
Citation: Li, B.; Shen, C. Solid

Stress-Distribution-Oriented Design

and Topology Optimization of

3D-Printed Heterogeneous Lattice

Structures with Light Weight and

High Specific Rigidity. Polymers 2022,

14, 2807. https://doi.org/10.3390/

polym14142807

Academic Editors: Rui C. Martins,

Ricardo Branco and Filippo Berto

Received: 12 June 2022

Accepted: 7 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Solid Stress-Distribution-Oriented Design and Topology
Optimization of 3D-Printed Heterogeneous Lattice Structures
with Light Weight and High Specific Rigidity
Bo Li 1,2,* and Ciming Shen 1

1 School of Mechanical and Power Engineering, East China University of Science and Technology,
Shanghai 200237, China; scm1997ant@163.com

2 Shanghai Collaborative Innovation Center for High-End Equipment Reliability, Shanghai 200237, China
* Correspondence: libo@ecust.edu.cn

Abstract: Lightweight structural design is greatly valued in the aviation, aerospace, and automotive
industries. Three-dimensional (3D) printing techniques provide viable and popular technical path-
ways for the rapid design and manufacturing of lightweight lattice structures. Unlike the conventional
design idea of a geometrically homogenized lattice structure, this work provides a design method for
structurally heterogeneous lattice according to the spatial stress state of 3D-printed parts. Following
the quasi-static stress numerical simulations of solid components, finite element mesh units were
inconsistently replaced by lattice units with different specific rigidities corresponding to the localized
stress levels. Relying on the topology optimization further lightened the lattice structure under
quasi-static stress after removing some parts with extremely low stress from the overall structure.
As an embodiment of this design idea, face-centered cubic (FCC) lattice units with different strut
diameters were employed to non-uniformly and adaptively fill a solid part under localized loading.
The topological optimization was conducted on the solid part globally. Then, the topologically
optimized solid and the heterogeneous lattice structure were subjected to the geometric Boolean oper-
ation. Stereolithographic 3D printing was utilized to fabricate the homogeneous and heterogeneous
lattice structural parts for comparative tests of three-point bending. Three evaluation indicators
were defined for the standardized assessment of the geometrically complex lattice structures for
the performance evaluation. This demonstrated that the heterogeneous lattice part exhibited better
comprehensive mechanical performance than the uniform lattice. This work proved the feasibility of
this new perspective on 3D-printed lightweight structure design and topology optimization.

Keywords: heterogeneous lattice; lightweight; topology optimization; 3D printing; structural
design; resin

1. Introduction

The additive manufacturing (AM) technique, also popularly called 3D printing, ex-
hibits remarkable technical advantages for the rapid and free design and fabrication of
geometrically complex parts, compared with conventional manufacturing processes [1,2].
Customized lightweight parts of various metals and/or non-metallic materials can be 3D
printed via multiple AM methods, such as powder bed fusion (PBF), stereolithography
apparatus (SLA), fused deposition modeling (FDM), etc., following the computer-aided
design (CAD) of digital models [3]. AM has developed rapidly in many industrial fields [4].
Three-dimensional (3D) printing is always desirably employed to fabricate lattice structural
components with lightweight targets [4–6]. Lattice structures with complex configurations
constantly receive attention due to their performance advantages, including high specific
stiffness or specific strength and promoted energy absorption capacity [7,8].

Various lattice structural components can be artificially created and geometrically
optimized through CAD. Each lattice unit of the periodically arrayed lattice structure
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comprises struts and nodes interconnected in 3D space [9]. The mechanical properties
of each lattice unit with the determined shape dimensions are related to the lattice-unit
geometry, strut diameter, number of nodes, and geometries of the struts and nodes. As
the numbers of struts and nodes per unit of space volume in the lattice structure increase,
the stress distribution is more dispersed. This leads to a higher strength or stiffness of the
whole lattice structure. However, the density or mass per unit of volume of the overall
lattice part increases, in contrast to the light weight goals. Fabricating highly dense lattice
structures also presents challenges [10–12]. Conversely, suppose that the distribution of
struts and nodes in the lattice structure is too sparse. In that case, it is not conducive to
guaranteeing the mechanical strength or stiffness of the overall lattice structure. Therefore,
establishing a trade-off between light weight and overall structural strength or stiffness is
the dominant idea for engineering design methods for lattice structures.

