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Abstract: The interfacial modification of basalt-fiber-reinforced polymer (BFRP) composites is an
essential research field and many techniques have been developed to improve the adhesion between
basalt fiber (BF) and the matrix. However, most studies were based on the matrixes of general
plastics and epoxy resins. In this work, five different chain structures of thermoplastic sizing agents
were used to improve the interfacial properties of unidirectional BF-reinforced soluble and high-
temperature-resistant poly(phthalazinone ether nitrile ketone) (BF/PPENK) composites. DMA results
showed that the poly(ether nitrile) (PEN)-sized BF/PPENK (BF-PEN/PPENK) composite exhibited
the optimal interfacial performance, with a storage modulus (E′) and glass transition temperature
(Tg) up to 50 GPa and 288 ◦C, respectively. Moreover, the tensile strength, compressive strength,
flexural strength, and interlaminar shear strength of the BF-PEN/PPENK composite reached 778 MPa,
600 MPa, 1115 MPa and 57 MPa, respectively, and increased by 42%, 49%, 20% and 30% compared
with the desized BF/PPENK composite. This study provides some suggestions for the design of
sizing agents to modify the interface of BF and high-performance thermoplastic resin.

Keywords: basalt fiber; high-performance thermoplastic resin; composite; interfacial modification

1. Introduction

Fiber-reinforced polymer (FRP) composites, such as carbon fiber [1], glass fiber [2],
aramid fiber [3], ultra-high-molecular-weight polyethylene fiber [4], polypropylene fiber [5]
and basalt fiber [6], etc., have obtained wide range of applications for their light weight, high
strength, impact resistance, corrosion resistance. In particular, basalt fiber (BF) possesses
some favorable properties, such as non-pollution, low cost, high- and low-temperature
resistance, chemical stability, thermal insulation, sound absorption, and flame-retardant na-
ture, and especially excellent mechanical properties [7–11]. Basalt-fiber-reinforced polymer
(BFRP) composites, combining the advantages of the fiber and resin, have great potential in
the fields of building, aerospace, petrochemical, automobile, marine, energy conservation,
and environmental protection [12–15]. However, the surface of BF is quite smooth and
inert, and the interfacial adhesion between the fiber and resin is weak [16–18]. Therefore,
various strategies have been used to construct a reasonable interfacial structure of the BFRP
composites to improve their interfacial performance.

The sizing treatment of the fiber surface is a simple, easy-to-operate and industrial-
ized strategy, which mainly includes silane coupling-agent modification, polymer sizing,
nanoparticle adhesion, etc. [19–21]. Among them, polymer sizing has been regarded as
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a standardized and commercially available method of fiber surface treatment during the
manufacturing process of commercial fibers [22], due to its advantages of preventing the
fluffs and yarn breakage without damaging the surface and properties of fibers [23–25].
However, most commercial polymer sizing agents are variously diluted epoxy resins,
whose degradation temperatures (about 250 ◦C) are much lower than the processing tem-
peratures of high-performance engineering plastics [26–28]. This would inevitably result in
the degradation of the polymer coating on the fiber surface under the high temperature of
composite processing and, thus, the defects on the interface of the fiber and heat-resistant
thermoplastic resin [29]. Furthermore, the compatibility between the epoxy thermoset (TS)
resin and heat-resistant thermoplastic (TP) matrix is not very high, which has a passive
effect on the interfacial properties of composites. Therefore, the design and synthesis of
heat-resistant thermoplastic sizing agents are particularly important for the development
and application of high-performance thermoplastic polymer composites.

The polymer sizing agents generally used are polymers with relatively low molecular
weight (LMW), and their modulus is lower than that of the fiber and matrix. According
to the “deformation layer theory” [30], if the polymer sizing agent has good compatibility
with the resin matrix, it will form an interfacial deformation layer to better buffer the direct
stress impact on the fibers. Therefore, considering the high-temperature processing of fiber-
reinforced high-performance thermoplastic polymer (FRHTP) composites and the extreme
service environment, polymer sizing agents should have the following characteristics:
high-temperature resistance, certain compatibility with the matrix, good solubility, or
easy dispersibility.

