tomized footwear applications with more acceptability to aid patients and consumers
with pathological foot concerns. Meanwhile, the evaluation results might help footwear
manufacturers to explore high-performance 3D-printed outsole parts in future.

The physical properties, such as density [11,12], static compression [13], static/dynamic
features of friction [14], abrasion [15,16], resilience [17–19], surface force, and plantal pres-
sure [20,21], which mainly derive from the design geometry and material, offer comfort,
safety, and effective gait to the foot. The outsole is the outmost part of the shoe, also
known as the sole, the part directly in contact with the playground or floor surface; it is one
of the basic footwear components and plays a role as a buffer layer of material between
feet and ground, offering cushion and comfort to the feet of the end-user through shock
absorbance [22–24]. Normally, the outsole is made of various materials and tread patterns,
which were decided on depending on the shoe’s purpose. There has been much interest
in polymer because of its ultralight density, resilience, shock absorption, and toughness
properties; it plays a significant role in versatile applications, especially in applications
concerning footwear material, such as thermoplastic polyurethane (TPU), ethylene vinyl
acetate (EVA), thermoplastic amide elastomer (TPAE), tyrene-(ethylene-cobutylene)-styrene
polymers, and rubber material; these have been widely utilized in outsoles for safety rea-
sons [25]. As is known, the lack of friction between the flooring and footwear could cause
danger of slipping and falling, which is associated with a coefficient of friction and wear
abrasion in the outsole. By virtue of the high rate of fall injury that is mostly related
to footwear slip resistance, the development of shoe-safety properties is very important.
Comfort is the most considered factor in footwear function; however, the prediction of
comfort not only relies on the physical property, but the perception of user also needs to be
considered [26].

During previous studies [27–29], several TPU materials with enhanced performance
evaluations were investigated, especially for LW 3-, 4-, and 6-SP mechanical metamaterial
structures [27]. We, our research team, have observed the morphology stretching and
compressive properties of the LW 3-, 4-, and 6-SP structure prototypes for 5 mm, 7.5 mm,
and 10 mm thicknesses, which were fabricated with an FDM printer based on 200 ◦C,
220 ◦C, and 240 ◦C nozzle temperatures and 50% infill density to confirm and compare
the compressive resistance of structures [28,29]. The resulting experiment revealed that
extruding temperature, thickness, and structural design have a clear impact on mechanical
qualities, as the temperature increased, and various physical properties were obtained,
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such as decreased specific gravity, lower compressive deformation rate, and higher com-
pressive strength.

In this study, we carry on this research with the purpose of exploring a type of high-
performance outsole with functionality and comfort suitable for future orthotic footwear
component applications. That is, the physical properties of the LW 3-, 4-, and 6-PS outsoles
with various thicknesses and pattern designs fabricated by 3D FDM using lightweight
TPU were evaluated, and the morphology, compression, surface pressure distribution,
specific gravity, slip, abrasion, and resilience properties of the outsoles were evaluated
and compared.

2. Materials and Methods
2.1. Material

The lightweight (LW) thermoplastic polyurethane (TPU) filament named VarioShore
TPU with various colors used in this experiment for the FDM 3D printer (Cubicon Ltd.,
Seoul, Korea) was purchased from colorfabb corps in the Netherlands, and has a spec-
ification of size 1.75 mm diameter, and a printing temperature range between 190 ◦C
crystallization and 250 ◦C melting temperature