In recent years, many studies on designing lightweight lattice structures have been
reported. For instance, the voxel-based lattice design method promotes computational
efficiency and geometric design flexibility [11]. Wang et al. used a multiscale parallel design
method to simultaneously optimize the macro- and microstructures at different scales [13].
Some researchers have performed several size-adaptive matching and scale-adjustable
design methods according to the design variables of lattice-unit cross-sectional geometry
and dimensions [14,15]. Stefan et al. studied the optimization of lattice structural struts
arranged according to the applied loading direction, aiming to give full play to the stress-
bearing capacity of each strut in the entire structure [16,17]. Jin et al. proposed a global–local
design approach for the gradient lattice structures [12]. Different lattice-unit types were
chosen for different regions in the lattice structure [12]. Moreover, the diameters of the struts
were optimized to achieve a higher specific strength of the entire structure, considering
the applied stress conditions [12]. Kang et al. deduced the criteria for the mechanical
performance of lattice structures based on the relative densities of different types of lattice
units [18]. Pham et al. claimed that the stress of the lattice unit has a distinct orientation
trait, guiding people to design an anisotropic lattice structure that meets the actual working
needs [19]. To further improve the comprehensive performance of lattice structural parts,
researchers have also advocated using topology optimization to model the lattice structures
with different densities [20,21]. For instance, Chen et al. proposed a dimension optimization
algorithm based on the moving isosurface threshold (MIST) to topologically optimize the
lattice structures and improve the mechanical properties per unit of mass [22]. Dong et al.
introduced a model of hybrid lattice units to simulate the lattice mechanical properties,
thereby optimizing the design of heterogeneous lattice-unit distributions in the lattice
structures [23]. They verified the design theory and superiority of this hybrid multimode
lattice structure with a three-point bending beam [23]. Teimouri et al. assembled a topology-
optimized solid structure from various lattice structures obtained via a method based on
bidirectional evolutionary structure optimization (BESO) [24]. Accordingly, they built
a new hybrid solid–lattice structure, and demonstrated the superiority of the structure
through stiffness, modal, and quasi-static finite element analysis (FEA) [24].

To sum up, it can be inferred that various promising design methods breaking the
stereotyped ideas are still needed for 3D-printed lattice structural innovation. At present,
the researchers engaged in lattice structure design have built a consensus on how to
achieve a high specific strength or specific stiffness of lattice structural parts or conduct the
lightweight limit design. It is inferior to rely only on uniform lattice-unit arrays to surpass
the non-uniformly distributed lattice structures. However, there is still no simple, easy-
to-engineer, and generally accepted design approach for heterogeneous lattice structures
with non-uniform or variable density distributions of various lattice-unit types. Moreover,
researchers have developed some characterization and evaluation methods for stress, strain,
and buckling behavior to obtain more detailed performance information of lattice structures
in terms of stiffness, strength, deformation, impact energy absorption, etc. These assessment
methods are the prerequisite research to improve the lattice structural design method.
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In this work, the aim was to fully exploit the technical advantages of 3D printing
to further develop the design concept of lattice structures—especially the simple design
approach that is generally accepted and applied to engineering applications. Herein, we
studied a structurally heterogeneous lattice design method suitable for the quasi-static
stress state of 3D-printed parts. Based on the quasi-static stress numerical simulation
of the solid part, the finite element (FE) mesh units were replaced by different lattice
units suitable for the localized stress levels. As a concrete example, face-centered cubic
(FCC) lattice units with varying strut diameters were employed to non-uniformly and
adaptively fill a solid bar under localized loading. Furthermore, a topology optimization
approach was employed for further lightening the heterogeneous lattice structure by
removing some parts—which suffered extremely low stresses—from the entire structure.
Then, the topologically optimized solid and the designed heterogeneous lattice structure
were merged after being subjecting to the geometric Boolean operation. SLA 3D printing
was utilized to fabricate homogeneous and heterogeneous lattice structural parts for the
comparative tests and performance evaluation of three-point bending. Some evaluation
indicators suitable for the standardized assessment of heterogeneous lattice structures were
further determined. This work proves the feasibility of a heterogeneous structural design
perspective on 3D-printed lattice structures with topology optimization.

