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Abstract: There are abundant sea-sand resources on the earth. Traditional sea-sand concrete faced
various problems relating to insufficient anticorrosion ability. In this paper, artificial seawater,
sea sand, industrial waste, steel fiber, and polycarboxylate superplasticizer were used to prepare
ultra-high-performance polymer cement mortar (SSUHPC). At the same time, freshwater river-sand
ultra-high-performance polymer cement mortar (FRUHPC) with the same mixing ratio was prepared
for comparative study. The compressive strength of SSUHPC reached 162.1 MPa, while the that of
FRUHPC reached 173.3 MPa, which was slightly higher. Meanwhile, SSUHPC showed excellent
anticorrosion characteristics in terms of carbonization, frost resistance and chloride resistance, and
especially for sulfate resistance. The composition of SSUHPC was separated into three parts: mortar,
pore and steel fiber, and the performance difference mechanisms of SSUHPC and FRUHPC were
investigated by X-ray computed tomography (X-CT), mercury intrusion porosimetry (MIP), scanning
electron microscopy (SEM), and X-ray diffraction (XRD). The hydration degree of mortar in SSUHPC
was higher, with higher content of CSH and CH, and its better optimized gel pore characteristics
gave SSUHPC better corrosion resistance. The mechanical properties of SSUHPC were slightly poor
due to the uneven dispersion of steel fibers and air pores, with an- air pore porosity of 1.52% (above
200 µm) that was twice that of FRUHPC (0.6%). In this paper, the mechanics and anticorrosion
performance of ultra-high-performance polymer cement mortar prepared with seawater sea sand
were comprehensively evaluated, and the mechanism of performance difference between SSUHPC
and FRUHPC was revealed, conducive to the targeted improvement of sea sand concrete.

Keywords: sea sand; polymer cement mortar; UHPC; anticorrosion analysis; material
characterization; X-CT

1. Introduction

At present, river sand is the main source of sand for construction, but the sup-
ply of river sand is limited by resources and environmental impact, and cannot fully
met the demands of the construction industry. China’s coastal areas are rich in sea-
sand resources, and the total amount of sea sand in China’s offshore regions is about
67.96 × 1010~68.49 × 1010 m3 [1]. The mining of sand for construction has gradually shifted
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to the marine environment. The orderly development, research, and utilization of abundant
sea-sand resources as construction aggregates has become an inevitable development trend.

Ultra-high performance concrete (UHPC) was developed by Hodia, Lafarge and
Bouygues, and was registered as a patent by Ductal [2]. Compared with conventional
concrete, UHPC has many advantages: the compressive strength of UHPC is higher
than 150 MPa, which is about three times greater than conventional concrete. UHPC
has excellent toughness and fracture energy. Compared with high-performance concrete
and some metal equivalents, the toughness of UHPC was found to increase by more than
300 times [3–6]. In addition, UHPC has good durability [7–9] and low permeability [10,11],
which can substantially improve its service life and reduce the maintenance costs of concrete
structures [7,12–15]. Due to its high performance standards, UHPC has been widely used
in the construction and rehabilitation of infrastructure. The most popular application
of UHPC in North America has been as grouting material for bridge connections and
bridge rehabilitation [16–18]. To date, domestic and international scholars have conducted
extensive research on UHPC. Norhasri et al. [19] added nano-kaolinite as an additive to
UHPC and found that nano-kaolinite UHPC blends had lower workability effects due to
their clay properties and ultrafine size compared with normal UHPC and metakaolinite
UHPC, but nano-kaolinite UHPC exhibited similar compressive strengths to normal UHPC
and metakaolin UHPC in the early stages, which gradually increased in the later stages.
Tanarslan [20] studied the performance of reinforced concrete (RC) beams reinforced with
prefabricated ultra-high-performance fiber-reinforced concrete (UHPFRC) laminates, and
the UHPFRC-reinforced specimens showed a minimum increase of 32% and a maximum
increase of 208% in load-carrying capacity. Therefore, the use of UHPFRC laminates can
enhance the performance of reinforced concrete beams, and was an effective technique for
improving load-bearing capacity.