At present, many efforts have been focused on modifying the interface of fiber-
reinforced poly(ether ether ketone) (PEEK) composites by designing oligomeric high-
performance polymers as sizing agents, which have similar chemical structures and good
compatibility to the PEEK matrix. Zhu et al. [31] established an effective interfacial enhance-
ment method for GF/PEEK composites by introducing aminated poly(ether ether ketone)
on the surface of the glass fibers. Wang et al. [32] and Hassan et al. [33] reported a trans-
formed fiber surface morphology and chemical composition with heterocyclic poly(aryl
indole ketone) and soluble poly(ether ketone ketone) separately, to improve the interfacial
properties of CF/PEEK composites. Wang et al. [34] used polyimide (PI) to modify the sur-
face of short carbon fibers (SCF), and the tensile strength and bending strength of PI-coated
SCF/PEEK composites showed improvements of 11.8% and 16.6%, respectively, compared
with commercial cases. However, these modification methods all require the pre-activation
of the fibers, which inevitably causes the fibers to be damaged, and the synthesis and
treating processes are also complicated.

In addition, until now, there are still very few reports on the interfacial properties of
basalt-fiber-reinforced high-performance thermoplastic polymer (BFRHTP) composites,
which hinders the application and development of basalt fiber in high-end manufacturing
industries. This may be because of the smoother and more inert surface of BF compared
with CF, and the difficulty of balancing its surface activation and fiber strength. Therefore, it
is significant to explore the influence of structures of polymer sizing agents on the interfacial
properties of BFRHTP composites.

In this work, five low-molecular-weight (LMW) thermoplastic polymers
(Mn = 10,000 g/mol), namely polyvinylpyrrolidone (PVP), polyether nitrile (PEN), poly-
(phthalazinone ether ketone) (PPEK), poly(phthalazinone ether nitrile) (PPEN), and poly-
(phthalazinone ether nitrile ketone) (PPENK), were used as sizing agents for the surface
treatment of basalt fibers. The chains of PEN, PPEK, PPENK, and PPEN have aromatic rigid
structures, which are similar to the matrix, but their cyano group content and flexibility of
them are different. Additionally, PVP with an aliphatic structure has better flexibility than
the other four sizing agents. Then, the effect of the chain structures of the sizing agent on the
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interfacial and mechanical properties of BF/PPENK composites was investigated in detail.
Furthermore, the solubility parameters of the sizing agents and the PPENK matrix resin
were calculated by the group contribution method, and their compatibilities were analyzed
by these parameters. XPS and SEM were used to characterize the chemical composition
and morphology of the BF surfaces, respectively. The dynamic thermomechanical analysis
(DMA) was performed to reveal the thermal property and interfacial adhesion of the
BF/PPENK composites. A tensile test, compression test, bending test, and interlayer shear
test were employed to evaluate the mechanical properties of the BF/PPENK composites.
The failure modes and mechanisms of the tensile and compression test were analyzed by
the optical microscope and SEM. This study provides some suggestions for the design of
sizing agents to modify the interface of BF and high-performance thermoplastic resin.

2. Materials and Experiments
2.1. Materials

Continuous basalt fiber (untwisted roving; diameter, 9 µm; density, 2.8 g/cm3; ten-
sile strength and modulus, 2.3 GPa and 84 GPa, respectively) was kindly provided by
Guizhou Shixin Basalt Technology Co., Ltd., Guiyang, China. Poly(phthalazinone ether
nitrile ketone) (PPENK, nitrile: ketone, 1:1; intrinsic viscosity, 0.44 dL/g) resin and 4-(4-
hydroxyphenyl)phthalazinone (DHPZ) were purchased from Dalian Polymer New Material
Co., Ltd., Dalian, China. 1,3-Dihydroxybenzene (DHB), 2,6-difluorobenzonitrile (DFBN),
4,4′-difluorophenyl ketone (DFK) and polyvinylpyrrolidone (PVP, K13–18, =10,000 g/mol)
were obtained by Shanghai Aladdin Bio-Chem Technology Co., Ltd., China. Anhydrous
potassium carbonate (K2CO3), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone
(NMP), toluene, ethanol, and acetone were obtained from Sinopharm Chemical Reagent
Co., Ltd., Shanghai, China and used directly without any treatment.