In general, the lightweight method practiced in this work is simple and suitable for
engineering applications. We consider the non-uniform lattice after the replacement design
based on the discretization of its spatial stress or strain field distribution, along with the
further lightweight by removing unnecessary localized parts. The difference in lattice rod
diameter in different local structures can be designed for continuous rod-diameter changes.
This reduces the stress concentration of new non-uniform lattice parts. Under the known
static or quasi-static load-bearing conditions of the structural parts, redundant localized
parts with no or little load can be directly removed to facilitate lighter weight. Although this
work only uses a simple cuboid structure and a simple three-point bending case to verify
and illustrate the design method, the idea of a relatively simple replacement–removal path
employed in the lightweight engineering of static load-bearing structures with complex
geometries is promising.

2. Materials and Methods
2.1. General Design Approach for Heterogeneous Lattice Structures

The conventional method for designing lattice structures is to populate solid parts
with lattice units of a single geometric form. Although the 3D modeling process of the
homogeneous lattice-unit-filled structure is simple, it is hard for the as-built lattice structure
to achieve the light weight limit that is adapted to the service status. In contrast, the 3D
modeling of the heterogeneously hybrid lattice structures is more challenging. In this work,
FCC lattice units with different strut diameters were arrayed to fill a solid bar under the
localized three-point bending load. The dimensions of the bar used in this work, suffering
three-point bending, are shown in Figure 1, which also exhibits the geometric boundary
conditions for the applied loads. Short beams generally refer to beams whose span-to-
height ratio is 2~5. The length and height of the beam sample in this work were 70 mm
and 15 mm, respectively, meeting the requirements of short beams. We generally divide
the design path of heterogeneous lattice structures into two stages, as indicated in Figure 2.

Initial design stage: Stress–strain FEA that meets service requirements was performed
on the solid part, as the lattice design object, to determine the low-stress and high-stress
regions. The bar suffered quasi-static three-point bending stress within a certain range,
guiding the FEA modeling and simulated stress–strain calculation. According to the stress-
filed nephogram by FEA, the local regions with different stress degrees were filled with
lattice units with various stiffness characteristics. In this work, we replaced the solid regions
with different FCC lattice units with three strut diameters to initially generate a lightweight
lattice structure.
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Optimization design stage: Modifying connection geometries between the adjacent
lattice units, conducting the necessary geometric adjustment of the lattice units themselves,
implementing topology optimization of the entire structure’s external shape for further
weight reduction, and generating a hybrid heterogeneous lattice structure through a geo-
metric Boolean operation of the topologically optimized outer shape and the heterogeneous
lattice structure.
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2.2. Material, Fabrication, and Three-Point Bending Testing of Lattice Structural Samples

This work used SLA 3D printing to fabricate lattice structures for three-point bending
tests, aiming to verify the effectiveness of the structural design. The SLA equipment used
to manufacture samples was Formlabs Form3TM. The 3D-printed samples included the
heterogeneous lattice structure, according to the design results, and the homogenized lattice
structure as a control sample.

The raw material used in the SLA 3D printing fabrication was Grey Photopolymer
ResinTM from Formlabs. After post-curing treatment, the ultimate tensile strength, tensile
modulus, elongation, flexural stress at 5% strain, flexural modulus, and notched Izod impact
strength were 61 MPa, 2.6 GPa, 13%, 86 MPa, 2.2 GPa, and 18.7 J/m, respectively. The
density and Poisson’s ratio of this post-cured resin were 1.12 g/cm3 and 0.23, respectively.

The laser spot diameter of SLA printing was 85 µm. We set the print layer thickness
to 25 µm. A cross-scanning strategy with an SLA device at a default scan rate of 3 m/s
ensured that the resin was printed with high density. In addition, uncured resin slurry
was attached to the surface of the as-printed samples. Hence, the samples were placed in
an ethanol solution and cleaned in an ultrasonic cleaner for 3 min. The ethanol solution
dissolved the resin slurry adhering to the sample surface. The cleaning duration needed
to be optimized experimentally. If the cleaning time was too short, there would still be
residual liquid resin. Conversely, when the cleaning time was too long, ethanol would
dissolve part of the cured resin, resulting in surface defects of the samples. After cleaning
the as-printed samples, an air-dryer quickly evaporated the ethanol on the sample surface.