Sea-sand concrete is a kind of concrete mixed with sea sand as fine aggregate, which
has been used in coastal areas on a large scale in recent years [21–23]. The use of sea sand can
solve the problem of river-sand shortages to a certain extent, and has the advantage of being
inexpensive. However, sea sand contains a large quantity of chloride salts. Chloride ions
have been identified as a key factor in the corrosion of reinforcing steel used in reinforced
concrete, and an important cause of reduced durability in concrete. The chloride ions (Cl−)
in sea sand may threaten concrete properties if it is not treated prior to use [24–27]. Many
studies at home and abroad have shown that seawater sea sand can be used in concrete,
and high mechanical properties can be maintained by adding external admixtures (fly
ash, slag, steel fiber, etc.) [28–37]. Li et al. [38] used seawater sea sand to prepare reactive
powder concrete, and found that the carbonation of reactive powder concrete prepared
from seawater sea sand was mainly the due to the reaction of CO2 with Ca(OH)2, C-S-H
gel, C3S, and C2S. The generated CaCO3 with amorphous hydrated SiO2 covered the
surface of the original concrete, to increase the carbonation resistance of the concrete. The
combination of sea-sand concrete and UHPC prepared into sea-sand high-performance
concrete also has practical engineering significance. Li et al. [39] and Zhang et al. [40]
studied the mechanical properties, early workability, and high temperature resistance of
seawater sea-sand high-performance concrete. They found that compared with freshwater
river-sand steel fibers, the mechanical properties of the seawater sea sand concrete were
not inferior, and the concrete prepared using seawater sea sand had better fire resistance
and blast resistance properties. Li et al. [41] prepared a high-performance concrete (SHPC)
using sea sand and simulated seawater, which had good resistance to freezing, chlorination,
carbonation, and sulfate. To investigate the service performance of SHPC, they placed it in
seawater for one year. Their test results showed that SHPC demonstrated advantages such
as good performance and durability. The construction period of SHPC was short, making it
suitable for promotion and application.

X-ray computed tomography (X-CT) is a non-destructive testing technique that uses
X-rays as the energy source to obtain images of the internal structure of an object through
computer reconstruction. It can be used in the construction field to study the hydration
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of cement, characterization of pore structure, mortar interface transition zone, geometric
distribution of fibers in concrete, sulfate erosion, corrosion of reinforcement, carbonation,
freeze–thaw damage, cracking, etc. It is suitable for observing the internal microstructure
of concrete [42–48]. Shi et al. [49] obtained a three-dimensional model of the pore structure
based on the X-CT technique, visualizing the effect of desert sand on the pore structure
of fiber-reinforced mortar. Wang et al. [47] used an X-ray CT system to study the spatial
distribution of steel fibers and bubbles in cylindrical UHPC specimens. Jiang et al. [50]
discovered the deformation and cracking patterns of cement mortar coverings during
corrosion by using a 16 mm resolution X-CT scanning technique. The three-dimensional
model established using X-ray CT and image analysis techniques allowed visualization and
quantitative analysis of the distribution of steel fibers and air bubbles in concrete samples.
Zhou [51] et al. investigated the deterioration performance and safety of sea-sand concrete
by analyzing the CT characteristics of different parts and regions of sea-sand concrete.
Li et al. [52] investigated the sulfate corrosion performance of UHPC with seawater sea-
sand and freshwater river-sand, and the degree of internal damage after six months was
confirmed with the help of X-ray CT technology.

Traditional sea-sand concrete is faced with various durability problems and cannot
achieve the breakthrough improvement of anti-erosion performance. The specific perfor-
mance of UHPC prepared with seawater and sea sand remains unknown, and so too do the
performance difference mechanism between that and traditional UHPC. UHPC has excel-
lent mechanical and durability characteristics. This study designed and prepared two kinds
of UHPC, using seawater sea sand and freshwater river sand, respectively. The mechanical
properties, fatigue resistance and durability of SSUHPC and FRUHPC were compared and
studied. The differences between SSUHPC and FRUHPC were systematically studied by
X-CT, SEM, XRD, and MIP techniques. Finally, the mechanism of the performance differ-
ence between UHPCs prepared with seawater sea sand and with freshwater river-sand
was proposed.

2. Materials and Methods
2.1. Raw Materials

The materials used in this study include ordinary Portland cement P·O 42.5 from
Nanjing Conch Cement Co., Ltd. (Nanjing, China), silica fume from Gongyi Yuan Heng
water purification material Factory, fly ash from Gongyi Yuan Heng water purification
material factory, polycarboxylic acid series superplasticizer from Shandong Yuncheng
Brilliant New Building Materials Technology Co., Ltd., copper-plated straight steel fiber
from Ganzhou Daye Metallic Fibres Co., Ltd., (Ganzhou, China), river sand and sea sand.
The basic physical properties and chemical compositions of the cement, silica fume, and fly
ash were determined by X-ray fluorescence (XRF) (Tables 1–4). The water consumption
for standard consistency and setting time of the cement were tested according to Chinese
standard GB/T1346-2019; the fineness of the cement was tested according to Chinese
standard GB/T 1345-2005; the density of the cement was tested according to Chinese
standard GB/T 208-2014; the compressive strength and flexural strength of the cement were
tested according to Chinese standard GB/T 17671-2021. The basic physical properties of
the fly ash were tested according to Chinese standard GB/T1596-2017. The basic physical
properties of the silica fume were tested according to Chinese standard GB/T 27690-2011.
The steel fibers were 13 mm long, with a diameter of 0.2 mm, a length–diameter ratio
of 65, and tensile strength greater than or equal to 2850 MPa. The solid content of the
superplasticizer was 40%, with a water-reduction rate of 35~40%. Sea sand was purchased
from Zhangzhou, Fujian Province, with a fineness modulus of 2.3–2.6, a mud content of
less than 1.0%, and a chloride ion concentration of 0.08%. The mud content of the river
sand was 1.5%, with a fineness modulus of 2.2–2.5. An artificial seawater solution with
a chloride concentration of 3.5% was prepared using analytically pure sodium chloride,
composed of NaCl 24.53 g/L, MgCl2 5.20 g/L, Na2SO4 4.09 g/L, CaCl2 1.16 g/L, KCl
0.695 g/L, NaHCO3 0.201 g/L, KBr 0.101 g/L, H3BO3 0.027 g/L, SrCl2 0.025 g/L, and NaF
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0.003 g/L, according to ASTM D1141-98. Either artificial seawater or fresh water was used
as mixing water. The physical and chemical characteristics of raw materials and species of
raw materials were the same as those published by our team [52].