2.2. Synthesis of the TP Sizing Agents

The chemical structures of PPENK, PPEK, PVP, PPEN and PEN are exhibited in
Scheme 1, and their 5% thermal-decomposition temperatures are shown in Figure S1, which
all meet the processing requirement. The number-average molecular weight of the designed
polymers was 10,000 g/mol, with a theoretical DP of 49, 53, 63, 95 and 103 for PPEK, PPENK,
PPEN, PEN and PVP, respectively. Except for PVP, the other four LMW sizing agents, PPEK,
PPEN, PPENK (N:K = 1:1) and PEN, were synthesized according to the similar procedure
in our previous works [35,36]. Taking the LMW PEN, for instance, a typical principle of
polymerization was performed as shown in Figure S2. DHB (0.09792 mol, 10.9667 g), DFBN
(0.1 mol, 13.9110 g), anhydrous K2CO3 (0.14 mol, 19.3494 g), 25 mL NMP and 45 mL toluene
were added to a 250 mL three-necked round-bottom flask outfitted with a mechanical stirrer,
a nitrogen inlet, a Dean–Stark trap outfitted with a condenser, and a nitrogen inlet and
outlet. Firstly, the mixture was stirred at 130 ◦C for 2 h under an N2 atmosphere to distill
the resultant water azeotropically, and then the toluene was distilled off. Subsequently,
the mixture was stirred at 160 ◦C for 8 h. The resultant viscous mixture was poured into
hot deionized water with vigorous stirring, and the precipitated product was rinsed with
hot deionized water three times, and then dried under a vacuum at 120 ◦C for 24 h.
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Scheme 1. Chemical structures of PPENK, PPEK, PVP, PPEN and PEN.

2.3. Preparation of Composites

Acetone was used to remove the pristine sizing and pollutants on the surface of BFs
for 48 h [37]. Then, they were cleaned with deionized water and dried in a vacuum oven at
120 ◦C for 4 h to obtain the desized BF. The LMW PVP, PEN, PPEK, PPEN and PPENK were
separately dispersed in NMP, and the ratio of solid to solvent was 1 g/100 mL. Then, after
ultrasonication (5 min), standing (15 min) and drying (150 ◦C, 30 min), the desized BFs were
covered with LMW polymer coating, named BF-PVP, BF-PEN, BF-PPEK, BF-PPEN and
BF-PPENK, respectively. The resized BFs were placed in a dipping tank (the ratio of solute
mass to solvent volume is 0.16 g/mL), and the BF/PPENK prepregs were prepared by the
solution dipping method. Finally, the dried prepregs were cut into a suitable size, and the
unidirectional composite laminates were prepared through a vacuum thermocompression
up to 320 ◦C with a pressure of 7 MPa (as is shown in Figure S3), named BF-PVP/PPENK,
BF-PEN/PPENK, BF-PPEK/PPENK, BF-PPEN/PPENK and BF-PPENK/PPENK, respec-
tively. The volume fraction of BFs in the BF/PPENK composites was about 43% (mass
fraction was about 60%).

2.4. Characterization

X-ray photoelectron spectroscopy (XPS, ESCALAB250Xi; optimum sensitivity: 1,000,000 cps
(Mono XPS, Ag 3d5/2)) was used to characterize the surface chemical element composi-
tions of different surfaces of the modified BF. Scanning electron microscopy (SEM, SU8200;
loading voltage and current: 5 kV and 10 µmA; SEI resolution ratio: 0.8 nm) was employed
to investigate the microscopic surface of BFs and the fracture morphologies of BF/PPENK
composites after the tensile test and compression test. The optical microscope (Nikon,
ECLIPSE LV100ND) was used to observe the side of the polished compressive failing
sample and study its failing mode (the magnification was 50 times).
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The thermal stability of the sizing agents was measured by thermal gravimetric
analysis (TGA, METTLER TOLE-DO TGA1) at a heating rate of 20 ◦C/min from 30 ◦C
to 800 ◦C (after being kept at 150 ◦C for 10 min) under a nitrogen atmosphere. Dynamic
mechanical analysis (DMA, sample size: 40 × 6 × 2 mm3) measurement was carried out
on METTLER TOLEDO DMA/SDTA861e at a single cantilever clamp, 1 Hz, 3 N, and a
heating rate of 3 ◦C/min, from 30 ◦C to 350 ◦C under air atmosphere.

Tensile test (sample size: 250 × 15 × 1.5 mm3), compression test (sample size:
80 × 12.5 × 2 mm3), flexural test (sample size: 80 × 12.7 × 2 mm3), and interlaminar
shear strength test (sample size: 20 × 10 × 2 mm3) of the BF/PPENK composites were
determined on a universal testing machine (Instron 5982; 100 kN force sensor) according
to ASTM D3039, SACMA SRM 1R, ASTM D790 and ISO 14130, respectively. At least five
parallel measurements were conducted and averaged for each final result.