2.2. Preparations of LW 3-, 4-, and 6-Pointed SP Outsole with Various Thicknesses

At first, based on extending the previous studies of the LW 3-pointed star-shaped
(3PS), 4-pointed star-shaped (4PS), and 6-pointed star-shaped (6PS) repeat units, these
were repeatedly and continuously used in combinations to form metastructural systems
as patterns to apply in the outsole with various thicknesses for size 185 mm × 75 mm.
The 3D-modeling processing was sketched with Illustrator software (Adobe, San Jose,
CA, USA), exported as a *. dwg format file, modeled into 5, 7.5, and 10 mm thicknesses
individually by using google sketchup software (Trimble Inc., Sunnyvale, CA, USA), and
saved as an STL file; then, the auxetic n-pointed star pattern was converted to a 3D-printing
G-code file with Cubicreator 3.1.2 software in order to be ready for 3D printing. The final
3D outsole prototypes with various patterns and thicknesses were fabricated with an FDM
Cubicon single plus printer (Cubicon Ltd., Seoul, Korea) by using VarioShore TPU. As
shown in Table 1, the LW 3-, 4-, and 6-PS outsole for 5, 7.5, and 10 mm thicknesses includes
5 mm thickness 3-pointed star shape (3-PS-5), 7.5 mm thickness 3-pointed star shape (3-PS-
7.5), 10 mm thickness 3-pointed star shape (3-PS-10), 5 mm thickness 4-pointed star shape
(4-PS-5), 7.5 mm thickness 4-pointed star shape (4-PS-7.5), 10 mm thickness 4-pointed star
shape (3-PS-10), 5 mm thickness 6-pointed star shape (6-PS-5), 7.5 mm thickness 4-pointed
star shape (6-PS-7.5), and 10 mm thickness 4-pointed star shape (6-PS-10) outsoles.

2.3. 3D FDM Printing Conditions

The LW 3-, 4-, and 6-PS outsoles with various thicknesses were fabricated using the
3DP FDM method with Cubicon single plus printer (Cubicon Ltd., Seoul, Korea) based on
50 ◦C bed temperature and 240 ◦C nozzle temperature, with 60 mm/s printing speed, and
100% infill printing condition.
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Table 1. Morphology image of the LW 3DP 3-, 4-, and 6-PS outsole piece extruded in
various thicknesses.

Model

Thickness (mm)

Code
3PS-50 3PS-75 3PS-100

3-pointed star-shaped
porous outsole
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2.4. Characterization
2.4.1. Morphology

The morphology of LW 3-, 4-, and 6-PS outsoles extruded in various thicknesses were
realized using Thermo Scientific™ Scios™ 2 DualBeam™ model SCIOS2 (Thermo fisher
scientific Inc., Waltham, MA, USA). The surface and cross-side morphology images of the
outsole samples were taken with ×50, ×250, ×5500 magnifications.

2.4.2. Specific Gravity

The specific gravity of LW 3-, 4-, and 6-PS outsoles with various thicknesses was
confirmed with an Electronic Densimeter (Daesung Instrument, Busan, Korea)-based ASTM
D 297 standard [30], calculated in step with Formula (1):



Polymers 2022, 14, 3189 5 of 16

Specific Gravity = a/[(a + w) − b], (1)

where a is the mass of the specimen in air, b is the mass of the specimen and the sinker in
water, and w is the mass of the totally immersed sinker with 1 mm wire partially erased.

2.4.3. Static Compressive Test

The static-compression properties of LW 3-, 4-, and 6-PS outsoles with various thick-
nesses were evaluated using Geer’s aging oven and metal plates (Ueshima Seisakusho Co.,
Ltd., Tokyo, Japan) and calculated following Formula (2):

% Set = ((original gauge − final gauge)/(50% original gauge)) × 100, (2)

2.4.4. Static/Dynamic Coefficient of Friction Test

The static/dynamic coefficients of friction of LW 3-, 4-, and 6-PS outsoles with various
thicknesses were measured with the coefficient of friction testing machine (Instron, Seoul,
Korea) following the ASTM D1894-6 standard [31].

(3) The static coefficient of friction is calculated using the following formula:

µs = As/B, (3)

where As is the value at the first movement, and g is the weight of the the sleg.
(4) The static coefficient of friction is calculated using the following formula:

µk = Ak/B, (4)

where Ak is the average value during constant sliding of the film surface, and g is the
weight of the sleg.

2.4.5. NBS and DIN Abrasion Test

The abrasion properties of LW 3-, 4-, and 6-PS outsoles with various thicknesses were
confirmed with the NBS type abrasion tester-WL 210N model (WITHLAB Co., Ltd., Gunpo,
Korea) and DIN abrasion tester (Zwick GmbH & Co., Ulm, Germany), which were prepared
for a size of 16 mm diameter and 25 mm × 25 mm; NBS and DIN abrasion experiments
were under KS M 6625 [32] and DIN 53516 [33] standards, respectively.