Table 1. Basic physical properties of cement.

Setting Time/min Compressive Strength/MPa Flexural Strength/MPa
Fineness/% Density/(g/cm3)

Water Consumption
for Standard

Consistency/%Initial Setting Final Setting 3 d 28 d 3 d 28 d

178 219 23.1 51.2 5.4 9.3 0.8 3.5 29.5

Table 2. Basic physical properties of fly ash.

Ratio of Water
Demand/% Fineness/% Density/(g/cm3)

Compressive Strength
Ratio/%

Specific Surface
Area/(cm2/g)

Water Quantity/%
Packing

Density/(g/cm3)
Normal

Consistency/%

94 10 2.1 78 3 400 106 0.78 48

Table 3. Basic physical properties of silica fume.

Density/(g/cm3) Specific Surface Area/(cm2/g) Average Particle Size/µm Bulk Density/(g/mL)

1.6–1.7 (20–28) × 10,000 0.1–0.3 ≥0.67

Table 4. Basic chemical composition of cement, fly ash and silica fume.

Species Chemical Composition (wt.%)

/ CaO SiO2 Al2O3 MgO Fe2O3 Na2O SO3 Loss on Ignition

P·O 42.5 cement 61.536 15.404 4.430 0.724 4.906 0.043 2.755 2.243
Silica fume 0.568 97.35 0.337 0.414 0.003 0.101 0.192 2.810

Fly ash 1.5 58 30 2.8 4.3 3.2 0.8 3.310

2.2. Mixtures, Specimens Preparation and Exposure Conditions

To investigate the effect of the use of seawater sea sand and freshwater river sand on
the performance difference of ultra-high-performance polymer cement mortar (UHPC),
two types of UHPC were prepared as shown in Table 5. Sand and steel fiber were added
after mixing the cement, fly ash, and silica fume, and the mixture was stirred well. Water
and superplasticizer were added during the process of stirring at room temperature. The
concrete slurry was loaded into the model and moved on to the follow-up treatments
after 24 h. The follow-up treatments included a curing condition of 85 ◦C hot water for
48 h. SSUHPC refers to the UHPC including sea water and sea sand with 85 ◦C hot water
curing 48 h. FRUHPC refers to the UHPC including fresh water and river sand with 85 ◦C
hot water curing for 48 h. Sample sizes under different test conditions are specified in
Section 2.3.

Table 5. Composition of raw materials with different ratios (mass ratio).

Species Cement Fly Ash Silica Fume Steel Fiber
Polycarboxylic
Acid Series of

Superplasticizer
Sea Sand River Sand Artificial

Seawater Fresh Water

SSUHPC 0.6 0.25 0.15 0.19 0.03 1.4 \ 0.14 \
FRUHPC 0.6 0.25 0.15 0.19 0.03 \ 1.4 \ 0.14

2.3. Test Methods
2.3.1. Compressive Strength and Vickers Hardness

Compressive strength of specimens was determined on subsamples with a size of
Φ50× 50 mm2, cut from the specimens after curing with a size of 100 mm× 100 mm× 100 mm.
The compressive tests were carried out on an Electric Universal Testing Machine with a
maximum capacity of 100 kN. The final compressive strength data was the average of
three parallel subsamples, and the error margin was 5%. Thin subsamples with a size
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of Φ50 × 10 mm2 were cut from different depths of the specimens for Vickers hardness
measurements. In the cutting process, the samples were cut to a slightly larger size and
then polished with abrasive paper to a standard thickness of 10 mm. In addition, to avoid
the influence of humidity on concrete hardness, the polished samples were placed in an
oven at 45 ◦C for 24 h. Vickers hardness was measured every 0.5 mm from the exposed
surface to the interior using a micro-hardness tester (No. HDX-1000TC). The max load was
30 kN, the load holding time 15 s, and the objective lens multiple was 40. To obtain more
representative results, eight measurements of Vickers hardness uniformly distributed on a
circle at the same depth were recorded for each sample. Then, the maximum and minimum
values were removed, and the average of the remaining values taken as the representative
value. The final Vickers hardness data was the average of three parallel samples.