3. Results and Discussion
3.1. Compatibility of Polymer Sizing Agents and PPENK Matrix

The group contribution method was used to calculate the solubility parameters of
LMW PVP, PEN, PPEK, PPEN and PPENK. The results of solubility parameters and their
different components are shown in Table 1. According to the principle of similar solubility
parameters, we compared the differences in total solubility parameters (|δt − δt,matrix|)
between each polymer sizing agent and matrix resin (δt,matrix) to preliminarily determine
their respective compatibility. The calculation indicated that the |δt − δt,matrix| of PVP,
PEN, PPEK, PPEN and PPENK are 0.58, 0.28, 0.26, 0.35 and 0, respectively. These differ-
ences are very small, indicating the good compatibility between these sizing agents and
the PPENK matrix, and further sorting the compatible degree of them obtained the order
PPENK > PPEK > PEN > PPEN > PVP. However, the differences in polarization compo-
nents (|δp − δp,matrix|) between the PVP, PEN, PPEK, PPEN and PPENK and the matrix
are 5.35, 1.34, 0.8, 0.95 and 0, respectively. According to the “similar polarity principle”
and “structural similarity principle”, the compatibility of PEN with the matrix is weaker
than PPEN. Therefore, the final compatible degree of them is PPENK > PPEK > PPEN >
PEN > PVP.

Table 1. Solubility parameter values of the PPENK matrix resin and sizing agents a.

Sample δd δp δh δt |δt − δt,matrix| |δp − δp,matrix|

PPEK 19.51 5.02 6.83 21.27 0.26 0.8
PPENK 19.44 5.82 7.21 21.53 0 0
PPEN 19.35 6.77 7.65 21.88 0.35 0.95
PVP 16.98 11.35 8.46 22.11 0.58 5.53
PEN 19.82 7.16 5.62 21.81 0.28 1.34

a where δt, δd, δp and δh represent the total solubility parameter, dispersion component, polarization component
and hydrogen bond component, respectively.

3.2. The Surface Morphology and Elements of BFs

SEM images for the BFs treated with different sizing agents are shown in Figure 1.
The surface of the desized BF treated with acetone is considerably smooth (Figure 1a), and it
is chemically inert and cannot form chemical bonds with the polymer matrix. Therefore, the
BFs without any surface treatment have difficulty in forming a dependable interfacial phase
with PPENK. As illustrated in Figure 1b–f, the surface morphologies of the resized BFs are
much rougher than the BF—desized. Furthermore, their roughness and morphology are
different, which can be attributed to the film-forming capacity of these TP sizing agents on
the BF surface. According to the morphologies of the resized BF surfaces, the uniformity,
smoothness and integrity were used as the criteria for judging the film-forming ability, in
the order of PVP > PEN > PPEN > PPEK > PPENK. This may be ascribed to the different
flexibility of molecular chains and their adhesion with BF.
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The high-resolution XPS N(1s) peaks for the desized and resized BFs are shown in
Figure S4b. It should be noted that the desized BF had only a weak N-H bonding at
399.7 eV [38]. However, the N1s peaks of BF-PVP were deconvoluted into two specific
peaks at 399.4 eV (pyrrolic N) and 400.1 eV (O=C-N). Additionally, the signal of the C≡N
bond at 399.35–399.55 eV appears for BF-PEN, BF-PPEN and BF-PPENK. Furthermore,
the characteristic peaks at 399 eV, 399.25–399.95 eV, 399.95–400.8 eV and 400.9–401.9 eV
are associated with C-N, N-N, C=N and O=C-N bonds in the phthalazinone structure,
respectively. The chemical compositions of C(1s), O(1s), and N(1s) were examined with
reference to Al(2p), which is absent in the TP sizing agents. The results indicated that the
resized BFs had a higher ratio of O/Al and N/Al compared with the desized BF (Table S2).
In particular, the BF-PEN surfaces have the highest contents of N and O elements and
polarity, deriving from cyano and ether bonds, because of the high-number-average DP of
PEN. Similarly, the high content of N and O elements on the surface of BF-PVP comes from
the abundant pyrrolidone rings, also giving it higher polarity. However, the content of N
and O elements on the surfaces of BF-PPEK, BF-PPEN and BF-PPENK decreased greatly,
which was more related to their low-number-average DP. Therefore, combined with the
SEM results, five sizing agents were successfully coated on the BF surface and showed
different surface morphologies and elemental characteristics.