Polymers 2022, 14, 2807 5 of 16

After that, the samples were intensively cured for 3 min in a UV-lamp curing equipment,
and then the post-processing was completed.

Three-point bending mechanical performance tests on the heterogeneous lattice sam-
ples and the control samples with homogeneous lattice units were performed using a
universal mechanical performance test machine. In the three-point bending testing, the
sample was placed in a set position between two points. At a certain position in the middle
of the two points, the sample was loaded vertically downward at a certain rate. The sample
was bent until it was broken. The applied loading rate was a constant value of 0.5 mm/min.
The load–displacement curves of the samples were plotted.

3. Initial Design of a Stress-Adapted Heterogeneous Lattice Structure
3.1. Mechanical Performance-Guided Lightweight Design Target

In this study, the primary design target was promoting the entire lattice’s specific
stiffness and light weight. As a representation of the ease of elastic deformation, the stiffness
of a lattice structure refers to its ability to resist the whole structural elastic deformation
when subjected to the applied force [25]. This determines the lattice’s structural stability,
and governs its micro-deformation degree [26]. Nevertheless, a lattice structure with
high stiffness tends to have relatively poor impact resistance or low energy-absorption
capacity. Thus, evaluating the comprehensive performance of lattice structures should
also consider the mechanical indices during cracking failure behavior. Accordingly, for a
typical illustration, we designed, tested, analyzed, and verified the heterogeneous lattice
structure’s comprehensive mechanical properties based on the three-point bending stress
condition. The deformation amount and failure morphology of different lattice structures
at the moment of fracture can be comprehensively examined considering the bending
stiffness, brittle failure risk, and light weight, so that the differences between various types
of lattice structures can be carefully compared.

The choice of the geometric type of lattice units is one of the most critical parts of the
design procedure of lattice structures. Countless geometric types of lattice units can be
chosen, including the commonly used FCC unit, body-centered cubic (BCC) unit, gyroid
unit, etc. Different lattice-unit types exhibit different mechanical properties, including
stiffness, strength, coordinated deformation capacity, and energy-absorption capacity. Of
course, the lattice parent material properties and manufacturing process parameters also
affect their mechanics. For lattices composed of microscale struts and node connections,
the structural stability of the lattice unit can be analyzed according to the Maxwell stability
criterion equation, as follows [27]:

M = n − 3j + 6 (1)

where n is the number of struts, j is the number of nodes, and M is the Maxwell stability
coefficient representing the structural stability. If the M of the lattice-unit structure is less
than zero, the structure is classified as preferentially bending. Otherwise, it is classified
as preferentially stretching [27]. For example, if the M of an FCC lattice unit is −12, i.e.,
MFCC = −12, it is classified as a bending-dominant lattice.

When a bending-dominant lattice unit is subjected to applied force, the force on the
strut is similar to that of a curved beam. Its deformation depends on structural parameters
such as the strut diameter, appearance frame dimensions of the lattice unit, etc. This work
mainly used FCC lattice units with different strut diameters and external sizes to design
heterogeneous lattice structures.

3.2. Stress-Adapted Arrangements of Different-Sized Lattice Units

The 3D nephogram of stress distribution in the solid structure was built from the FEA
of the three-point bending. The equivalent stress data of the structure were divided into
three intervals of [0, 200), [200, 300], and [300, +], which were separately represented in
blue, green, and red in a new “pseudo-stress-distribution nephogram” containing only
the three cubic stress meshes. Then, the geometric centers of these three types of cubic
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meshes were converted into the corresponding tricolor point map. The distribution space
of the point map was defined as the design space, as indicated in Figure 3. Considering the
accuracy and manufacturability of SLA 3D printing, three strut diameters (0.6 mm, 0.8 mm,
and 1 mm) were tailored for the FCC lattice units. The design area was filled with these
three types of FCC lattice units, according to the following rules:
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(1) The higher equivalent stress region was filled using the FCC lattice units with
larger strut diameters.