2.3.2. Fatigue Test

The fatigue test was carried out by three-point composite beam loading, in line with
JTG/T 3364-02-2019. The stress control mode was adopted, and the specimen size was
400 mm × 100 mm × 100 mm.

UTM-100 fatigue testing machine was used for the test as shown in Figure 1b, and the
system automatically collected the displacement, stress and strain. Firstly, the mid-span
load P = 5 kN was set for fatigue testing of the two groups of UHPC. The fatigue loading
times were set at 1 million cycles. After the loading times were completed, the appearance
changes of SSUHPC and FRUHPC were observed and recorded. If there was no damage,
the mid-span fatigue test load was increased to P = 10 kN, and the same loading times were
set. The specific scheme is shown in Table 6.
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(b) UTM-100 fatigue testing machine.

Table 6. Specific operation of fatigue test.

Species Loading Value Preset Loading
Times

Actual Loading
Times

FRUHPC 5 kN 1,000,000 1,000,000
FRUHPC 10 kN 1,000,000 500,000
SSUHPC 5 kN 1,000,000 1,000,000
SSUHPC 10 kN 1,000,000 500,000

2.3.3. Durability

SSUHPC and FRUHPC species with the same size of 100 mm × 100 mm × 400 mm
were placed in fresh water, 3.5 wt% and 7.0 wt% NaCl solutions from (−18 ± 2) ◦C to
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(5 ± 2) ◦C for freeze–thaw cycles, each cycle of 2~4 h. The relative dynamic elastic modulus
(Pi) of concrete was measured with the measuring instrument (DT-W18) before and after
1000 freeze–thaw cycles. The relative dynamic modulus was calculated by the following
equation according to the Chinese standard SL/T 352-2020:

Pi =
f2
ni

f2
0i
× 100 (1)

P =
1
3

3

∑
i=1

Pi (2)

where P was the relative dynamic elastic modulus after 1000 freeze–thaw cycles (%); Pi
was the relative dynamic elastic modulus of the No. i concrete after 1000 freeze–thaw
cycles (%); f2

ni was the transverse fundamental frequency of the No. i concrete after
1000 freezing-thawing cycles (Hz); f2

0i was the transverse fundamental frequency of the No.
i concrete before 1000 freeze–thaw cycles (Hz).

The concrete was immersed in 5 wt% Na2SO4 + 7 wt% MgSO4 compound solution at
25~30 ◦C for 18 h, and then dried at (80 ± 5) ◦C for 6 h. The whole process was one cycle,
and the whole test covered a total of 300 cycles. The morphologies of the two groups of
UHPC were recorded before and after the sulfate erosion test, and the Vickers hardness
was measured from the surface of the concrete to its center of volume. The max load was
30 kN, the load holding time 15 s, and the objective lens multiple was 40.

The electric flux method test was based on the chloride ion migration ability of a
saturated concrete specimen, proportional to its conductivity. By applying 60 V voltage
on both sides of concrete, the coulomb electric quantity of concrete was recorded for
6 h to evaluate the chloride ion permeability of concrete. Rapid electromigration testing
was based on the initial current measured at a voltage of 30 V and a reasonable time for
electrification at a reasonable voltage. At the end of the experiment, the specimen was split
in half and 0.1 mol/L silver nitrate solution was sprayed on the fresh fracture surface to
measure the penetration depth of chloride ions.

2.3.4. Microscopic Characterization Analysis

Pore structures (below 200 µm) of SSUHPC and FRUHPC were analyzed by mercury
intrusion porosimetry (MIP). Corresponding interior areas of SSUHPC and FRUHPC were
selected for SEM tests. All the selected samples for SEM tests were dried at 45 ◦C for
24 h using an oven and then coated with gold before testing. A Hitachi S-3400N scanning
electron microscope was used. SEM images were photographed at an accelerating voltage
of 15 kV. XRD tests were conducted on a Bruker D8-Advance model X-ray diffraction
analyser. The Cu-K radiation with a wave length of 1.54 Å was conducted at a voltage of
40 kV under a current of 35 mA. The scanning interval was 2θ = 5–85◦ with a scanning
speed of 2◦/min and a step size of 0.02014◦.