3.3. Interfacial Properties

The loss factor (tanδ) is defined as the ratio of the loss modulus to the storage modulus,
and represents the ability of materials to lose energy by alternate load [39] and the peak
temperature of the tanδ curve is the glass transition temperature (Tg). Moreover, the tanδ
peak value (tanδmax) can also be used to evaluate the interfacial adhesion of the resin matrix
composites; namely, the lower the tanδmax value, the better interfacial adhesion [39,40]. As
shown in Figure 2a, except for BF-PVP/PPENK, the tanδmax values of the other four sizing-
modified BF/PPENK composites were lower than the BF—Desized/PPENK composite,
indicating the improved interfacial properties between the resized BFs and the PPENK
matrix. Furthermore, the Tg of the BF-PVP/PPENK was increased by 6 ◦C compared with
that of the BF—Desized/PPENK composite, due to the enhanced interfacial properties.
Additionally, the increased tanδmax for BF-PVP/PPENK may be ascribed to the much lower
Tg of interfacial PVP than the PPENK matrix and its higher viscosity at its elastomeric state
(285 ◦C) than other sizing agents with higher Tg, as evidenced by its largest loss modulus
and loss factor (Figure S5a). Moreover, the improved mobility of the interfacial layer caused
the declined Tg of BF-PPEK/PPENK and BF-PPENK/PPENK composites, which may be
related to the low-number-average DP and weak polarity of the sizing agents. Therefore,
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the lowest tanδmax (0.5559) and the highest Tg (288 ◦C) demonstrated that PEN was the
most effective sizing agent for improving the interfacial phase structure of the BF/PPENK
composites than the others (Table S3).
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Moreover, Zorowski and Murayama [41] proposed that the tanδ of the composite can
be divided into two parts of the energy dissipation at the individual components and the
interface. The loss factor of a composite can be stated as:

tan δc = tan δs + tan δin (1)

where tanδc, tanδs and tanδin are loss factors of the composite, the single component
(PPENK and BF) and the interface, respectively.

However, tanδin cannot be measured directly, and can only be calculated by taking the
difference between tanδc and tanδs, so as to further evaluate the interfacial properties of the
composite. The tanδs can be obtained from the complex modulus of the fiber and matrix
according to the following formula:

tan δs =
tan δ f · E′f ·Vf

E′c
+

tan δm · E′m ·Vm

E′c
(2)

where the tanδm, E′m and Vm are the loss factor, storage modulus and volume fraction of
PPENK, and the tanδf, E′f, and Vf are the loss factor, storage modulus and volume fraction
of the BF, respectively.

Compared with the tanδm, the tanδf would be almost zero, because of the much higher
stiffness of BF than the matrix. Therefore, the tanδs is only determined by the tanδm, E′m,
Vm and E′c, and the tanδin can be represented by the following formula:

tan δin = tan δc −
tan δm · E′m ·Vm

E′c
(3)

The E′m and tanδm were measured in our previous work [42], and the tanδin curves
are shown in Figure S5b. The lower interfacial loss represents the better interfacial bonding
ability of the composite [43]. Therefore, the BF-PEN/PPENK composite may have the
highest interfacial bonding strength among these resized BF/PPENK composites. The great
improvement in interfacial properties may be attributed to the strong polar interaction, π-π
interaction, and good compatibility of the LMW PEN agent and PPENK matrix (Scheme 2).
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Scheme 2. Schematic diagram of the PEN sizing agent enhancing the BF/PPENK composite interfa-
cial properties.

Storage modulus (E′) is the contribution of the elastic component of composites,
and is primarily determined by the matrix, fiber and interfacial adhesion. As the tem-
perature increased, the E′ of the BF/PPENK composites decreased slowly before Tg
(Figure 2b), because of the relaxation process in the polymer matrix. The initial E′ of
the BF-PVP/PPENK, BF-PEN/PPENK and BF-PPENK/PPENK composites was 46.78 GPa,
50.14 GPa and 49.50 GPa, which were increased by 27.6%, 36.8% and 35.1% compared with
BF—Desized/PPENK (36.65 GPa), respectively, and their E′ values were higher than the
BF—Desized/PPENK in the whole test temperature range. Additionally, the initial E′ of
the BF-PPEK/PPENK and BF-PPENK/PPENK composites also reached 45.74 GPa and
44.81 GPa, respectively. However, their E′ curves were located below the BF—Desized/PPENK
after 250 ◦C, which is consistent with the results obtained from the tanδ curves. In conclu-
sion, constructing a flexible interfacial phase structure for the BF/PPENK composites is a
very effective interfacial modification strategy. In addition, combined with the compati-
bility results, it can be found that the polar interaction plays a more important role than
compatibility between the sizing agent and matrix for improving the interfacial properties
of BF/PPENK composites.