(5) The NBS abrasion was calculated using the following formula:

A =
200 × (m1 − m2)× 1000

d × g
(5)

where m1 is the weight of the specimen after the abrasion test in g; m2 is the weight of the
specimen after the abrasion test in g; d is the density of the test specimen; g is the abrasive
grade (loss in weight of the drum distance).

(6) The NBS abrasion was calculated using the following formula:

AI =
R1

R2
× 100, (6)

where AI is the percentage of wear; R1 is the number of turns required for the tested sample
to be 2.54 mm; R2 is the average number of turns required for the referenced material tested
sample to be 2.54 mm worn.

2.4.6. Ball Drop and Pendulum Resilience Test

The resilience properties of LW 3-, 4-, and 6-PS outsoles with various thicknesses were
checked with the ball drop resilience tester (Unuo Instruments Co., Ltd., Wan Chai, China)
supported ASTM D 3574 standard [34], and also the pendulum resilience tester HS-5042-RE
(GAO XIN Co., Ltd., Shenzhen, China) supported DIN 53512 standard [35], separately.
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Concerning ball drop resilience, the mean of the three rebound values and the pendulum
resilience was calculated using Formula (7):

R =
hR
h0

× 100, (7)

where hR is the rebound height; and h0 is the height of fall.

2.4.7. Surface Area and Surface Force Test

To measure the surface area and surface force of LW 3-, 4-, and 6-PS outsoles with
various thicknesses, the F-scan system (Tekscan, Inc., Norwood, MA, USA) was used
during this experiment. The testing process was the following: (1) firstly, a special foam
with excellent compression durability was laid on the top and bottom of the prototype
for an even surface; (2) secondly, a tekscan pressure sensor was placed on the top of the
foam covering the testing prototype; (3) thirdly, connecting the F-scan system, data analysis
was adopted as the test start. Finally, surface pressure distribution for each prototype
was obtained.

3. Results and Discussion
3.1. Morphology

Morphology measurement was carried out in this work to observe the internal struc-
ture change of the LW 3-, 4-, and 6-PS outsole pieces. Tables 2–4 display the morphology of
LW n-pointed star-shaped outsoles with various thicknesses at different magnifications,
showing an appearance of lower density holes and some particles randomly distributed on
the surface, and also presenting better-fused interlayers on the cross-side, as the thickness
of prototypes increased. TPU material can be applied for many purposes due to its tailored
properties determined by its unique ingredient structure wherein the soft/hard segment
ratio is altered through heat. As the thickness increased, the nozzle followed the pattern
path to persistently construct and assemble layer by layer; the residual heat contributed to
constant foaming and structure deformation of the 3D-printing prototypes.

The morphology image can be seen in Table 3, where the number of holes was gradu-
ally reduced, the shape changed from ellipse to round, and a smaller size was found on
the surface and cross-side surface along with increasing thickness. The amount of voids
was large in the order 3-PS-10 > 4-PS-10 > 6-PS-10 samples. In our former study [28], the
3-pointed star-shaped structures with various extruding temperatures and thicknesses
were confirmed to have the smallest and most regular voids uniform in distribution on the
surface of the sample at 240 ◦C extruding temperature printing conditions; the 10 mm 3PS
structure prototypes showed the higher foaming condition. However, it is a different case in
this study; the void quantity tends to reduce when adding thickness, indicating increasing
density and hardness of 3PS prototypes. As shown in Table 4, the morphology image of
4PS was confirmed with microvoid quantity reduction on the surface in an irregular shape.
The morphology of 6PS prototypes, as in Table 5, presents better-fused and fewer voids
compared to other structures. That is, the geometry of the design and product thickness
could affect the final 3D-printed parts; the morphology of the 3-pointed star-shaped pattern
tread outsole results in a more stable mechanism and higher density in comparison.
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Table 2. Morphology image of surface and cross-side of the LW 3DP 3-PS outsole piece extruded in
various thicknesses.