2.3.4.1. µX-CT

In this study, the Siemens Somatom Sensation 40 CT machine was adopted to obtain
the composition spatial distribution of ingredients and meso-structure information of
SSUHPC and FRUHPC species at a size of Φ100 × 100 mm2. This X-ray CT system is
based on cone-beam scanning technology, which consists of a 240 kV/320 W microfocus
X-ray source and a radiation detector with a nominal resolution of less than 2 µm. This
microfocused X-ray source has a resolution of 1 µm and a minimum distance of 4.5 mm
between the focus and the sample. In the experiment, 190 kV lamp voltage and 0.45 mA
current value were used. When the CT system was ready, the cylindrical sample was
secured to a table on a low-density poly-cylindrical base. In order to receive the X-ray
radiation beam evenly in the acquisition system, each specimen was moved up and down
automatically during the 1 h scan.
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2.4. Modeling and Analysis of SSUHPC/FRUHPC Based on Avizo Software

In order to analyze the three-dimensional pore and fiber structure of UHPC made up
of seawater sea sand and freshwater river sand, 3D models of the pore and fiber structures
of each samples were developed based on continuous slices obtained by µX-CT, and this
process was completed by Avizo software. Firstly, the threshold was adjusted and selected,
and the pores or fiber were separated from the solid structure to obtain the 3D reconstruction
models of the pore and fiber structure of each sample. The pore and fiber structure statistics
were obtained through the numerical analysis function included in the software, through
which the pore and fiber structure of the sample could be analyzed quantitatively. Figure 2
shows the schematic diagram of the pore and fiber structure reconstruction modeling.
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3. Results and Discussion
3.1. Mechanical Properties and Durability

In order to comprehensively understand the performance of ultra-high-performance
polymer cement mortar prepared with seawater and sea sand in this study, the mechanical
properties and corrosion resistance of SSUHPC and FRUHPC were compared and studied.
The specific research results are as follows.

3.1.1. Mechanical Properties

After 85 ◦C hot water curing, the compressive strength of SSUHPC and FRUHPC
reached 162.1 ± 8.1 MPa and 173.3 ± 8.6 MPa, respectively, as shown in Figure 3a. The
compressive strength of UHPC prepared with seawater sea sand was 93.5% that of FRUHPC,
which was slightly reduced. In this study, the compressive strengths both kinds of UHPC
were found to be higher than 150 MPa [53].
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Figure 3. Comparison of compressive strength and Vickers hardness between SSUHPC and FRUHPC:
(a) Compressive strength; (b) Vickers hardness.

The mechanical properties of SSUHPC and FRUHPC were further compared by
Vickers hardness testing, as shown in Figure 3b. The results showed that there was little
difference in the internal Vickers hardness of the UHPC materials, which indicated that
the internal structures of the UHPC materials prepared in this study tended to be uniform.
However, the Vickers hardness of UHPC materials prepared with sea water and sea sand
was higher than that of UHPC materials prepared with fresh water and river sand, which
indicated that the hydration degree of mortar was more mature when using seawater and
sea sand to prepare UHPC, and the strength of the corresponding hardened cement mortar
was higher.

The fatigue failure process of ultra-high-performance polymer cement mortar presents
three stages: crack formation, stable crack development, and crack instability develop-
ment [54]. Specimen deformation under fatigue load was studied by analyzing the strain–
load cyclic relationship curve, as shown in Figure 4, where the black curve is the strain–load
cyclic curve, and the blue curve is the stress–load cyclic curve.
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loading times of FRUHPC when the loading value was 10 kN; (d) 500,000 loading times of SSUHPC
when the loading value was 10 kN.

When the loading value was 5 kN, the strain of both groups of UHPC remained stable
with the increase of loading times, and there was no change during the whole fatigue test, as
shown in Figure 4a,b. This demonstrated that both SSUHPC and FRUHPC maintained good
fatigue resistance, and no stress failure occured in the 1 million cycle fatigue test. When
the loading value was 10 kN, the strain–load cyclic relationship curve remained stable and
unchanged for 500,000 loading cycles, and FRUHPC continued to maintain excellent fatigue
resistance, as shown in Figure 4c. When the loading value was 10 kN, the strain–load
cyclic relationship curve of SSUHPC remained stable during the first 15,000 loading cycles,
and the strain tended to change longitudinally during 15,000–35,000 loading cycles. In the
process of 35,000–45,000 loading cycles, strain mutation occurred. After 45,000 loading
cycles, the strain–load cyclic relationship curve tended to be stable until the end of the
test, as shown in Figure 4d. Different from FRUHPC, the fatigue test process of SSUHPC
under the loading value of 10 kN presented an obvious three-stage mode of evolution:
(I) After a period of stable stress loading, the precursors of stress change start to appear in
the structure, this stage was relatively long with unobvious strain; (II) After a long loading
cycle time, the strain suddenly increased sharply, and the strain mutation time was short
but the change was great; (III) The strain stabilized a short time after mutation until the
end of the test.

When the loading value in the fatigue test was 5 kN, no deformation or cracking
occurred on the surface of the UHPC materials prepared using freshwater river sand or
seawater sea sand, as shown in Figure 4a,b, indicating the good fatigue resistance of both
UHPC materials. When the loading value in the fatigue test was 10 kN, there was no
damage to FRUHPC after 500,000 times loading, while cracking occurred on the side near
the bottom of SSUHPC, as shown in Figure 4d. The fatigue resistance of SSUHPC was
inferior to that of FRUHPC.