(2) The connection between the adjacent lattice units with different strut diameters
needed to be adjusted according to the outline frames of the lattice units, so that the side
struts of the adjacent lattice-unit outline frames were overlapped, as shown in Figure 3.

The initial design structure of the heterogeneous lattices was modeled by CAD, as
shown in Figure 3. After the combination of lattice units with different strut diameters due
to the dimensional discrepancy of the side struts, the geometry of the entire lattice structure
differed from that of the original solid structure (Figure 3). Hence, it required a further
optimization design stage.

4. Optimization Design of a Further-Lightened Heterogeneous Lattice Structure
4.1. Dimensional Optimization of Lattice Units

Aiming to solve the abovementioned lattice-unit frame dimensional discrepancy issue,
two processing paths to achieve the consistency of lattice-unit frame connection dimensions
were conducted. The design process is shown in Figure 4.

In processing path 1, only the lattice units at the frame-side locations of the design
regions were replaced with FCC lattice units with altered sizes (Figure 4). Although this
method ensured that the entire geometric shape of the heterogeneous lattice structure
was consistent with the original solid structure, it caused the geometric distortion of the
lattice units at the frame locations to be too large. This led to a decrease in stiffness in the
boundary regions of the lattice structural frames. In addition, if the length of the horizontal
struts in the lattice unit was too long, the horizontal struts would sag or even fail to form
during the 3D-printing process.
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In processing path 2, we generated all vertical struts distributed on the aligned verticals
for all of the lattice units of a lattice structure, as shown in Figure 4. This ensured the load-
bearing capacity of the struts in the vertical direction of the heterogeneous lattice structure.
However, it changed the sizes of almost all of the FCC lattice units. We called this design
idea the self-adaptive design of lattices; that is, it adapted not only to the structural stress
distributions, but also to the overall shape and the collinear geometry of the struts in the
primary load-bearing direction (Figure 4).

4.2. Topology Optimization for the Further Weight Reduction

The topology optimization improved the entire structural stiffness and reduced the
weight of the heterogeneous lattice structure in this work. Although there have been some
reports on the geometric optimization design of lattice structures subjected to three-point
bending, most focused on improving the lattice structures themselves. They did not try to
remove redundant structures on the whole to achieve further weight reduction [28,29]. We
used the solid isotropic material with penalization (SIMP) algorithm to optimize the design
space. The topology optimization goals determined the structural stiffness maximization
and the apparent volume minimization. The FE simulation method was employed to
gradually add voxels into the design domain or delete them from it. The iterative calcula-
tions were performed until the objective function converged and the volume achieved the
constraint value. The mathematical expressions for this method were as follows (Figure 5):

Objective : f (ρ, U) = UTKU (2)
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Subject : K(ρ)U = F(ρ) (3)

V∗ =
n

∑
i=1

viρ
∗ (4)

0 ≤ ρmin ≤ ρ∗ ≤ ρmax ≤ 1 (5)

where the objective function f in Equation (2) is the structural compliance, K is the global
stiffness matrix, F is the external load vector, and U is the displacement vector. The first
constraint equation, Equation (3), is an equilibrium equation on solid structural topology
optimization. The second constraint equation, Equation (4), refers to the limits of the entire
designed structural volume, V∗. The volume constraint target was 50% weight reduction
of the solid structure in this work. The third constraint equation, Equation (5), concerns the
3D printing manufacturability, thereby constraining the minimum and maximum values of
the relative density of the lattice structure; ρ∗ in Equation (5) represents the relative density
variable of each lattice structural voxel for the optimization algorithm. Fifteen iterative
calculations were performed in this work, resulting in a 40% reduction in the total mass of
the structure.
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proposed to make the boundary surface smooth. The strategy included extracting the 
model, fitting the curve, and stretching the line body, as shown in Figure 5. The initial 
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Figure 5. The schematic of the generation process of the topology-optimized model for further
solid-body weight reduction under the load-bearing orientation and stress distribution.