3.4. Tensile Properties

As illustrated in Figure 3, all the values of tensile strength, modulus and elongation for
the resized BF/PPENK composites are much higher than those of the desized BF/PPENK
composite (547 MPa, 28 GPa and 2.25%), which may be attributed to the enhanced interfacial
adhesion. The BF-PEN/PPENK composite, which has the highest interfacial properties,
displayed the tensile strength, modulus and elongation at break of 778 MPa, 33 GPa and
2.87%, about 42%, 18% and 28% higher than those of desized BF/PPENK, respectively. In
addition, it is worth mentioning that BF-PVP/PPENK exhibited a high tensile strength,
modulus and elongation at break of 751 MPa, 34 GPa and 2.78%, about 37%, 21% and
24%, respectively, which further proved that the flexible interfacial phase can effectively
retard the crack propagation and improve the interfacial properties of the composites.
Furthermore, as for the other three composites with similar sizing agents containing
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a phthalazinone structure, BF-PPEN/PPENK exhibited higher tensile strength, tensile
modulus and elongation at break of 722 MPa, 31 GPa and 2.76%, respectively, than those
of BF-PPEK/PPENK and BF-PPENK/PPENK. This may be due to the relatively better
film-forming properties and more polar cyano groups (−CN) of PPEN than those of PPEK
and PPENK.
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4: BF-PPEK/PPENK, 5: BF-PPEN/PPENK and 6: BF-PPENK/PPENK composites; (a) strength,
(b) modulus, (c) breaking strain and (d) stress–strain curves.

3.5. Tensile Failure Mechanism

In the longitudinal tensile test of unidirectional composites, the damage expansion can
be divided into four types: (1) interface debonding of the fiber and matrix; (2) the cracks in
the fiber extend to the matrix; (3) the matrix deformation and ductile fracture; (4) sequen-
tial fracture of the adjacent fibers. Additionally, different damage expansion forms and
processes will lead to three kinds of typical failure modes: (1) the bundle failing model;
(2) the fracture failing model; (3) the accumulated damage model. Figure S6 displays the
macro-morphologies of tensile failure modes for the resultant composites. On the whole,
the tensile failure modes of all the BF/PPENK composites are the bundle failing model,
which can be attributed to the poor tow-spreading condition of the BF bundles. However,
their failure morphologies were different, and the number of cracks on the specimens
had a certain positive correlation with the tensile strength. The BF—Desized/PPENK
composite has the least cracks, which is related to its poor interfacial strength and the
inferior wettability of the PPENK matrix on BF. In contrast, the resized BF/PPENK com-
posites split into more fragments, due to their improved wettability of BF and interfacial
properties. The SEM images reflected the much more microscopic failure mechanisms. As
shown in Figure 4a, the surface of the pull-out fiber was smooth, which confirmed that
the main failure mechanism of BF—Desized/PPENK was interface-debonding failure. For
the BF-PVP/PPENK, BF-PPEK/PPENK and BF-PPENK/PPENK composites, the surface
roughness and the resin content of the pull-out fiber surface were increased, but no obvious
shear damage morphology appeared for the matrix (Figure 4b,d,f), indicating that the
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cracks propagated along with the fiber in the interfacial phase. In this case, the tightly
adhesive matrix on the BF surface can effectively transfer the load, resulting in improved
tensile strength to a certain extent. As for the BF-PVP/PPENK composite, the significantly
increased tensile strength may be related to the strong interfacial flexibility and polarity. In
particular, BF-PEN/PPENK has the obvious “fish-scale” morphology (Figure 4c), and the
main tensile-failure mechanisms were matrix deformation and ductile fracture, because
of the strong interfacial adhesion. The mechanism of the BF-PPEN/PPENK composite is
similar to that of BF-PEN/PPENK, but the matrix resin deformation is not obvious because
of the relatively low number-average DP, weak polarity and rigid chain structures of PPEN.
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3.6. Compressive Properties