Code
Thickness

(mm)

Surface

×50 ×250 ×500

3PS-50 5.0
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Table 3. Morphology image of surface and cross-side of the LW 3DP 4-PS outsole piece extruded in
various thicknesses.

Code
Thickness

(mm)

Surface

×50 ×250 ×500

4PS-50 5.0
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Table 4. Morphology image of surface and cross-side of the LW 3DP 6-PS outsole piece extruded in
various thicknesses.

Code
Thickness

(mm)

Surface

×50 ×250 ×500

6PS-50 5.0
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3.2. Specific Gravity and Weight

A specific gravity test was carried out to measure the relative density of the n-pointed
PS outsoles for different thicknesses and make a comparison. Figure 1 shows the specific
gravity and weight of the LW 3-, 4-, and 6-SP outsoles with a tendency to increase in
thickness, with increasing values in order LW 3-PS > 4-PS > 6-PS concerning prototypes
among all thicknesses.
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also have enhanced mechanical property. The star-shaped metastructures have been 
claimed to be lightweight material by virtue of their porous structures, although the 
strength property has been lowered. It has been proven that by selecting the best infill 
pattern and density, the most strength may be achieved while using less material [12]. The 
3D-printed TPU material foams in accordance with extruding temperature; the thicker 
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various thicknesses.

In Figure 1a, the specific gravity of LW 3PS outsoles seen at 0.695, 0.702, and 0.706 at
3-PS-50, 3-PS-75, and 3-PS-100 prototypes, respectively, was highest compared to 4PS and
6PS samples in different thicknesses, indicating the 3PS outsole had the highest density.
However, the 4PS and 6PS prototypes exhibited similar specific gravity in all thicknesses.
To confirm the weight of n-pointed outsoles in Figure 1b, which results in a similar tendency
with specific gravity, the heaviest weights were at 3-PS-10, 4-PS-10, and 6-PS-10 prototypes,
increasing in order 3PS > 4PS > 6PS outsole with 68.3, 52.1, and 44.6 g. Generally, low-
density material provides a good cushion for the outsole, but at the cost of lesser density
and property degradation. Scientists have shown great interest in producing lightweight
and low-density materials that can not only be lightweight in terms of comfort but also
have enhanced mechanical property. The star-shaped metastructures have been claimed to
be lightweight material by virtue of their porous structures, although the strength property
has been lowered. It has been proven that by selecting the best infill pattern and density,
the most strength may be achieved while using less material [12]. The 3D-printed TPU
material foams in accordance with extruding temperature; the thicker prototypes consume
more time; in the process of developing the thickness, the residual heat leads to continuing
foaming, and results in lightweight 3D-printed parts. Thus, the n-pointed star-shaped
outsoles are all lightweight samples; among them, the 3PS is the densest, indicating it is
lightweight and has the highest strength.

3.3. Static Compressive

As shown in Figure 2, the static compression value of the LW 3-, 4-, and 6-PS outsoles
tends to decrease as the thickness increases. The lowest static compression value was found
at 10 mm, decreasing in order LW 6-PS-10 < 4-PS-10 < 3-PS-10 specimens at 58.6, 59.5,
and 60.3 C/set, respectively, exhibiting similar static compression. It was found that the
3PS prototypes (LW 3-PS-5, 3-PS-7.5, and 3-PS-10 outsole) exhibited a declining tendency
concerning static compression of 72.6, 69.6, and 60.3 C/set individually. The 6PS specimens
also presented a relatively low static compression value of 58.6 C/set at 10 mm, which
was almost identical to the 4PS prototype, and was considered the cause of the higher
porosity metastructures, indicating their weakness. As we all know, when a load is given
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to a specimen, it deforms, and its ability to absorb energy is proportional to the amount
of deformation compared to its initial shape. The greater the energy absorption from the
contacting surface, the more “dead” the sole was, which counterbalanced the external
energy reflection to the human body [18]. Meanwhile, the prototype’s softness affects the
cushion property. The cushion surfaces of LW 3-, 4-, and 6-PS-10 outsoles were improved
in this experiment due to their increased thickness, which necessitated additional heating
time and resulted in continued foaming and softer output.
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3.4. Static and Dynamic Coefficient of Friction