The preliminary topology optimization result of the as-marked “initial model” is
shown in Figure 5. This initial model had rough boundaries. If the model was used directly,
the SLA molding accuracy would be poor. Furthermore, a correction method was proposed
to make the boundary surface smooth. The strategy included extracting the model, fitting
the curve, and stretching the line body, as shown in Figure 5. The initial model was
imported into the CAD software to obtain the bounding wireframe. Smooth curves were
fitted to the boundary lines and then compared to the “initial model” wireframe. After
each curve was optimized, the wireframe was extruded into a surface. Then, the plane was
extruded into a body (Figure 5).

4.3. Geometric Boolean Operation for the Combination of Lattices and Topology-Optimized
Outer Shape

The designed heterogeneous lattice structures (Figure 4) and the shell structures
further-lightened (FL-) by topology optimization (Figure 5) were combined by the geometric
Boolean operation to construct the hybrid FL–heterogeneous lattice structure models, as
exhibited in Figure 6. Moreover, the outer surface shell thickness of the FL–heterogeneous
lattice structures was 0.6 mm. For further comparing the heterogeneous lattice structures,
we constructed homogeneous structural models filled with FCC lattice units with strut
diameters of 0.8 mm and 1 mm as the control samples for the three-point bending testing.
Therefore, as shown in Table 1, eight lattice structures were modeled and 3D printed for
comparative analyses.
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EI
PL
48

3
=δ  (6)

where the load, P, and the deflection, δ, can be obtained by the three-point bending test 
when the sample has a brittle failure. EI can be derived if the gage length and the flexural 
rigidity are known. In general, the equations of the relationship between the load and 
deflection of the sandwich panel can be transformed to obtain the equivalent bending 
stiffness and shear stiffness [30]. However, with the change in boundary conditions, the 
shape and geometric details of the lattice structure change. To intuitively compare and eval-
uate the designed lattice structures, we constructed new index parameters using Equation 
(6). 

The relative bending stiffness and relative density can be expressed by Equation (7) 
and Equation (8), respectively. Then, the exponent in Equation (9) can be used to compare 
the flexural stiffness considering the relative density of the lattice structure. 

S

L*
EI
EIEI =  (7)

S

L*
V
V=ρ  (8)
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(IV) Uniform lattice No. 2, (V) FL–heterogeneous lattice No. 1, (VI) FL–heterogeneous
lattice No. 2, (VII) FL–uniform lattice No. 1, and (VIII) FL–uniform lattice No. 2. The strut
diameter was 0.8 mm in Model III and Model VII. The strut diameter was 1.0 mm in Model
IV and Model VIII.

5. Experimental Results and Discussion
5.1. Mechanical Performance Indices for Comparisons

The lattice structures combined with the topology-optimized shell structure further
lightened the entire component to be 3D printed. However, the differences in the specific
stiffness and mechanical behavior of these structures still required further experimental
verification. The stress-adapted arrangements of different-sized lattice units should be
experimentally verified according to the original intention of increasing the specific stiffness
of the lattice structures. To facilitate the comparative evaluation of lattice structure perfor-
mance, we used the combination of relative density and flexural stiffness. The deflection of
a three-point bending beam (simply supported beam) under loading can be expressed by
Equation (6):

δ =
PL3

48EI
(6)

where the load, P, and the deflection, δ, can be obtained by the three-point bending test
when the sample has a brittle failure. EI can be derived if the gage length and the flexural
rigidity are known. In general, the equations of the relationship between the load and
deflection of the sandwich panel can be transformed to obtain the equivalent bending
stiffness and shear stiffness [30]. However, with the change in boundary conditions, the
shape and geometric details of the lattice structure change. To intuitively compare and
evaluate the designed lattice structures, we constructed new index parameters using
Equation (6).

The relative bending stiffness and relative density can be expressed by Equation (7)
and Equation (8), respectively. Then, the exponent in Equation (9) can be used to compare
the flexural stiffness considering the relative density of the lattice structure.

