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Abstract: In heterogeneous polymers and emulsions, the volume fraction of the discrete phase and
the frequency of electromagnetic waves affect the accuracy of the dielectric model. The integral
method was used to modify the Maxwell–Wagner (M–W) heterogeneous dielectric theory, and a
new model for the complex dielectric constant of polymers and emulsions was established. The
experimental data were compared with the results of the M–W heterogeneous dielectric integral
modification model and other theoretical models for different frequencies and volume fractions of
the discrete phase. We discovered that with a decreasing volume fraction of the discrete phase, the
dominant frequency range of the integral modification model expanded. When the volume fraction
of the discrete phase is 10%, the dominant frequency range reaches 3 GHz. When the volume fraction
of the discrete phase is 1%, the dominant frequency range reaches 4 GHz. When the volume fraction
of the discrete phase is 0.06%, the dominant frequency range of the real part reaches 9.6 GHz, and the
dominant frequency range of the imaginary part reaches 7.2 GHz. These results verify the advantages
of the M–W modification model, which provides a theoretical basis to study the dielectric properties
of polymers and emulsions, as well as for microwave measurement.

Keywords: heterogeneous polymers; emulsions; M–W; integral modification; dielectric constant

1. Introduction

Heterogeneous polymers and emulsions are widely used in daily life and industrial
production. Their physical properties are inextricably linked to the compositional character-
istics of the continuous and discrete phases [1–5].

Microwave measurement technology has been widely used in the measurement of the
components of polymers and emulsions. Biodiesel is used as an alternative fuel to petro-
diesel; the moisture content influences the extent of transesterification of diesel mixture
and thus the fuel characteristics [6]. Insulating oil serves in insulation, arc suppression, and
cooling in power systems [7–9]. The accurate detection of microwater is critical to the safe
operation of substation equipment [10–14]. Furthermore, microwave technology is used
for subgrade soil moisture detection [15] and steam turbine wet steam measurement [16].
Therefore, research into the dielectric properties of heterogeneous polymers and emulsions
has significant practical value.

Many researchers have conducted in-depth studies on the dielectric properties of
heterogeneous polymers and emulsions, and they have proposed or modified a number
of theoretical models, such as the Lichtenecker logarithmic model, Brown model, CRIM
formula, Looyenga model, Bruggeman symmetry model, series-parallel calculation formula,
Rayleigh model, Maxwell–Garnett model, and M–W heterogeneous dielectric model. In
the measurements of polymeric components using technology, it was discovered that these
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theoretical models were not satisfactory in cases where the volume fraction of the discrete
phase was small. In this work, the M–W heterogeneous dielectric model was modified
using the integral method, and a new theoretical model was obtained, which was then
verified experimentally.

2. Dielectric Model of Two-Phase Heterogeneous Polymers and Emulsions

Currently, the theoretical models applied in studies of the dielectric properties of two-
phase heterogeneous polymers and emulsions include the Lichtenecker logarithmic model,
Brown model, CRIM formula, Looyenga model, Bruggeman symmetry model, series-parallel
calculation formula, Rayleigh model, Maxwell–Garnett model, and M–W heterogeneous
dielectric model, the expressions of which are shown in Equations (1)–(10), respectively.

2.1. Lichtenecker Logarithmic Model

The Lichtenecker logarithmic model is suitable for calculating the dielectric constant of
multiphase mixtures [17]. When the components in the mixture are isotropic, symmetrical,
and uniform, the error obtained using this formula is small. It can be expressed as:

ln εm = (1− ϕ) ln ε1 + ϕ ln ε2 (1)

In this model, subscripts m, 1, and 2 represent the mixture, continuous phase, and
discrete phase, respectively. Here, εm is the dielectric constant of the mixture, ε1 is the
dielectric constant of the continuous phase, ε2 is the dielectric constant of the discrete phase,
and ϕ is the volume fraction of the discrete phase.

2.2. Lichtenecker–Rother (L–R) Equation

The L-R model is one of the classical dielectric models [18,19]. Its basic form is shown
in Equation (2):

εm
c = (1− ϕ)ε1

c + ϕε2
c (2)

In this equation, parameter c assumes a value between −1 and 1. Taking different
values of parameter c in the L–R equation, the L–R equation can be expressed as various
forms of the dielectric constant model.