The compressive properties of the BF/PPENK composites are shown in Figure 5.
The compressive strength and modulus of the BF-PVP/PPENK composite were slightly
increased to 489 MPa and 39 GPa compared with BF—Desized/PPENK (403 MPa and
34 GPa). This increase was less obvious than that of the tensile strength, probably due
to the much smaller size and larger load of samples for the compressive test than those
in the tensile test. That is, when the compression load reaches a very large level (more
than 20 kN), the flexible interfacial phase is destroyed in a moment, and the ability of the
flexible layer to retard crack propagation is greatly weakened, so the breaking strain of the
BF-PVP/PPENK composite was decreased. Compared with the BF—Desized/PPENK, the
compressive strengths of BF-PEN/PPENK and BF-PPEN/PPENK composites are 601 MPa
and 694 MPa, increased by 49% and 72%, respectively. On the one hand, this may be related
to the strong polar interaction of the cyano groups, resulting in the enhanced interfacial
strength. On the other hand, the molecular chains of aromatic structures have strong rigid-
ity and can withstand higher loads. Due to the stronger rigidity of the PPEN chain than
the PEN chain, the modulus of BF-PPEN/PPENK (43 GPa) is higher than BF-PEN/PPENK
(36 GPa), while the breaking strain of BF-PPEN/PPENK (2.04%) is lower than that of
BF-PEN/PPENK (2.25%). This is also reflected in the compressive properties of the
BF-PPEK/PPENK composite, whose strength, modulus and breaking strain are improved
to 568 MPa, 40 GPa and 1.82%, respectively. The mildly enhanced compressive properties
of BF-PPENK/PPENK composites mainly come from the improvement in wettability of the
resized BF with PPENK. Owing to the rigid structure and low number-average DP of the
PPENK sizing agent, its film-forming property is too poor to form a reasonable interfacial
phase structure. On the whole, the appropriate content of the rigid structure in the sizing
agent is necessary to endow the interfacial phase with a certain strength, which means that
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the good film-forming ability and proper flexibility of the sizing agent are significant for
the interfacial phase of BF-reinforced high-performance thermoplastic composites.
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In order to clarify the position of the BF/PPENK composites in the field of BFRP, and
to highlight the advancement of this work, the tensile and compressive strengths were com-
pared with those reported in references [44–48]. As shown in Figure 6, this work achieved
good results compared with basalt-fiber-fabric-reinforced epoxy resin (BF/EP) composites.
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3.7. Compressive Failure Mechanism

The compressive failure modes of FRP composites are relatively complex, and the
common forms include delamination, micro-buckling, shear fracture, kink band and bundle
splitting [49,50]. Generally, the final compressive failure model of each composite laminate
is a combination of them. Among the many influencing factors, fiber, matrix and interfacial
phase structure are the most complex and critical [51]. Madhukar et al. [52] found that
the compressive failure mechanism depended strongly on the interface conditions; that
is, as the interfacial strength increased, and the compression failure mode changed from
delamination and buckling to bundle splitting to fiber compressive failure.

As shown in Figure 7a, many interlaminar cracks appeared on the side of the
BF—Desized/PPENK, and the cracks propagated between the layers along the direc-
tion of BF, which is a typical delamination failure mode, mainly due to the weak interfacial
strength [50]. The broken ends of fiber bundles and brittle fracture for the BF-PVP/PPENK
composite (Figure 7b) indicated that the bundle splitting was its main failure mode. This
is because of the excessively flexible interfacial phase which is easily destroyed under the
huge load, and the fiber bundles endure almost all the stress. When the weak links in the
fibers are overload and fracture, the cracks rapidly expand to the surrounding fibers and
cause the fiber bundles to bend and fracture, frequently accompanied by delamination.
The obvious “V”-shaped fracture zone of the BF-PPEK/PPENK composite indicated that its
main failure mode was shear fracture (Figure 7d), which is closely related to the strong rigid
structures in the PPEK chains; due to this relatively rigid interfacial phase, it prevents the
crack from propagating along the direction of fiber and eventually developed an inclined
crack. The “Z”-shaped inclined band in the failure morphology of BF-PEN/PPENK was a
kink band (Figure 7c), implying the improved interfacial properties, and its formation is
mainly caused by the micro-buckling of the fibers. The kink band was also observed on the
BF-PPEN/PPENK and BF-PPENK/PPENK composites (Figure 7e,f), but there was another
failure mode of shear fracture in the former, which may be attributed to the much better
interfacial properties of BF-PPEN/PPENK.
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Figure 7. Optical microscope photographs of compression failure sample; (a) BF—Desized/PPENK,
(b) BF-PVP/PPENK, (c) BF-PEN/PPENK, (d) BF-PPEK/PPENK, (e) BF-PPEN/PPENK and (f) BF-
PPENK/PPENK composites.