EI∗ =
EIL

EIS
(7)

ρ∗ =
VL

VS
(8)

α =
EI∗

ρ∗
(9)

where EI* is the relative flexural rigidity, EIS is the flexural rigidity of the solid structure,
EIL is the flexural rigidity of the lattice structure, ρ* is the relative density of the lattice
structure, Vs is the volume of the solid structure, VL is the volume of the designed lattice
structure, and α is the performance index of flexural rigidity with the degree of light weight.
However, the α index cannot reflect the sample plasticity. Plasticity can also be manifested
by deflection. A performance index γ was constructed using Equations (10) and (11) to
comprehensively compare and evaluate the designed lattice structures; γ is the product of
α and β, and is a comprehensive index considering plasticity and bending stiffness.

δ∗ =
δ

δS
(10)

β =
δ∗

ρ∗
(11)

γ = α ∗ β (12)
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where δS is the deflection of the solid structure when it experiences a brittle failure, δ* is the
relative deflection, β is the performance index of plasticity with the degree of light weight,
and γ is the performance index of the combination of flexural rigidity and plasticity.

5.2. Experimental Results

According to the eight designed models, the samples for three-point bending tests
were fabricated by SLA 3D printing (Figure 7). The as-printed samples were measured to
obtain their weight and compare it with the information from CAD models, as shown in
Figure 8. It was confirmed that the dimensional accuracy of SLA 3D printing was relatively
high, with a mass error of at least 3–10%. We inferred that the mass error was due to the
alcohol employed to clean the uncured liquid resin, which dissolved the surface of the
as-printed samples.
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The load–displacement curves of the eight types of samples are shown in Figures 9 and 10.
The results implied that the mechanical properties of the lattice and topology-optimized
hybrid structures were considerably different. The mechanical performance indices of the
eight types of samples are compared and presented in Table 2. The four cuboid lattice
structures showed greater stiffness in the initial deformation region than the topology-
optimized ones (Figures 9 and 10). The ultimate load (727.29 N) of the Model I sample was
the largest of the four lattice structures. The ultimate load decreased in the hybrid and
topology-optimized lattice structures compared to Model I, due to the low relative density
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of the topology-optimized lattice samples. The deflection calculation results showed dif-
ferent trends. The average plasticity of the four hybrid topology-optimized samples was
higher. When there was apparent fracture failure in the four hybrid topology-optimized
samples, the average position shift was more significant than that of the cuboid lattice struc-
ture samples without further lightweight topology optimization. The three-point bending
load–displacement curve of Model VII differed from the others. It was considered that the
deviation existed due to the 3D modeling error (Table 1 and Figure 7) compared to the actual
shape, along with SLA-induced defects in the samples. In addition, the load–displacement
curve of three-point bending on some lattice structures exhibited the characteristics of
secondary strengthening. The second or multiple secondary strengthening peaks appeared
after the first load peak in the curve. The literature also verified this phenomenon [28,29,31].
After local densification, it resulted from the local strengthening effect in the overall lattice
structure. Meanwhile, the investigation of the mechanical properties of 3D-printed elas-
tomers is different from that of vitrimers or 3D-printed metals [32,33]. In the following
sections, we devote more attention to the analysis, evaluation, and deconstruction of the
designed and 3D-printed lattice structural stiffness indices.
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Table 2. Mechanical properties of the designed structures.

Designed Structure Max. Loading,
P [N]

Deflection, δ
[mm]