Figure 5 shows the schematic diagram of fatigue failure in SSUHPC. Before the cracks
appeared in the structure, the cement mortar and steel fiber worked together to prevent
cracks in the concrete and ensure the structural integrity of SSUHPC. When cracks appeared,
the cement mortar in the crack position had lost its stress-bearing role, but the continuous
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steel fiber structure in SSUHPC was not disconnected and the steel fibers at the cracking
place were able to bear the external stress. Therefore, SSUHPC still maintained its structural
integrity and demonstrated a certain fatigue resistance when cracking occurred.
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3.1.2. Anticorrosion Properties

The carbonization depth of accelerated carbonization in 28 days was 0 and the relative
elastic modulus was 100% after 1000 freeze–thaw cycles in fresh water, 3.5 wt% and
7.0 wt% NaCl solutions, as shown in Table 7. The test results showed that both SSUHPC and
FRUHPC had excellent carbonation resistance and frost resistance, without any apparent
difference. Both SSUHPC and FRUHPC showed good corrosion resistance against chloride
ion. The diffusion coefficient of chloride ion in SSUHPC was 1.27 × 10−12 m2/s and the
electric flux was 83 C, slightly lower than FRUHPC. The results of the sulfate erosion test
also showed that SSUHPC performed better than FRUHPC.

Table 7. Laboratory test results of durability.

Species
Chloride Ion Diffusion

Coefficient (RCM
Method)

Chloride Ion
Permeability

(Electricity Method)
Carbonization

Frost Resistance
Resistance of Sulfate

AttackFresh Water 3.5 wt% NaCl
Solutions

7.0 wt% NaCl
Solutions

SSUHPC 1.27 × 10−12 m2/s 83 C 0 mm 100% 100% 100%
Rough surface, no

obvious defect, no steel
fiber leakage

FRUHPC 1.32 × 10−12 m2/s 92 C 0 mm 100% 100% 100%
Rough surface, marked

defect, steel fiber
leakage

Figure 6a,b shows the morphology of SSUHPC and FRUHPC after 1000 freeze–thaw
cycles. Both SSUHPC and FRUHPC maintained structural integrity without cracks or
damage, whether in fresh water, 3.5 wt%, or 7.0 wt% NaCl solution. The appearance
changes of SSUHPC before and after frost resistance testing in 7 wt% NaCl solutions
are shown in Figure 6c,d. After 1000 freeze–thaw cycles, brown spots appeared on the
surface of SSUHPC, which was caused by the iron ions precipitated from steel fibers
and generating rust on the surface of the concrete. Figure 7 shows the macroscopic and
microscopic morphology of SSUHPC and FRUHPC after carbonization. The carbonation
depth of the two kinds of concrete was zero; carbonation was limited to the surface on
both kinds of concrete, and carbonation products dominated by CaCO3 uniformly covered
the surfaces, while no carbonation corrosion was found inside the concrete. The surfaces
of both SSUHPC and FRUHPC showed obvious changes under sulfate erosion, as shown
in Figure 8. The surface of SSUHPC became rough, without obvious structural defects
or leakage of steel fibers after 200 cycles of wetting and drying, as shown in Figure 8b.
However, obvious defects appeared and a number of steel fibers leaked out, in addition to
the roughness of the surface of FRUHPC, as shown in Figure 8e. The mechanical properties
of SSUHPC and FRUHPC after sulfate erosion were investigated by Vickers hardness, as
shown in Figure 8c,f. The test results showed that the mechanical properties on the surface
of the two samples obviously decreased after sulfate erosion, but the mechanical properties
inside were still high.
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The sulfate resistance of SSUHPC was obviously better than that of FRUHPC. In
conclusion, UHPC prepared with seawater and sea sand had better durability than UHPC
prepared with freshwater river sand.

3.2. Comparison of Material Characteristics

UHPC is an ultra-high strength cement-based material composed of cement mortar,
pores, and steel fibers. The preliminary study found that the mechanics and durability
of SSUHPC and FRUHPC were generally at the same level, although there were some
differences. Therefore, XRD, SEM, MIP, and X-CT techniques were used to explore the
mechanism of the performance differences of the two UHPC materials.

3.2.1. Cement Mortar

The hydration products of mortar in SSUHPC and FRUHPC were studied by X-ray
diffraction test, and the test results are shown in Figure 9. Firstly, there were characteristic
diffraction peaks of C3S and C-S-H in the XRD patterns, which was due to the incomplete
hydration of cement particles, and the coexistence of hydrated and unhydrated particles.
Secondly, the characteristic peak of AFt did not appear in SSUHPC. However, AFt appeared
in the FRUHPC specimen, which further indicated that the pore structure of cement mortar
in FRUHPC was relatively loose. In addition, the presence of chloride ions in seawater
and sea sand promoted the dissolution of calcium hydroxide. The hydration of the cement
provoked the formation of more mature hydration products, which promoted the hydration
of the cement and produced Friedel’s salt.
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Figure 9. Different groups of XRD maps.

