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Abstract: Surface chemical modification of carbon nanotubes can enhance the compatibility with
polymers and improve flame retardancy performances. In this work, the double bond active sites
were constructed on the surface of carbon nanotubes modified by the γ-methacryloyloxypropyl
trimethoxysilane (KH570). Glycidyl methacrylate (GMA) was further grafted onto the surface of
carbon nanotubes via free radical polymerization. Finally, the flame retardant melamine polyphos-
phate (MPP) was bonded to the surface of carbon nanotubes by the ring-opening reaction. This
modification process was proved to be achieved by infrared spectroscopy and thermogravimetric
test. The carbon nanotubes modified by flame retardant were added into the epoxy matrix and cured
to prepare flame retardant and thermal conductive composites. The flame retardancy of composites
were studied by cone calorimetry, UL94 vertical combustion test and limiting oxygen index. The
thermal conductivity of composites was characterized by laser thermal conductivity instrument. The
results showed that when the addition amount of flame retardant MPP-modified carbon nanotubes
in composites was 10 wt%, the flame retardant level of UL94 reached to V2, the limiting oxygen index
increased from 25.1 of pure epoxy resin to 28.3, the PHRR of pure epoxy resin was reduced from
800 kW/m2 to 645 kW/m2 of composites and thermal conductivity of composites was enhanced
from 0.21 W/m·K−1 of pure epoxy resin to 0.42 W/m·K−1 of the composites.

Keywords: flame retardancy; epoxy composites; carbon nanotubes; surface chemical modification

1. Introduction

Epoxy resin (EP) is one of an important thermosetting resin, which possesses many
advantages, such as excellent electrical insulation, high mechanical properties, excellent
solvent resistance and so on. It is widely used in the field of composites as electronics
and appliances [1]. With the high integration of electronic devices, higher requirements
are put forward for the flame retardant and thermal conductivity of epoxy composites.
High flame retardant and thermal conductivity are an important development direction of
epoxy composites [2,3].

The traditional thermal conductivity modification of epoxy resin is to realize the
construction of thermal conductivity path via adding high thermal conductivity fillers, such
as metal fillers, silver particles [4], silver nanowires [5] and copper particles [6]; or inorganic
thermal conductivity particles, such as boron nitride [7], alumina [8], silicon carbide [9] and
other powders; or carbon materials, such as graphene [10], carbon nanotubes and graphite;
or the synergistic combination of them [11], and this method can enhance the thermal
conductivity of epoxy composites. In order to obtain the flame retardant performance of
epoxy composites, the modification way of intrinsic flame retardant could be adopted to
make the epoxy resin molecules contain flame retardant elements, or the flame retardant
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curing agent was added in epoxy curing process. The flame retardant properties of epoxy
composites were acquired through this method, and this kind of epoxy resin was inherently
flame retardant, but its preparation process was complex, and it was not suitable for
large-scale production, which limited the development and application of intrinsic flame
retardant epoxy resin [12,13]. It was an effective strategy to solve the high cost of the
flame retardant epoxy resin by directly additional flame retardant including DOPO [14],
melamine salts [15] and other flame retardants, as well as nano powders [16], such as
silica, montmorillonite [17], carbon nanotubes [18–21], graphene [3,22], carbon fiber [23]
and so on. In particular, carbon nanotubes are one-dimensional quantum materials whose
radial size is in the order of nanometers and axial size is in the order of microns. Both
ends of the tubes are basically sealed. Compared with other nano materials, it has more
unique structure and strange properties. It has high research value in many fields, such as
high-efficiency solar energy converters, high-efficiency hydrogen storage materials, nano
electronic devices, composite materials, conductive and thermal conductivity, nano flame
retardants and so on [24–26].