In shoe design, traction was considered an important feature, while the design of the
outsole pattern and the selection of the materials control the traction levels, contributing to
the safety of footwear. Footwear manufacturers intend to improve the outsole hardness in
order to reduce wearing abrasion over time, whereas it might reduce the slip resistance
and raise the potential of slip and fall injury risk [19]. As shown in Figure 3, there was
a propensity for the static and dynamic coefficient of friction for outsoles with various
pattern designs to climb as the thickness of LW outsoles increased, increasing in order LW
3-PS > 4-PS > 6-PS specimens in all thicknesses. From Figure 3a, the highest static slip
friction was confirmed with the LW 3-PS-10 outsole at 0.232 µs; meanwhile, the greatest
dynamic slip coefficient was confirmed, as seen in Figure 3b, at 0.199 µk, indicating the
excellent anti-slip resistance owning to its stiffness or hardness of 3PS specimen. In contrast,
the LW 6-PS-10 specimen had the lowest dynamic friction coefficient of 0.173 µk due to
its having the highest porosity. Normally, more extrusion time is required to produce a
thicker specimen; the soft/hard segment was adjusted by applying heat; when the soft
segment exceeded the hardness segment, the specimen was tuned to be softer to the touch
with improved cushion properties; otherwise, the specimen was tuned to be harder in
another case. The reduced hardness of 3DP TPU material has been reported to have
strong mechanical characteristics [24]. In theory, the softness of the sole material can aid in
enhancing the contact area with the floor surface, resulting in increased resistance and a
lower chance of injury [15].
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3.5. DIN and NBS Abrasion

Abrasion wearability determines the product’s life and is defined by the hardness of
the material, which is related to its density. Meanwhile, the thickness of the sole enhances
its durability over time and was considered one of the most essential quality assessment
requirements for footwear [15,16,25]. The DIN and NBS abrasion resistances of the LW 3DP
3-, 4-, and 6-PS outsoles with varied thicknesses were investigated in this study. According
to our findings, as shown in Figure 4, these are more wear-resistant; the prototype with high
density and softness of touch surface suffered less friction force effect when fractionalized
to sandpaper against their surface. The tendency of slipping down DIN abrasion of the
n-pointed PS outsole as the thickness grew is exhibited in Figure 4a. DIN abrasion was
observed in increasing order 6-PS-10 > 3-PS-10 > 4-PS-10 at 68 mm3, 64 mm3 and 60 mm3

loss, respectively; the 6-PS-10 was highest among all, which indicated the poor mechanism
of LW 6-PS due to its high porosity. In general, the lower the DIN percentage loss, the
greater the abrasion resistance and durability in the same test set. That is to say, the more
thickness and test frequency are added to the process of reducing material loss, the less
material is lost. A lower abrasion value was reached by lowering the material loss as
thickness and test frequency increased. Figure 4b also illustrates a climbing tendency
concerning NBS abrasion of the LW 3-, 4-, and 6-PS outsoles with increasing thickness in
increasing order 6-PS > 3-PS > 4-PS outsole. The highest NBS was found in LW 4-PS-10
outsole at 242%—this might be due to its poorer strengths—and the next is LW 3-PS-10
with 236% NBS abrasion. That is, the thickness, high-density, and softness were related to
the abrasion resistance. The LW 3-PS-10 model in high density and cushion was confirmed
with good abrasion resistance, demonstrating the best wearability and durability among all.
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3.6. Ball Drop and Pendulum Resilience

The resilience of the outsole has an important impact on the health and comfort of
the foot due to the biomechanical change of the sole caused by the resilience of TPU mate-
rials being subject-dependent [18,19]. The material density and melting point determine
the resilience properties [20]. A resilient outsole can protect human feet from injury in
terms of bone structure displacement or meridian strain by adjusting the deformation of
footwear when loading and bending. In theory, the resilience relates to the density of
the prototypes; normally, lower density results in higher resilience. In this experiment,
ball-drop and pendulum testing were applied in resilience investigation for n-pointed
star-shaped outsoles.