(1) For c = 1, it is called the Brown model, which is usually called the linear model:

εm = (1− ϕ)ε1 + ϕε2 (3)

(2) For c = 0.5, it is called the complex refractive index model (CRIM formula), which is
commonly known as the root mean square model:

√
εm = (1− ϕ)

√
ε1 + ϕ

√
ε2 (4)

The complex refractive index is a model that can be applied to two kinds of materials:
a liquid with low to medium viscosity and a multiphase composite medium that contains
rough particles with medium coarseness.

(3) For c = 1/3, it is called the Looyenga model, which is also known as the cube root
model. Looyenga proposed a Looyenga model with a weight factor of 1/3:

ε1/3
m = (1− ϕ)ε1/3

1 + ϕε1/3
2 (5)

The cubic root model is widely used in the study of the dielectric properties of powder
and porous systems in the field of petroleum exploration. Tuncer proposed the Looyenga
model for composites with self-similar fractal properties, such as colloidal aggregates and
porous materials.
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2.3. Bruggeman Symmetric Model

The effective medium theory is a mathematical and theoretical model for describing
the composite materials’ macroscopic properties. This theory obtains composite material
properties by averaging the properties of various components in composite materials.
Based on this theory, Bruggeman proposed a new mixing rule [20]:

ϕ
ε2 − εm

ε2 + 2εm
+ (1− ϕ)

ε1 − εm

ε1 + 2εm
= 0 (6)

The Bruggeman symmetry model is applied as follows: under static field conditions,
only dipole interactions between the particles are considered, localization is not considered,
and the particles are spherical and tend to be of average size. There are only two phases in
the composite, and the particles are filled with a matrix medium.

2.4. Series-Parallel Calculation Formula

Based on the study of oil and water polarity molecules, Huang zhenghua [21] proposed
the series-parallel calculation formula. It can be expressed as:

εm = k[(1− ϕ)ε1 + ϕε2] + (1− k)ε1ε2[(1− ϕ)ε2 + ϕε1]
−1 (7)

where k = 2ϕ(5 − 3ϕ)−1.

2.5. Rayleigh Model

For a nonuniform dielectric composed of two phases, if the relative dielectric constants
of the two phases are ε1 and ε2, and the volume fraction for the phase with the dielectric
constant ε1 is ϕ, the following theoretical formula is obtained [19]:

εm − 1
εm + 2

= (1− ϕ)
ε1 − 1
ε1 + 2

+ ϕ
ε2 − 1
ε2 + 2

(8)

The model assumes that the dispersed particles in the mixture are homogeneous spherules.

2.6. Maxwell–Garnett Model

The Maxwell–Garnett model [22] is evolved from the M–W model, as shown in
Equation (9):

εm = ε2

[
ε1 + 2ε2 + 2(1− ϕ)(ε1 − ε2)

ε1 + 2ε2 − (1− ϕ)(ε1 − ε2)
)

]
(9)

The theoretical method is based on the physical model of spherical particles in a matrix
material, which is suitable for particle dispersion systems.

2.7. M–W Heterogeneous Dielectric Model

For anisotropic dielectric materials, since each part has different dielectric coefficients
and conductivities, they show different electrical properties. Under an applied external
electric field, charge accumulation will occur inside the medium, which is known as the
M–W effect. The dielectric model based on this effect is given by [23]:

εm − ε1

εm + 2ε1
= ϕ

ε2 − ε1

ε2 + 2ε1
(10)

In this paper, the Lichtenecker logarithmic model, Rayleigh model, Bruggeman sym-
metric model, series-parallel calculation formula, and M–W heterogeneous dielectric model,
which are widely used in dielectric property research, are selected. The experimental results
were compared with the calculated values of the selected dielectric models and the M–W
heterogeneous dielectric integral modification model.
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3. M–W Heterogeneous Dielectric Model and Its Integral Modification
3.1. M–W Basic Model

For anisotropic dielectric materials, each component has different dielectric coefficients
and conductivities so that the component also shows different electrical properties. Under
the application of an external electric field, charge accumulation will occur inside the
medium, which is known as the M–W effect. When the temperature is constant, the
dielectric constant of the electrolyte is constant and real in the electrostatic field and is
complex in the alternating electric field. The real part of the medium’s complex dielectric
constant is close to a constant in the low-frequency band and is roughly equal to the
static permittivity of the medium. In the high-frequency band, when the frequency of the
alternating electric field increases, the real and imaginary parts of the medium’s complex
dielectric constant vary with frequency.