The SEM images indicated that the delamination of the BF—Desized/PPENK compos-
ites has a smooth surface, which means that the adhesion between the fibers and matrix
is weak (Figure 8a). Compressive failure microtopography of the BF-PVP/PPENK and
BF-PPEK/PPENK composites showed no fiber fragments on the delaminated surface and a
little plastic deformation (Figure 8b,d), but the compressive strength of the latter was higher
than the former. This further confirms that the sizing agent with rigid chain structures
has a great effect on the improvement in the compressive properties. Particularly, the
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abundant BF fragments in Figure 8c,e demonstrated that PEN and PPEN sizing agents
were more effective than others in improving the compressive performance of BF/PPENK
composites because of the cyano groups and the aromatic rings contained in the molecular
chains. Moreover, the compressive strengths of BF-PEN/PPENK and BF-PPEN/PPENK
composites were much higher than others, which are attributed to energy dissipation by
the fiber crushing. However, even though the BF-PPENK/PPENK compression failure
mode was kink band, it did not have many fiber fragments, which can be interpreted as a
result of its relatively low compressive properties (Figure 8f).
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3.8. Flexural Strength and ILSS

The flexural strengths of BF-PEN/PPENK and BF-PPEN/PPENK composites were
1114 MPa and 1094 MPa, increased by 20% and 18% compared with BF—Desized/PPENK
(927 MPa), respectively (Figure 9a). However, the flexural strengths of BF-PVP/PPENK, BF-
PPEK/PPENK and BF-PPENK/PPENK composites were slightly decreased. The interlami-
nar shear strength (ILSS) can largely reflect the interfacial properties of the composite [53],
and the ILSS of BF-PVP/PPENK, BF-PEN/PPENK, BF-PPEK/PPENK, BF-PPEN/PPENK
and BF-PPENK/PPENK composites reached 50 MPa, 57 MPa, 52 MPa, 54 MPa, and 51 MPa,
which were increased by 13.6%, 29.5%, 18.2%, 22.7%, and 15.9%, respectively (Figure 9b).
Therefore, compared with the other four sizing agents, PEN and PPEN are more effective
in improving the interfacial properties of the BF/PPENK composites, while the flexible
interfacial phase structures constructed by PVP, PPEK and PPENK are not very reasonable.
In fact, the flexible interfacial layer has two effects on the mechanical properties of the
composite. On the one hand, it can improve the interfacial properties by deformation; on
the other hand, the low modulus will reduce the strength. However, when the improve-
ment is not enough to compensate for the weakening, the composite exhibits a decrease in
strength. Especially, when the composite is subjected to a bending test, it will be subjected
to a variety of forces such as tension, compression and shear, and the effect of the resultant
force will make this influence more obvious.
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4. Conclusions

In this work, five sizing agents (PVP, PEN, PPEK, PPEN and PPENK) were success-
fully coated on the BF surface to improve the interfacial and mechanical properties of the
BF/PPENK composites. The PVP sizing agent can form a flexible interfacial phase with
enhanced mechanical properties in BF/PPENK composites, while the BF-PEN/PPENK
composite with the PEN sizing agent has the strongest interfacial phase due to the relatively
rigid chain structures, and strong polar interaction, π-π interaction and compatibility of
PEN with the PPENK matrix, resulting in the even higher Tg and mechanical properties.
Furthermore, for the other three composites with the similar sizing agents containing a ph-
thalazinone structure, BF-PPEN/PPENK exhibited higher tensile strength, tensile modulus
and elongation at break than those of BF-PPEK/PPENK and BF-PPENK/PPENK, due to
the relatively better film-forming properties and many more polar cyano groups (–CN) of
PPEN than those of PPEK and PPENK. In summary, thermoplastic sizing agents with fa-
vorable film-forming ability on BF, good compatibility with the matrix, moderate flexibility
and strong polar group are preferred for BF-reinforced high-performance thermoplastic
composites with improved interfacial and mechanical properties.
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spectra and (b) narrow scan spectra in the N 1s regions. Figure S5 Loss modulus and tan δin curves
of BF-Desized/PPENK, BF-PVP/PPENK, BF-PEN/PPENK, BF-PPEK/PPENK, BF-PPEN/PPENK
and BF-PPENK/PPENK composites. Figure S6 Images of overall morphology of tensile failure;
(a) BF-Desized/PPENK, (b) BF-PVP/PPENK, (c) BF-PEN/PPENK, (d) BF-PPEK/PPENK, (e) BF-
PPEN/PPENK and (f) BF-PPENK/PPENK composites. Figure S7 Flexural modulus of the 1: BF-
Desized/PPENK, 2: BF-PVP/PPENK, 3: BF-PEN/PPENK, 4: BF-PPEK/PPENK, 5: BF-PPEN/PPENK
and 6: BF-PPENK/PPENK composites. Table S1 Tensile and compression tests of BF/PPENK
composites. Table S2 Quantification of the atomic chemical composition of the BFs. Table S3 DMA test
results of BF/PPENK composites. Table S4 Tensile and compression tests of BF/PPENK composites.
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