These fillers endow the composites with the excellent flame retardant properties
and mechanical and thermal conductivity properties. However, the addition of flame
retardant to the composite will lead to the leakage and migration of flame retardant. The
melamine salt flame retardant will exist in the epoxy resin in the mixed system in form
of particles, which will reduce the mechanical properties of the composites [27–29]. In
view of the high-performances requirements of thermal conductivity and flame retardancy
of the epoxy resin, this work was based on carbon nanotubes, and it was modified by
the silane coupling agent on its surface. Then, the glycidyl methacrylate (GMA) was
grafted onto the surface of carbon nanotubes through polymerization, and the melamine
polyphosphate (MPP) was bonded on the surface of carbon nanotubes via the ring-opening
reaction to form flame retardant carbon nanotubes as the core, and the flame retardant
MPP was the outer layer shell. The modified carbon nanotubes were added into the
epoxy resin and cured by temperature programmed. Finally, the epoxy resin/carbon
nanotube composites with the flame retardant and thermal conductivity were prepared.
The purpose of this study was to strengthen the function of carbon nanotubes through
surface modification in order to enhance flame retardancy and thermal conductivity of
epoxy resin/carbon nanotube composites in the meantime. This functional modification
strategy would provide a promising route to design epoxy composites with the enhanced
flame retardant and thermal conductivity.

2. Experiment Part
2.1. Materials

Carbon nanotubes (CNTs, see Table 1), with the diameter of about 20 nm and a length
of about 30~50 µm, were supplied by Henan national carbon nanotechnology Co., Ltd.
(Pingdingshan, China).

Table 1. Properties of CNTs.

The Qualitative Characteristics of CNTs Value

Internal diameter (nm) 4~10
External diameter (nm) 10~30

Length (µm) 30~50

The epoxy value of bisphenol A epoxy resin (EP, see Table 2) was 0.51, it was pur-
chased from Shanghai McLean Biochemical Technology Co., Ltd. (Shanghai, China);
2-ethyl-4-methylimidazole (EMI-2,4, see Table 3), purity greater than 98%, was obtained by
Shanghai McLean Biochemical Technology Co., Ltd.
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Table 2. Properties of epoxy resin E-51.

The Qualitative Characteristics of E-51 Value

Epoxy equivalent (g/mol) 192~216
Density at 25 ◦C (kg/m3) 1167

Molecular weight 375.86
Viscosity (Pa·s) 13~20

Table 3. Properties of EMI-2,4.

The Qualitative Characteristics of EMI-2,4 Value

Melting point (◦C) 47~54
Density at 25 ◦C (kg/m3) 975

Molecular weight 110.16

The N-N dimethylformamide (DMF) was supplied by Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China); azodiisobutyronitrile (AIBN) analytical reagent was purchased
from Tianjin Fuchen Chemical Reagent Factory (Tianjin, China); glycidyl methacrylate
(GMA), was purchased from Shanghai Titan Technology Co., Ltd. (Shanghai, China); abso-
lute ethanol was supplied by Tianjin Yongda Chemical Reagent Co., Ltd. (Tianjin, China)
Melamine polyphosphate (MPP) that was analytically pure was obtained by Shanghai
McLean Biochemical Technology Co., Ltd. γ-methacryloyloxypropyl trimethoxysilane
(KH570) was obtained by Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China).

2.2. Preparation of Composites
2.2.1. Carbon Nanotubes Modified by Silane Coupling Agent KH570

The carbon nanotubes (10 g) were added into a 1000 mL beaker and the dilute con-
centrated sulfuric acid and concentrated nitric acid were added into an acid solution with
equal molar concentration, the diluted acid solution was mixed according to the volume
ratio of 3:1, poured the mixed solution into the beaker and stirred magnetically for 5 h.
The acidified carbon nanotubes were left to stand overnight; the supernatant was removed
and washed by distilled water and then neutralized to neutral with sodium hydroxide
solution, and the neutral solution was filtered and washed alternately with distilled water
and ethanol three times. We put the acidified carbon nanotubes into a beaker, 2 mL KH570
was added into a certain amount ethanol, they were stirred fully and we put them into a
vacuum drying oven at 80 ◦C for reaction for 4 h. After the reaction, the filter cake was
repeatedly washed with ethanol and distilled water three times, and the filter cake was
freeze-dried for 24 h to obtain KH570-modified carbon nanotubes CNTs-KH570.