Maxwell was the first person to derive the theory of the electric field [24,25]. The composi-
tion of a heterogeneous material is as follows: many dielectric spheres (micro-/nanodiameter)
with dielectric constant ε2 are uniformly distributed in a continuous medium with dielectric
constant ε1 and volume fraction ϕ, as shown in Figure 1.
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Figure 1. M–W dielectric model.

Maxwell used two steps to deduce the theory: (1) solve the Laplace equation to
calculate the electric potential of a spherical particle in the medium and calculate the electric
potential E of a large sphere containing N such particles (assuming that the concentration
of the small spheres in the large sphere is very low, and thus ignoring the interaction
between the spheres); (2) treat this large heterogeneous sphere containing N small spherical
particles as a homogeneous sphere with an equivalent dielectric constant εm, and its external
potential is equal to E. However, in the initial derivation of the mixing theory, Maxwell used
the static dielectric constant for particles and continuous media. Later, Wagner developed
Maxwell’s theoretical method, replaced the static dielectric constant in the Maxwell mixing
equation with the complex dielectric constant, and obtained the famous M–W equation
given in Equation (10).

3.2. Integral Modification of the M–W Dielectric Model

Based on the M–W dielectric model, the integral method is used to treat the model. As
shown in Figure 2, the volume fraction ϕ of the discrete medium in the continuous medium
is gradually added to the continuous medium with the infinitesimal dϕ. Every time, the
complex permittivity is calculated using the M–W model until the volume fraction of the
discrete phase increases to ϕ. Finally, the heterogeneous polymers’ equivalent complex
permittivity is obtained.
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Since the duty ratio of the discrete phase is very small, the dielectric constant of the
heterogeneous polymers is almost infinitely close to that of the continuous phase; that is,
ϕ→ dϕ, then ε1 → εm. Equation (10) is then transformed into a differential form:

dεm

3εm
=

ε2 − εm

ε2 + 2εm
dϕ (11)

The left-hand and right-hand sides of the above equation are subjected to identity
transformation to obtain:

2εm + ε2

3εm(εm − ε2)
dεm = −dϕ (12)

By splitting the left-hand side of the above equation into the form of the sum of two
fractions, the following can be obtained:[

2
3

1
εm − ε2

+
ε2

3
1

εm2 − ε2εm

]
dεm = −dϕ (13)

The differential process is integrated; that is, the antiderivative of both ends of
Equation (13) is obtained:

2
3

∫ dεm

εm − ε2
+

ε2

3

∫ dεm

εm2 − ε2εm
= −

∫
dϕ (14)

Then, we obtain:

2
3

ln(ε2 − εm) +
1
3

ln
(

ε2 − εm

εm

)
= −ϕ + A (15)

where ϕ = 0–1. Considering the special case when ϕ = 0, there is no discrete phase in the
heterogeneous polymers, and the complex dielectric constant of the polymers should be
equal to that of the continuous phase (i.e., εm = ε1). When ϕ = 0, the boundary condition of
εm = ε1 can be combined with Equation (15) to obtain:

A =
2
3

ln(ε2 − ε1) +
1
3

ln
(

ε2 − ε1

ε1

)
(16)

Substituting the above formula for A into Equation (15) yields:

ln
(

εm

ε1

)
= 3

[
ϕ− ln

(
ε2 − ε1

ε2 − εm

)]
(17)
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By taking the exponent of e on both sides of the above equation, the iterative expression
of the equivalent permittivity of the heterogeneous dielectric can be obtained:

εm = ε1

(
ε2 − εm

ε2 − ε1

)3
e3ϕ (18)

The above iterative equation has limitations in solution accuracy because of the
repeated iterations. The iterative formula is expanded to obtain:

εm
3 − 3ε1εm

2 +

[
3ε2

2 +
(ε2 − ε1)

3

ε1e3ϕ

]
εm − ε2

3 = 0 (19)

The complex coefficient unary cubic equation shown in Equation (19) should be solved

according to Cardan’s solution formula [26]; let a = 1, b = −3ε2, c = 3ε2
2 + (ε2−ε1)

3

ε1e3ϕ ,

d = −ε2
3, v = (3×(4ac3−b2c2−18abcd+27a2d2+4b3d))0.5

18a2 , u = 9abc−27a2d−2b3

54a3 .