Relative Flexural
Rigidity EI∗ δ* α β γ

(I)
Heterogeneous lattice No. 1 727.29 5.08 0.146 1.116 0.341 2.601 0.886

(II)
Heterogeneous lattice No. 2 539.65 4.74 0.103 1.02 0.243 2.456 0.598

(III)
Uniform lattice No. 1

(Strut diameter of 0.8 mm)
338.71 3.03 0.103 0.666 0.234 1.518 0.355

(IV)
Uniform lattice No. 2

(Strut diameter of 1.0 mm)
581.65 2.25 0.202 0.495 0.347 0.850 0.295

(V)
FL–heterogeneous lattice No. 1 224.07 9.61 0.009 2.112 0.037 8.275 0.306

(VI)
FL–heterogeneous lattice No. 2 231.3 11.43 0.007 2.512 0.028 9.845 0.279

(VII)
FL–uniform lattice No. 1

(Strut diameter of 0.8 mm)
196.22 11.35 0.005 2.495 0.020 10.794 0.219

(VIII)
FL–uniform lattice No. 2

(Strut diameter of 1.0 mm)
215.07 10.29 0.005 2.262 0.016 7.467 0.117

5.3. Mechanical Performance of Heterogeneous Lattices Compared to the Uniform Ones

By comparing the mechanical properties of the four heterogeneous lattice samples and
the four uniform ones (Table 2), and employing the calculation result of the original solid
structure as a reference, the relative bending stiffness and plastic properties were calculated
according to Equations (9) and (11). The samples with the most prominent and most
minor relative density values were Model IV (ρIV = 0.582) and Model VII (ρVII = 0.231),
respectively. Compared to the uniform lattice samples, the index of relative flexural rigidity,
α, showed that Model I and Model IV had maximum values of 0.341 and 0.347, respectively.
The relative density of Model IV was greater than that of Model I. Moreover, in the topology-
optimized structures, the FL–heterogeneous lattice No. 1 (Model IV) had a relative flexural
rigidity of 0.037; it was also greater than that of the FL–uniform lattice samples. Then,
the plasticity index, β, as the most considerable value, was 2.601 in the lattice structures
(Model I). Models I and II had significantly higher plasticity than the other lattice structures
in the experimental testing. Moreover, all of the topology-optimized structures had better
plasticity. When the defined comprehensive index γ was derived according to Equation (12),
the maximum value achieved was 0.886 in the heterogeneous lattice structure sample of
Model I. Considering the lightweight design goal, this indicated that the heterogeneous
lattices promoted the specific stiffness.

5.4. Macroscale Perspective of Failure Behavior

In Figure 11, the uniform and heterogeneous lattice structure samples had different
behavioral characteristics during the fracture process. As shown in Figure 11a,b, the
heterogeneous lattice sample was fractured at two sides of the span, where the strut
diameter was 0.6 mm. The uniform lattice structure had a brittle failure at the midpoint of
the span, where the load was applied. The four lattice structures showed the failure modes
of upper-surface yielding, strut fracture, and lower-surface ductile fracture. In the case of
the topology-optimized models, the cracking initially occurred at the midpoint of the lower
face (Figure 12). They had more deformation of the upper face than the lattices. As shown
in Figure 12a,c, the buckling of the upper–lower face hardly occurred after removing the
loads, leading to the maintenance of the lattice structure shape.
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6. Conclusions

This work provides a structurally heterogeneous lattice design method suitable for
the quasi-static stress state of 3D-printed parts. Lattice units inconsistently replaced the
FEA mesh units with different specific rigidities corresponding to localized stress lev-
els. Relying on the topology optimization further lightened the lattice structure under
quasi-static stress after removing some parts with extremely low stress from the overall
structure. As an embodiment of this design idea, the FCC lattice units with different strut
diameters were employed to non-uniformly and adaptively fill a solid part under localized
loading. The topological optimization was conducted on the solid part globally. Then, the
topologically optimized solid and the heterogeneous lattice structure were subjected to the
geometric Boolean operation. Three evaluation indicators were defined for the standard-
ized assessment of the lattice structures for three-point bending performance evaluation.
This demonstrated that the heterogeneous lattice part exhibited better comprehensive
mechanical performance than the uniform lattice.

The heterogeneous lattice models tended to fracture at the minimum-strut-diameter
region at the time of initial fracture. By comparison, the topology-optimized models
maintained their shape after removing the load. This suggests that the proposed method
could control the breaking point using different strut diameters of lattice units.

Therefore, to ensure safety, the proposed design method was expected to be introduced
to the applications requiring shape maintenance and fracture location control in spite of
plastic deformation or breakage. However, this design method has some limitations. Precise
optimization reflecting the lattice unit within each design space was not performed, given
that the heterogeneous lattice structures were created by applying various strut diameters
of the lattice. Moreover, the stress concentration and weakness existed at the connection of
the two lattices, due to the strut diameter difference and the discretized model used during
the structure generation.

To improve the design optimization procedure’s efficiency and/or effectiveness, some
further research is still needed concerning stiffness–strength analysis, lattice topology
optimization, and multidisciplinary or multiphysics approaches to improve the lattice
model with various materials.
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