2.2.2. GMA Modified the CNTs-KH570

The modified CNTs-KH570 fillers (10 g) were added into a four port flasks equipped
with a reflux condenser tube; 90 mL DMF and 10 mL GMA were added successively, and
nitrogen was introduced for 30 min to discharge the air. Magnetic stirring in a 70 ◦C
constant temperature water bath under nitrogen protection was done for 30 min, and the
initiator AIBN 0.10 g (monomer concentration 10 wt%) was put in the flask. At the end
of the reaction, the reactants were obtained by suction filtration, and then the filter cake
was washed alternately with ethanol and acetone many times, and then the filter cake was
freeze-dried to obtain the CNTs-KH570-PGMA particles with polymerized GMA on the
surface of the CNTs.

2.2.3. Flame Retardant MPP-Modified CNTs-KH570-PGMA

The CNTs-KH570-PGMA fillers (10 g) was added into the DMF solution containing
15 wt% MPP and soaked at room temperature for 24 h. The oil bath was heated and
maintained 120 ◦C and reacted with magnetic stirring for 24 h. At the end of the reaction,
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the reactants were pumped and filtered to obtain filter cake, washed alternately with DMF
and acetone three times and finally freeze-dried to obtain the MPP-modified CNTs-KH570-
PGMA-MPP particles, abbreviated as CNTs-M. This preparation diagram is shown in
Figure 1.
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Figure 1. Schematic diagram of the preparation process of CNTs and their modified particles.

2.2.4. Preparation of EP/CNTs-M Composites

A certain amount of CNTs-M was added into ethanol, and after ultrasonic dispersion
and magnetic stirring for half an hour, the EP-51 was added into the solution. After
ultrasonic stirring for half an hour, all the ethanol was removed by vacuum distillation
under the heating condition of 50 ◦C. This solution replacement method can effectively
avoid the agglomeration of carbon nanotubes in epoxy resin matrix [30]. After cooling to
room temperature in an ice water bath, the curing agent EMI-2,4, measured according to
6 wt% of the mass of epoxy resin, was added, mixed and defoamed in a planetary mixer for
3 min; the operation was repeated three times to obtain an evenly mixed premix. Then the
resin premix was poured into the stainless-steel mold with coating vacuum silicone grease
and cured at 60 ◦C for 2 h and then 150 ◦C for 8 h. The pure epoxy resin and EP/CNTs-M
composites were also prepared according to this process. The filling contents of CNTs-M
in the composite EP/CNTs-M were 1 wt%, 3 wt%, 5 wt% and 10 wt% of the total mass
of the composites, respectively, and the corresponding composites were abbreviated as
EP/CNTs-M1, EP/CNTs-M3, EP/CNTs-M5 and EP/CNTs-M10, respectively.