If |u + v| < |u− v|, then Γ = (u− v)
1
3 ; otherwise, Γ = (u + v)

1
3 . When the value of Γ

is determined, Π is determined.
If |u + v| < |u− v|, then Π = 0; otherwise, Π = (b2−3ac)

9aΓ . After the values of the above
parameters are obtained, the solution is:

εm1 = Γ + Π− b
3a

εm2 = wΓ + w2Π− b
3a

εm3 = w2Γ + wΠ− b
3a

where w = (−1+i
√

3)
2 .

Considering these three solutions for heterogeneous polymers and emulsions, we
found the following laws through simulation calculations. When the continuous phase has
a smaller dielectric constant than the discrete phase, εm3 gives the correct value. When the
continuous phase has a greater dielectric constant than the discrete phase, εm1 gives the
correct value. When they have similar dielectric constants, εm2 gives the correct value.

4. Dielectric Properties Experiment

To validate the accuracy of the M–W heterogeneous dielectric integral modification
model, dielectric properties must be measured experimentally, and experimental data must
be compared with the results of the M–W heterogeneous dielectric integral modification
model and other theoretical models.

The experimental object was a polymer emulsion of Karamay 25 insulating oil and
deionized water. The insulating oil was the continuous phase, and deionized water was
the discrete phase.

4.1. Experimental Procedure and Experimental Equipment

In this experiment, the volume fraction of deionized water (ϕ) increased from 0%
to 10%. The insulating oil and deionized water were mixed into a mixed system. Then,
the mixture was stirred uniformly. First, the uniformly mixed oil–water emulsion was
ultrasonicated. After sufficient ultrasonication, the emulsion was treated in a vacuum
drying oven to remove the small bubbles in the emulsion. Then, the dielectric constant of
the polymer emulsion was measured. The actual process is shown in Figure 3.
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Figure 3. Experimental flowchart.

A vector network analyzer (E5071C) with an emulsion dielectric test probe (N1501A)
and an ultrasonic crusher are the main equipment used in this experiment. The vector
network analyzer uses a probe to measure the complex dielectric constant of a polymer
emulsion. The ultrasonic crusher is used to shock the oil–water polymer emulsion by
ultrasonic waves in order to fully mix the emulsion.

4.2. Experimental Measurement

The experimental temperature was maintained at 23.5 ◦C, and the pressure was
maintained at 1 atm. The measuring frequency range of the instrument was set to
500 MHz–20 GHz, and a vector network analyzer with a dielectric probe was used to
measure the complex dielectric constant of the polymer emulsion under different moisture
contents. The measurement results are shown in Figure 4.
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Figure 4 shows that the real part of the dielectric constant decreases with increasing
frequency and increases with increasing moisture content. Regarding the imaginary part of
the dielectric constant, because insulating oil has a low dielectric loss due to its stability,
the imaginary part of the dielectric constant of the pure oil is close to zero. The dielectric
loss increases with increasing moisture content, and its imaginary part deviates from zero.

ε0, ε∞ and τ of the pure oil can be obtained by numerically fitting the experimental
values in Figure 4 to the formula for the dielectric constant given in Equation (20) [27].

ε′ = ε∞ +
ε0 − ε∞

1 + (ωτ)2 ; ε′′ =
(ε0 − ε∞)ωτ

1 + (ωτ)2 (20)
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where ε0 is the static dielectric constant of the medium, ε∞ is the optical frequency dielectric
constant of the medium, ω is the angular frequency of the alternating electromagnetic field,
and τ is the dielectric relaxation time of the medium.

The related dielectric characteristic parameters of pure oil and pure water [28–31] are
shown in Table 1.

Table 1. Dielectric property value (23.5 ◦C, at 1 atm).