Figure 5 illustrates the thickness variations of LW 3-, 4-, and 6-PS that were not im-
pacted by resilience in both ball-drop and pendulum resilience measurements. It was
confirmed that the LW 3- and 4-PS with various thicknesses had the maximum and same
robustness coefficients in 30% ball drop and 28% pendulum, respectively. Overall, the
results of the tests revealed that the LW 3- and 4-PS outsoles have the highest and some
resilience, indicating that the LW 3-PS specimen has the best resilience resistant capabil-
ities and the LW 4-PS specimen has the weakest, anticipating the largest absorption and
resilience properties. The LW 6-PS, on the other hand, was the least permeable of all, which
might due to its reduced contact surface. Simply said, the experiment proved that the LW
3-PS outsoles possess notable durability and bending qualities in contrast. Lightweight
TPU is an intriguing material with controllable mechanical properties. According to auxetic
theory, when a material’s surface is crushed by a falling steel ball, the interior structure
of the associated area shrinks and deforms, which is influenced by the material’s essence,
as described by its energy absorption capabilities. As force was applied to the surface of
the star-shaped structure, the attached surface narrowed and grew harder. The energy
was absorbed as the attached spot distorted and bent; this is why material with superior
resilience properties has a higher resilience coefficient.
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3.7. Surface Area and Surface Force

The surface pressure distribution can detect the most important characteristic of
footwear: comfort. The surface pressure distributions of the LW 3DP 3-, 4-, and 6-SP
outsoles with various thicknesses were explored using the in-sole sensor approach in this
research. As shown in Table 5, the uneven force contact area at the outsoles was proven to
suggest that the testing object was in unusual condition; in n-pointed star-shaped outsoles
the largest surface area was found at 3-PS-100, 4-PS-100, and 6-PS-10, and the lowest surface
force at 3-PS-50, 4-PS-75, and 6-PS-100. The high surface pressure distribution of the LW 3-
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PS-5, 3-PS-7.5, and 3-PS-10 was found at 28.11, 30.72, and 29.7 kPa on 16.26 mm2, 16.46 mm2,
and 16.83 mm2 pressure areas, respectively, indicating comparable conditions, which might
be influenced by prototype hardness. The maximum surface pressure presented at the LW
3-PS-7.5, followed by the LW 4-PS-5; conversely, the surface pressure of the LW 6-PS-7.5 was
the lowest. It was considered that the density and auxetic material gathering on a particular
area can lead to high-pressure feedback to footwear. Meanwhile, it was found that the
large contact area of the LW 3-PS-10 outsole was at 16.83, followed by the LW 3-PS-7.5 at
16.46. Moreover, the largest surface area displayed at the LW 6-PS-7.5 with 15.71 can be
regarded as comfort parts. In terms of surface pressure, it appears that subject-dependent
factors have the greatest impact on distribution, and numerous physical properties can
alter the footwear’s ultimate value. That is, the high surface pressure distribution with big
surface pressure had strong stiffness properties and comfort; in other words, the weaker one
had weak stiffness properties and comfort. As mentioned, the pathological foot problem,
which may be caused by asymmetry or disease, has an influence on the consequent surface
pressure distribution, as evidenced by the unequal foot attachment area on the gait pattern.
In theory, the short limb bears the brunt of the body’s weight and transfers it to the attaching
sole. Thus, to lessen the strain on the asymmetrical foot, there is a requirement to increase
the contact area to disperse pressure from the lower foot, which can give body balance and
better comfort to the foot, based on the same surface force. Therefore, it is suggested to
explore optimal plantar pressure distribution for an orthotic outsole that can be tailored,
which might be a topic for further study.

Table 5. The surface area and surface pressure of the LW 3DP 3-, 4-, and 6-PS outsole were measured
by an insole sensor tester.