2.3. Measurements and Characterization

The chemical structures of CNTs-KH570, CNTs-KH570-PGMA and CNTs-MPP were
investigated by the tensor 37 Fourier transform infrared spectrum (Bruker Company, Ettlin-
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gen, Germany) using the KBr dilution pellets in the region of 400~4000 cm−1. The thermal
analysis test was examined by the TA Q600 thermogravimetric analyzer
(TA Instrument Company, New Castle, DE, USA). At the nitrogen atmosphere, the testing
temperature range was from the 30~800 ◦C, and the heating rate was 10 ◦C/min. The
sample morphology was observed by SU8010 field emission scanning electron microscope
(Hitachi high tech company, Tokyo, Japan), and the scanning voltage was 1.0 kV. The pow-
der sample was pasted on the sample table through conductive adhesive and was tested
to observe its micro morphology. Based on GB/T 2408-2008 standard, UL94-X horizontal
and vertical combustion tester (Modis China Combustion Technology Co., Ltd. Nanjing,
China) was used to determine the combustion rate of the sample, and the sample size was
127 × 12.7 × 2.7 mm3. Based on GB/T 2406-2009 standard, HC-2C oxygen index tester of
Nanjing Shangyuan Analytical Instrument Co., Ltd. (Nanjing, China), was utilized to con-
firm the limiting oxygen index (LOI) of the sample. The sample size was 100 × 10 × 4 mm3.
Based on the GB/T 16172-2007 standard, the combustion performance of the sample was
measured by using the cone calorimeter (FTT company, Derby, UK). The samples’ size was
100 × 100 × 2.7 mm3, and the radiant heat flux was 35 kW/m2. DLF-1200 laser thermal
conductivity instrument (TA instrument company, New Castle, DE, USA) was employed to
test the thermal conductivity of the samples. The samples’ size diameter was 25.4 mm, and
the thickness was 2.30 mm. The samples were sprayed with graphite to treat the surface,
and the test temperature was 30 ◦C.

3. Results and Discussion
3.1. Characterization of Flame Retardant Molecular Modification on the Surface of CNTs
3.1.1. Infrared Spectrum

The infrared spectra of the three particles are shown in Figure 2. Curve 1 represented
the particles modified by silane coupling agent KH570, curve 2 displayed the particles
CNT-KH570-PGMA polymerized on the surface of carbon nanotubes by GMA, and curve 3
displayed the infrared absorption curve of CNTs-M after the bonded flame retardant MPP.
The absorption peak at 1620 cm−1 can be clearly seen from curve 1 in Figure 2, which was
the absorption peak of C=C of carbon nanotubes modified by KH570. Combined with the
TGA data of CNTs and CNTs-KH570, it can be seen that the surface modification method of
carbon nanotubes was successful. As can be seen from curve 2 in Figure 2, the absorption
peaks of the carbonyl group were at 1650 cm−1, the epoxy group was at 908 cm−1 and the
methylene group was at 1425 cm−1; these results revealed that the GMA was grafted onto
the surface of carbon nanotubes and formed CNTs-KH570-PGMA functional particles.
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As can be seen from curve 3 in Figure 2, the shoulder peak of -NH2 appeared in
3125 cm−1, the vibration absorption peak of carbonyl group was at 1724 cm−1, the absorp-
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tion peak of P-OH appeared at 1670 cm−1 and the absorption peak of -NH+ emerged at
1390 cm−1; the absorption peaks of the C-N key appeared at 1260 cm−1, which proved that
melamine polyphosphate was bonded to the surface of carbon nanotubes. It was worth
noting what emerged in the 908 cm−1 characteristic absorption peaks of the epoxy group,
which showed that the grafting to the surface of carbon nanotubes PGMA were not all open
loop. Probably because this part of the group package was buried by the PGMA polymer
chains, these were not involved in MPP ring-opening addition reaction. Additionally, the
epoxy groups were preserved in this part, which was helpful to enhance the binding force
between carbon nanotubes and epoxy resin, and the thermal conductivity and mechanical
properties of composites were improved.

3.1.2. Thermogravimetric Analysis

Figure 3 shows the thermal weight loss curves of carbon nanotubes (curve 1), carbon
nanotubes modified by a silane coupling agent KH570 (curve 2), carbon nanotubes polymer-
ized by GMA (curve 3) and carbon nanotubes bonded by MPP (curve 4). Compared with
curve 2, the grafting degree of silane coupling agent was about 11 g/100 g, compared with
curve 3 and curve 2, the grafting degree of PGMA was about 15 g/100 g; compared with
curve 4 and curve 3, the grafting degree of flame retardant MPP was about 24 g/100 g. The
comparison of these results with the data of infrared spectroscopy showed that our design
strategy was successful [31]. The MPP was bonded on the surface of carbon nanotubes
via the ring-opening reaction, which established a foundation for improving the flame
retardant performance of the composites in the next step.
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3.1.3. Morphology of CNTs and Modified CNTs