Name of Substance Static Permittivity ε0 Optical Frequency Dielectric Constant ε∞ Relaxation Time τ

Deionized water 78.55 2.5 8.35 ps
Karamay 25 insulating oil 2.309 2 2.782 ps

Similarly, numerical fitting can be used to obtain the static dielectric constant ε0, optical
frequency dielectric constant ε∞, and relaxation time τ of the oil–water polymer emulsions
with different moisture contents. Then, the smooth distribution curves of the experimental
values with frequency under different moisture contents can be obtained.

5. Results and Discussion
5.1. Analysis of the Influence of Frequency on Dielectric Properties

In practical industrial applications, the measurement frequency is mostly in the cen-
timeter band, and therefore, this band range is chosen to analyze the dielectric properties
of the theoretical model. The complex dielectric constants of pure oil and pure water at
different frequencies were calculated using the values of the dielectric properties of pure
oil and pure water in Table 1 and Equation (20). Thus, the smooth distribution curves in
the cm band of the different theoretical models under different moisture contents were
plotted. Figure 5 shows smooth distribution curves for the different theoretical models and
the experimental values.

In Figure 5a,b, the values obtained using the M–W dielectric integral modification
model are the closest to the experimental values (for frequencies less than 3 GHz); however,
for the frequencies greater than 3 GHz, the M–W dielectric integral modification model is
no longer advantageous compared with other models.

Figure 5c,d shows that when the moisture content decreases to 5%, the dominant
frequency range of the M–W dielectric integral modification model expands to 3.2 GHz (the
dominant frequency range of the M–W dielectric integral modification model is defined
within 3.2 GHz at ϕ = 5%).

From Figure 5e–h, it is observed that when the moisture content decreases, the domi-
nant frequency range of the M–W dielectric integral modification model clearly expands
for both the real and imaginary parts of the dielectric constants.

When the moisture content is less than 1%, the data show that the difference between
the models is small, so error analysis is used to more clearly elucidate the differences among
the dielectric models. Error comparisons for moisture contents of 1% and below 1% are
shown in Figure 6.

Figure 6g,h shows that when the moisture content is 0.06%, the dominant frequency
range of the real part extends to 9.6 GHz, and the dominant frequency range of the imag-
inary part extends to 7.2 GHz; that is, the modification model performance improves
compared with that at a higher moisture content.

Figure 6 shows that when the moisture content decreases, the dominant frequency
range of the M–W dielectric integral modification model widens, indicating that the
accuracy-dominant frequency range of the M–W integral modification model is directly
related to the volume fraction of the discrete phase. The absolute error in the dominant
frequency range decreases with decreasing moisture content.
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contents: (a,b) ϕ = 10%; (c,d) ϕ = 5%; (e,f) ϕ = 3%; (g,h) ϕ = 2%.
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Figure 7. Trend graph of the real part of the dielectric constant. 

Figure 6. Error comparison of different models under multiple moisture contents. When the moisture
content is 1% or less, the Lichtenecker logarithmic model, Rayleigh model, and series-parallel
calculation formula have significantly higher errors than the Bruggeman symmetric model, so the
error is omitted: (a,b) ϕ = 1%; (c,d) ϕ = 0.26%; (e,f) ϕ = 0.14%; (g,h) ϕ = 0.06%.
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Generally, for the moisture content in the 5–10% range, the dominant frequency range
of the M–W dielectric integral modification model reaches 3.2 GHz. If the frequency exceeds
3.2 GHz at this moisture content, the error of the M–W dielectric integral modification
model will increase and will be higher than those of the other theoretical models. When the
moisture content is below 5%, the dominant frequency range of the M–W dielectric integral
modification model is wider (reaching beyond 3.2 GHz), and the error is smaller. Thus, the
M–W dielectric integral modification model has higher accuracy at a small volume fraction
of the discrete phase and at low frequencies.

Figures 7 and 8 show the fitting trend diagrams of the real and the imaginary parts
regarding the relationship between the moisture content and the dominant frequency range,
corresponding to the error and the dominant frequency range, respectively.
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The trend plots presented in Figures 7 and 8 show that when the moisture content
increases, the dominant frequency range of the M–W dielectric integral modification model
decreases, and the relative error increases when the dominant frequency range decreases.
The trend diagrams show that when the moisture content decreases, the dominant frequency
range of the M–W dielectric integral modification model expands more rapidly. When the
volume fraction of the discrete phase is 10%, the dominant frequency range reaches 3 GHz.
When the volume fraction of the discrete phase is 1%, the dominant frequency range reaches
4 GHz. When the volume fraction of the discrete phase is 0.06%, the dominant frequency
ranges of the real and imaginary parts reach 9.6 and 7.2 GHz, respectively.