The microscopic morphology of SSUHPC and FRUHPC was studied by SEM tech-
nology, as shown in Figure 10. The structures of the two concrete materials prepared in
this paper were very dense, and the steel fiber was closely combined with the hardened
cement mortar, as shown in Figure 10a,c. The fly-ash particles were evenly distributed and
the C-S-H gel was distributed on the fly ash particles, which indicated that the fly ash had
an obvious pozzolan effect. The hydration products were closely bound to the fly ash, as
shown in Figure 10b,d. Although the structures of the two concrete materials were very
dense, there were still many pores in the hydration products in FRUHPC, as shown in
Figure 10d. Compared with SSUHPC, the mortar in FRUHPC was slightly inferior.
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3.2.2. Pore Structure

The pore structure characteristics of mortar in the range of 0~200 µm in SSUHPC and
FRUHPC were studied by MIP technology. The results of porosity and cumulative pore
volume obtained were shown in Table 8. The porosity of mortar in FRUHPC was low, due
to the low W/B ratio, which was 6.9736%. The porosity of SSUHPC was further reduced to
5.9218% after replacing freshwater river sand with seawater sea sand, and the cumulative
pore volume was reduced by 15.2%. The pore size distributions of mortar in SSUHPC
and FRUHPC are shown in Figure 11a, and the cumulative pore volume distributions are
shown in Figure 11b. The pore size distribution of the two types of concrete was mainly
concentrated in the range of less than 40 nm; the pore size distribution of FRUHPC was
relatively large in the range of 1~40 nm, where the pores were mainly harmless pores
(<20 nm) and less harmful pores (20~50 nm); the pore size distribution of SSUHPC was
narrower than 20 nm. The low porosity and pore size distribution give SSUHPC and
FRUHPC the characteristics of dense pore structure, which was an important factor to
ensure the excellent mechanical and durability characteristics of the concrete materials.
In conclusion, SSUHPC exhibited better pore structure than FRUHPC in the range of
0~200 µm.

Continuous section data of two kinds of concrete were obtained by µX-CT technology,
and then the pore structure models of SSUHPC and FRUHPC with pore diameters greater
than 200 µm were obtained by Avizo software, as shown in Figures 12 and 13. The porosity
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of the two types of concrete obtained through modeling calculation is shown in Table 9.
Due to the low W/B ratio of UHPC, there were many pores in the concretes made with
freshwater river sand and seawater sea sand, as shown in Figure 12a,b and Figure 13a,b.
From the distribution characteristics of the pore structure, there were obvious stratifications
in the SSUHPC. The size and number of pores in the upper area of the specimen were large
(Figure 12(aII)), while the size and number of pores in the bottom area of the specimen
were smaller (Figure 12(aIII)). The pores in the middle area of the specimen were relatively
uniform, as shown in Figure 12a,b. The pores in FRUHPC were uniformly distributed on
the whole, and there was no stratification in its structure, as shown in Figure 13a,b. The
results showed that there were 16 905 pores in SSUHPC, and the pore size ranged from 200
to 3 500 µm. FRUHPC had a total of 7 318 pores with an aperture distribution between 200
and 5 300 µm. The porosity of SSUHPC was 1.52%, which was over twice that of FRUHPC
(0.60%). FRUHPC exhibited better pore structure than SSUHPC when the pore size was
larger than 200 µm.

Table 8. Porosity and cumulative pore volume of SSUHPC and FRUHPC obtained by MIP (below
200 µm).

SSUHPC FRUHPC

Porosity (%) 5.9218 6.9736
Cumulative pore volume

(mL/g) 0.0274 0.0323
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3.2.3. Fiber Structure

Continuous section data of two kinds of concrete were obtained by µX-CT technology,
and fiber structures of SSUHPC and FRUHPC were obtained by Avizo software, as shown
in Figure 14. The distribution of steel fibers in SSUHPC and FRUHPC were uniform and
dense, and there was no agglomeration phenomenon. From the distribution characteristics
of the fibers, precipitation was observed in the SSUHPC prepared with seawater and sea
sand. The fibers at the upper areas of the concrete were sparse, and the fibers at the bottom
area were compact, as shown in Figure 14a,b. The fibers in FRUHPC were uniformly
distributed, and there was no obvious precipitation phenomenon in the SSUHPC structure,
as shown in Figure 14c,d. The distribution of steel fiber in FRUHPC was more uniform
than that in SSUHPC. The difference of fiber distribution in concrete was also an important
factor affecting the mechanical properties of concrete.
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Table 9. Porosity of SSUHPC and FRUHPC obtained by µX-CT (above 200 µm).