The sizes and morphologies of CNTs and CNTs-KH570-PGMA were observed by SEM
in Figure 4. Figure 4a shows the SEM image of carbon nanotubes. It can be seen that the
diameter of carbon nanotubes was about 30 nm and the length was about 30–50 µm in
this work, and the surface boundary of single carbon nanotubes was relatively clear. In
contrast, in Figure 4b, the polymer PGMA chains were grafted on the surface of carbon
nanotubes, and the surface of carbon nanotubes became blurred under the high-energy
electron bombardment of scanning electron microscope. Simultaneously, the diameter of
the CNTs-KH570-PGMA had a slight growth; this phenomenon provided evidence that the
surface of carbon nanotubes was modified by the PGMA polymer chains. According to the
TGA data analysis in Figure 3 and the infrared spectrum data in Figure 2, the strategy of
grafting polymer on the surface of carbon nanotubes was successful.
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3.2. Thermal Stability of Composites

Figure 5 shows the thermogravimetric curves of epoxy resin and EP/CNT-M3, EP/CNT-
M5 and EP/CNT-M10 composites under nitrogen atmosphere. In Figure 5, with the in-
creasing of CNTs-M content, the residual amount of the composites becomes higher and
higher. The residual amount of pure EP was about 10%, and when the amount of CNTs-M
was 5 wt%, the residual amount of EP/CNTs-M5 composite was up to 50 wt%. When the
addition amount of CNTs-M was 10 wt%, the residual amount of EP/CNTs-M5 composite
reached 70 wt%, which further proved that the heat resistance of EP/CNTs-M composites
were enhanced steadily with increasing of the addition amount of CNTs-M. These may be
that the flame retardant MPP contents in the composites were gradually improved, and the
reticular structure between carbon nanotubes could block the thermal decomposition of
epoxy matrix. Meanwhile, the flame retardant MPP would also prevent the combustion of
the composites and cause the decomposition of the composites matrix and then result in
the improvement of the heat resistance of the composites.
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3.3. Combustion Performance of Composites

The conical calorimeter is one of the effective methods for characterizing the combus-
tion properties of materials under real fire conditions [32]. The flame retardant properties of
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composites were studied from three aspects in this work: energy change, smoke production
and harmful gas.

3.3.1. Study from the Heat Release

Figure 6 showed the heat release rate (HRR) and total heat release (THR) of epoxy
resin and composites EP/CNTs-M10 with the combustion time. Figure 6a identifies that
the pure EP was easy to burn, and its peak heat release rate (peak-HRR, PHRR) reached
800 kW/m2, while the PHRR of EP/CNT-M10 composites decreased to 645 kW/m2; it
was 20% lower than that of pure EP. These results indicated that the CNTs grafted with
flame retardant MPP can effectively reduce the heat release rate of the composites, and
the flame retardant MPP was playing a flame retardant function, which can improve the
flame retardant performance of the composites. It can be seen from Figure 6b that the
total heat release of EP/CNTs-M10 composites was lower than that of pure EP during the
600 s of combustion. As the combustion process progresses, the flame retardants added
to EP/CNTs-M10 composites were exhausted. In the later period of the combustion of
the composites, the heat release of the composites was almost higher than that of the pure
epoxy resin, which may mean that the polymer PGMA was grafted on the surface of the
carbon nanotubes and was accompanied by a large amount of heat release, resulting in the
total heat release of the composites EP/CNTs-M10 exceeding that of the pure epoxy resin.
The results in Figure 6 could clearly prove that the carbon nanotubes modified by flame
retardant MPP can indeed play a flame retardant function in the composites.
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3.3.2. Study in Terms of Smoke Production