The M–W dielectric integral modification model will no longer be advantageous
compared with the other models in the region above the fitting curve. This result clarifies
the statement that the accuracy of the M–W dielectric integral modification model is related
to the volume fraction of the discrete phase.
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5.2. Analysis of the Influence of Moisture Content on the Dielectric Properties

Centimeter band analysis reflects the effect of frequency on the accuracy of dielectric
models. However, at a certain frequency, the effect of the volume fraction of the discrete
phase on the accuracy of dielectric models is not reflected. Therefore, taking three calcula-
tion frequencies, f 1 = 0.5 GHz, f 2 = 2 GHz, and f 3 = 3 GHz, the real and imaginary parts of
the dielectric model under different moisture contents at a certain frequency were calcu-
lated using the calculated frequency value f. Then, the calculated results were compared
with the experimental values to more comprehensively compare the accuracy of different
theoretical models.

Figure 9 compares the calculated results of different dielectric models and the experi-
mental values.
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According to Figure 9, for a given frequency, the error increases with increasing
moisture content for all theoretical models. The M–W dielectric integral modification
model has the slowest error growth trend and the smallest average error. The error of all
theoretical models reaches its maximum value for a moisture content of 10%.

According to the comparison of these three frequencies, in the real part, the average
errors of the M–W dielectric integral modification model, Bruggeman symmetry model,
and Lichtenecker logarithmic model increase with increasing frequency, while the average
errors of the M–W dielectric model, Rayleigh model, and series-parallel calculation formula
decrease. For the imaginary part of the dielectric constant, the average errors of the M–W
dielectric integral modification model, M–W dielectric model, Bruggeman symmetry model,
and Lichtenecker logarithmic model increase with increasing frequency, while the average
errors of the Rayleigh model and series-parallel calculation formula decrease.

The error of the M–W dielectric integral modification model decreases with increasing
frequency. The analysis of dielectric properties in the centimeter band shows that once
the frequency exceeds 3 GHz, the error of the integral modification model in the above
diagram will exceed those of the other models, and the curves intersect. The larger the
frequency value is, the lower the moisture content corresponding to the intersection is.

6. Conclusions

The M–W heterogeneous dielectric model was modified by integration to obtain a
new theoretical model. We performed dielectric property measurements on an oil–water
polymer emulsion. The experimental temperature was 23.5 ◦C, the measurement frequency
range was 500 MHz–20 GHz, and the pressure was 1 atm. Based on the experiments, the
analytical results of the M–W heterogeneous dielectric integral modification model are
as follows:

1. Based on the results of the measurements of the complex dielectric constant of the
emulsion, the accuracy advantage of the M–W integral modification model becomes
more pronounced with a smaller volume fraction of the discrete phase or with lower
frequency. By contrast, the accuracy advantage of the integral modification model will
be weakened for a larger volume fraction of the discrete phase or higher frequency.

2. When the volume fraction of the discrete phase is 5–10%, for the frequencies lower than
3.2 GHz, the M–W integral modification model has the highest accuracy compared with
the other theoretical models. When the volume fraction of the discrete phase is less than
5%, the dominant frequency range of this integral modification model exceeds 3.2 GHz.
When the volume fraction of the discrete phase is 0.06%, the dominant frequency ranges
of the real and imaginary parts reach 9.6 and 7.2 GHz, respectively.

3. Regarding the error, a lower volume fraction of the discrete phase corresponds to a
smaller error of the modified model in the dominant frequency range. All theoretical
models have much larger errors for the imaginary part of the dielectric constant
than for the real part, indicating that these dielectric models are more useful for the
real part.

4. The M–W heterogeneous dielectric integral modification model effectively improves
the accuracy of the dielectric constant calculation for heterogeneous polymers and
emulsions. This integral modification model can be used as a theoretical basis to study
the dielectric properties of polymers and emulsions, as well as for microwave physical
property measurements.
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