Prototypes 3PS 4PS 6PS

Thickness 5.0 7.5 10.0 5.0 7.5 10.0 5.0 7.5 10.0

Surface Area
(mm2) 16.26 16.46 16.83 16.26 15.73 16.28 17.52 15.71 15.34

Surface Pressure
(kPa) 28.11 30.72 29.70 30.12 28.87 29.60 26.81 25.33 25.61

Image of
plantar

pressure
distribution
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among all. The static compressive confirmed with decreased tendency as the thickness 
increased, presenting lower and similar at 10 mm, indicating the recovery absorption ca-
pacity of the prototypes was improved for adding thickness outsoles for n-pointed star-
shaped outsoles. Moreover, the various pattern outsole prototypes confirmed increased 
static and dynamic coefficients of friction with increased thicknesses; 3-PS-10 presented 
the highest static and dynamic coefficients of friction at 0.232 𝜇  and 0.199 𝜇 , and was 
identified as safe and a quality outsole. In addition, the DIN and NBS abrasion determined 
the safety and durability, and 236% NBS and 64 mm3 DIN abrasion was confirmed at 3-
PS-10 prototypes. Furthermore, the rebound resilience property of the n-pointed star-
shaped porous outsoles was determined with a higher ball drop and pendulum resilience 
percentage in both 3PS prototypes at all range thicknesses by virtue of its flexible surface. 
In the case of surface pressure evaluation, similar pressure distributions with unstable 
conditions were confirmed; in comparison, the LW 3PS-10 presented the largest pressure 
area and lower pressure force, and was considered a comfort prototype. 

 Therefore, this study demonstrated that the thickness, pattern design of the sole, the 
printing material, and 3D-printing conditions have a crucial impact on the physical prop-
erties of 3D final parts. However, it was confirmed that the 3PS pattern outsole had the 
greatest physical properties among all; in particular, it was verified that 3-PS-10 had the 
best quality, safety, and durability prototypes. Since there was not much distinct 
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4. Conclusions

This study has shown the physical property modulation for multiple pattern outsole
designs with n-pointed star shapes and thicknesses of 5 mm, 7.5 mm, and 10 mm, which
were fabricated with the FDM 3D printer using a peculiar lightweight TPU filament. By
means of varying structural pattern designs in combination with optimal 3D-printing
parameters, the physical properties of n-pointed star-shaped outsoles were confirmed with
improved tendency as the thickness of the 3D parts increased.

The morphology images confirmed the lower foaming state, better-fused interlayer
adhesion, and fewer microvoids randomly displayed on the surface and cross-side of the
TPU LW-3-, 4-, and 6-PS outsoles as the thickness developed. The specific gravity and
weight of N-pointed star-shaped outsoles for various thicknesses tend to gradually increase,
indicating the enhanced density and rigidity of the prototypes; the highest specific gravity
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and weight was exhibited by the 3-PS-10 model, which had the most hardness among
all. The static compressive confirmed with decreased tendency as the thickness increased,
presenting lower and similar at 10 mm, indicating the recovery absorption capacity of
the prototypes was improved for adding thickness outsoles for n-pointed star-shaped
outsoles. Moreover, the various pattern outsole prototypes confirmed increased static and
dynamic coefficients of friction with increased thicknesses; 3-PS-10 presented the highest
static and dynamic coefficients of friction at 0.232 µs and 0.199 µk, and was identified as safe
and a quality outsole. In addition, the DIN and NBS abrasion determined the safety and
durability, and 236% NBS and 64 mm3 DIN abrasion was confirmed at 3-PS-10 prototypes.
Furthermore, the rebound resilience property of the n-pointed star-shaped porous outsoles
was determined with a higher ball drop and pendulum resilience percentage in both
3PS prototypes at all range thicknesses by virtue of its flexible surface. In the case of
surface pressure evaluation, similar pressure distributions with unstable conditions were
confirmed; in comparison, the LW 3PS-10 presented the largest pressure area and lower
pressure force, and was considered a comfort prototype.

Therefore, this study demonstrated that the thickness, pattern design of the sole,
the printing material, and 3D-printing conditions have a crucial impact on the physical
properties of 3D final parts. However, it was confirmed that the 3PS pattern outsole had
the greatest physical properties among all; in particular, it was verified that 3-PS-10 had the
best quality, safety, and durability prototypes. Since there was not much distinct difference
in pressure distribution compared to others, to explore optimization solutions for optimal
comfort of footwear in future research is highly encouraged.
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