Figure 7 showed the smoke production rate (SPR) and total smoke production (TSP)
of epoxy resin and composites EP/CNTs-M10 as a function of combustion time. As can
be seen from Figure 7a, compared with pure epoxy resin, the smoke production rate of
the composites EP/CNTs-M10 was decreased. The peak value of smoke production rate
of pure epoxy resin appeared at about 100 s, while the peak value of smoke production
rate of composite materials lagged behind to about 120 s, which proved that the smoke
production rate of composites EP/CNTs-M10 modified with flame retardant can indeed be
inhibited during the materials’ combustion. When the content of carbon nanotubes was
10 wt%, the peak smoke production rate of the composites EP/CNTs-M10 was decreased
from 0.196 m2/s to 0.176 m2/s, and the value was decreased by about 11%. It proved that
the carbon nanotubes grafted with flame retardant MPP can play a certain flame retardant
function in the matrix of composites.
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In Figure 7b, the total smoke production of EP/CNTs-M10 composite was lower
than that of pure epoxy resin during the whole combustion process, and the total smoke
production of EP/CNTs-M10 composites (11.7 m3) was always lower than that of pure
epoxy resin (13.5 m3). This may be due to the function of carbon nanotubes and their
surface-grafted flame retardants in EP/CNTs-M10 composites. In the process of burning
materials, the flame retardant decomposed rapidly and produced a lot of not flammable
(nitrogen, ammonia, vapor, etc.) to dilute the air near the combustible; polyphosphate also
dehydrated to form more quickly in high temperature under the action of polyphosphoric
acid, and it could promote dehydrated to form a carbide segregation layer to prevent the
epoxy matrix composites from continuing to burn.

3.3.3. Study from Harmful Gases

Figure 8 was the curve of CO generation rate over time during the combustion of epoxy
resin and EP/CNT-M10 composites. It can be seen from the figure that the peak value of CO
gas generated by composites EP/CNTs-M10 (110 s) lagged behind that of pure EP (100 s),
which may be caused by the advance decomposition of the surface-grafted flame retardant
MPP with carbon nanotubes to produce a large amount of non-combustible gas, which
inhibited the combustion of the composite and causes it to not fully combust. However, the
CO yield of the composites EP/CNTs-M10 was higher than that of the pure epoxy resin
after 200 s, which may be attributed to the combustion of the polymer PGMA molecular
chain grafted on the surface of carbon nanotubes. After the flame retardant burned for
200 s, a large number of non-combustible gases and carbonized layers covered the surface
of the composites EP/CNTs-M10, resulting in low combustion efficiency and insufficient
combustion of the composites. Therefore, after 200 s, the output of harmful gas CO of the
composites EP/CNTs-M10 was higher than that of pure epoxy resin. This observation
is often common for flame retarded polymer composites, which arises from decreased
combustion efficiency leading to non-complete burning of the organic materials [33–36].
The peak value of CO gas produced by EP/CNTs-M10 composite was 0.018 g/s, which
was lower than the peak value of CO gas produced by pure EP (0.02 g/s). These results
also proved that the carbon nanotubes modified by MPP can reduce the production rate of
harmful gas CO in epoxy composites.
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3.4. Carbon Residue Diagram and SEM of EP and Composites

Figure 9a,b shows digital images of the carbon residue of epoxy resin and composites
EP/CNTs-M10. Figure 9c shows the SEM image of the carbon residue of composite material
EP/CNTs-M10. It can be seen from Figure 9a,b that there was almost no residual carbon
remained after conical calorimetric test combustion of pure epoxy resin. However, it
can be clearly perceived from Figure 9b that a shell of residual carbon was formed after
combustion of composites, and the main component was the composite of carbon nanotubes
and residual carbon. The residual carbon of EP/CNTs-M10 composite was observed by
SEM and the results is shown in Figure 9c. It can be found out that the most carbon
nanotube morphology was maintained, and there were some residual blocks after the
combustion of epoxy resin among the carbon nanotubes, which could prove that the carbon
nanotubes modified by the flame retardants can play the function of the flame retardant
filler. The flame retardancy of composites was enhanced.
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3.5. Flame Retardant Performance Test of Composites