SSUHPC FRUHPC

Porosity (%) 1.52 0.60
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4. Discussion

According to the research above, UHPC with seawater and sea sand demonstrates
excellent corrosion resistance, including carbonation resistance, frost resistance, chloride
resistance, and sulfate resistance, in which aspects it outperformed FRUHPC. At the same
time, we found that the macroscopic mechanical properties of SSUHPC were slightly poor.
In order to explore the influence mechanism of material characteristics on mechanical
properties and erosion resistance, in this paper, UHPC was separated into mortar, pore,
and steel fibers, as shown in Figure 15. Hydration degree of mortar, characteristics of pore
structure, and dispersion of steel fibers were important factors affecting the mechanical
properties and anticorrosion performance of UHPC materials. The excellent mechanics
and anticorrosion performance of UHPC were guaranteed by uniformly dispersed steel
fiber, hydrated cement mortar with mature structure, and reasonable air pore structure.
Compared with FRUHPC, the mortar in SSUHPC had a higher degree of hydration, and
the mortar with a dense and mature hydration structure gave the UHPC material its higher
corrosion resistance. Due to the uneven distribution of air pores and steel fibers, the
compressive strength and fatigue resistance of SSUHPC were inferior to those of UHPC
prepared with freshwater river sand.

For the first time, this paper has verified the possibility of using seawater and sea sand
to produce concrete with ultrahigh mechanical properties and anticorrosion performance.
SSUHPC was slightly inferior to UHPC prepared from freshwater river sand in terms of its
mechanical properties, but it had promising anticorrosion characteristics. In view of these
problems, the performance of SSUHPC can be further improved by optimizing the air-pore
structure and fiber distribution.
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5. Conclusions

In this study, seawater and sea sand were used to prepare ultra-high-performance
polymer cement mortar. As a comparison, freshwater and river sand were used to pre-
pare FRUHPC. The mechanics and anticorrosion performance of ultra-high-performance
polymer cement mortar prepared with seawater and sea sand were comprehensively evalu-
ated, and the mechanism of performance difference between SSUHPC and FRUHPC was
revealed. The main conclusions are summarized as follows:

1. The carbonization depth of accelerated carbonization in 28 days was 0 and the relative
elastic modulus was 100% after 1000 freeze–thaw cycles in fresh water, 3.5 wt%
and 7.0 wt% NaCl solutions. SSUHPC demonstrates excellent corrosion resistance,
including carbonation resistance, frost resistance, chloride resistance and sulfate
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resistance, at all of which it outperformed FRUHPC. Mortar with higher hydration
degree and better optimized gel pore characteristics improved the durability SSUHPC
compared to FRUHPC. Compared with other seawater sand concrete, SSUHPC has
great advantages.

2. The compressive strength of FRUHPC was 173.3 ±8.6 MPa. The compressive strength
of SSUHPC prepared with seawater and sea sand reached 162.1 ± 8.1 MPa, which
was 93.5% of FRUHPC. Only SSUHPC showed fatigue damage in the fatigue test.
However, the Vickers hardness results showed that SSUHPC was slightly harder than
FRUHPC. Compared with other seawater sand concrete, SSUHPC has higher value
mechanical properties. Although the ultra-high-performance polymer cement mortar
prepared with seawater and sea sand revealed excellent mechanical properties, the
macroscopic mechanical properties of SSUHPC were lower than those of UHPC with
the same mixing ratio of freshwater river sand, due to the disadvantages of air-pore
structure and fiber structure.

3. Ultra-high-performance polymer cement materials can be divided into three parts:
cement mortar, pores, and steel fibers. A densely structured cement mortar, with
continuous and uniform fibers and pore structure promotes the ultra-high mechanical
properties and anticorrosion of concrete materials. Although the structures of the
two concrete materials were very dense, there were still many pores in the hydration
products in FRUHPC. Compared with FRUHPC, the hydration degree of mortar in
SSUHPC was higher. The gel pore structure (pore diameter < 200 µm) was more
optimized while the air-pore structure (pore diameter ≥ 200 µm) was obviously infe-
rior. The air porosity of SSUHPC was 1.52%, which was over twice that of FRUHPC
(0.60%). FRUHPC exhibited better air-pore structure than SSUHPC when the pore
size was larger than 200 µm. The fibers in FRUHPC were uniformly distributed on the
whole, and there was no obvious precipitation phenomenon apparent in SSUHPC.

4. Compared with UHPC made using freshwater river sand, the preparation of UHPC
with seawater and sea sand has its own advantages and disadvantages. In view of
the shortcomings of SSUHPC, the performance of UHPC with seawater sand can be
further improved by improving the pore structure and fiber structure. In this paper,
the performance differences of mechanical and anticorrosion properties in seawater
sea-sand and freshwater river-sand ultra-high-performance polymer cement mortars
were systematically studied, and the mechanisms of performance difference between
the two kinds of concrete materials were revealed. These results lay a solid theoretical
foundation for the utilization of sea sand resources and the promotion of seawater
sea-sand concrete.
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