The results of limited oxygen index and UL-94 flame retardant grade of EP/CNTs-M
composites are revealed in Table 4. The results showed that the limiting oxygen index of
pure epoxy resin was 25.1, and the limiting oxygen index of the composites was enhanced
with the increase of the addition amount of flame retardants modified carbon nanotubes.
When the addition amount of CNTs was 10 wt%, the limiting oxygen index of the composite
was up to 28.3. It was proved that the flammability of EP/CNTs-M composites was elevated.
Meanwhile, the vertical combustion test results showed that the flame retardant grade of
EP/CNTs-M10 composite reached V2, while the pure epoxy resin UL-94 flame retardant
did not have a grade. This showed that the results of limiting oxygen index and UL-94
flame retardant grade test were consistent with the cone calorimeter results, and it also
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proved that the design strategy of carbon nanotubes surface-grafted flame retardant had
certain feasibility.

Table 4. The limiting oxygen index (LOI) and UL-94 rating of EP and composites EP/CNTs-M.

Samples EP EP/CNTs-M5 EP/CNTs-M10

LOI (vol%) 25.1 26.4 28.3
UL-94 rating NR NR V2

3.6. Thermal Conductivity

Figure 10 showed the thermal conductivity of epoxy resin and composites EP/CNTs-
M and EP/CNTs with different content of modified carbon nanotubes. In Figure 10,
the thermal conductivity of pure EP was 0.21 W/m·K−1, while the thermal conductivity
of the composites EP/CNTs-M and EP/CNTs were all enhanced. When the content of
CNTs-M was 10 wt%, the thermal conductivity of the composites was increased to 0.42
W/m·K−1, which was two times higher than pure epoxy resin. As a control experiment,
the thermal conductivity of composite EP/CNTs-10 was 0.36 W/m·K−1, and the thermal
conductivity of composite EP/CNTs was always lower than that of composite EP/CNTs-M;
this may be attributed to the fact that the surface modification of carbon nanotubes with
MPP can improve the force between nanotubes and epoxy matrix, thus improving the
thermal conductivity. However, the result did not reach to the ideal as expected, which
may be due to the interface thermal resistance between carbon nanotubes and epoxy
matrix, resulting in the thermal conductivity of the composites not being as good as we
expected, which indicated that the surface modification of carbon nanotubes was indeed
helpful to improve the thermal conductivity [37,38]. It also indicated that the thermal
conductivity of composites could be enhanced via adding modified particles of carbon
nanotubes into epoxy matrix, indicating that the surface modification of carbon nanotubes
had a long way to go to reduce the interfacial thermal resistance between the carbon
nanotubes and polymer matrix.
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4. Conclusions

Molecular designed modification strategies were used in this work, and the EP/CNTs-
M composites containing efficient flame retardant were prepared. The flame retardant
properties of the composites were greatly improved in comparation with the pure epoxy
resin. When the addition amount of flame retardant MPP-modified carbon nanotubes in
the composites was 10 wt%, the flame retardant level of UL94 reached V2; the limiting
oxygen index increased from 25.1 of pure epoxy resin to 28.3; the PHRR of pure epoxy
resin was reduced from 800 kW/m2 to 645 kW/m2 of composites. Meanwhile, due to the
reduction of the interfacial thermal resistance between the modified carbon nanotubes
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and EP matrix, the thermal conductivity of the EP/CNTs-M composites were also greatly
enhanced from 0.21 W/m·K−1 of the pure epoxy resin to 0.42 W/m·K−1 of the composites.
This functional modification strategy would provide a promising route to design epoxy
composites with the enhanced flame retardant and thermal conductivity. These composites
may be used in the field of electronic packaging with flame retardant and thermal conduc-
tion requirements, such as epoxy resin packaging adhesive for battery and its shell welding
and other key regions.
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