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Abstract: This paper presents the thermal and flammability properties of woven kenaf/polyester-
reinforced polylactic acid hybrid laminated composites. The effects of the fiber content and stacking
sequences of hybrid composites were examined. The hybrid composites were fabricated using the
hot press method. Thermogravimetric analysis, differential scanning calorimetry, dynamic mechan-
ical analysis, and flammability properties of woven kenaf/polyester-reinforced polylactic hybrid
composites were reported. The thermal results have demonstrated the effect of the hybridization of
the composites on the thermal stability and viscoelastic properties of the laminates. The work also
measured the burning rate of the hybrid composites during the flammability test. The S7 sample that
consisted of all woven kenaf layers in composite recorded the highest char residue of 10%, and the S8
sample displayed the highest decomposition temperature among all samples. However, as for hybrid
composites, the S5 sample shows the optimum result with a high char yield and exhibited the lowest
burning rate at 29 mm/min. The S5 sample also shows the optimum viscoelastic properties such as
storage and loss modulus among hybrid composites.

Keywords: woven kenaf; woven polyester; polylactic acid; DMA; thermal; flammability

1. Introduction

Fiber-reinforced polymer composites (FRPC) consist of either natural, synthetic, or a
combination of both fibers to reinforce the polymer matrix. The selection of fibers and matrix
is very important as the properties of the composites will greatly depend on the properties of
individual materials for the products [1]. The increasing environmental awareness regarding
pollution and waste management also has driven the industry to shift its attention toward
bio-based materials, which are environmentally friendly and are much cheaper [2].

Natural fibers such as hemp [3–5], pineapple leaf [6,7], flax [8], oil palm [9], and sugar
palm [10,11] have been used in composite manufacturing. Moreover, natural fibers in a
woven form such as bamboo [12,13], jute [14,15], kenaf [16,17], and banana [18] also have
been extensively used in composite fabrication. Alavudeen et al. [19] compared different
forms of fiber between woven and short fiber for banana/kenaf polyester composites in
terms of mechanical properties for the same composition. The result revealed that the
woven banana/kenaf polyester hybrid composite has better mechanical properties due
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to the presence of fibers in continuous form. The incorporation of natural fibers into the
polymeric system will affect the properties of the fiber polymer composites. However,
using natural fibers only can be unsuitable for some products; thus, synthetic fibers are still
used in composite manufacturing [20].

The environmental concern also has driven the emergence of natural-based polymers
to be used in composite manufacturing. Recently, polylactic acid (PLA) has appeared
as one of the most important polymers that has been used as a matrix in composite
manufacturing [21]. PLA also has been commercially substituted for some petroleum-based
polymers in various applications and is readily available in the market at a price that is
comparable with other polymers such as polypropylene [22]. Despite the availability of
natural fibers and environmental issues, synthetic fiber such as polyester is still being
widely used as a material to produce composites [11,23,24]. Its durability, cheap cost, and
ability to withstand moisture are the main reasons why polyester is still the material of
choice in composite manufacturing [25–27].

The thermal behavior of the different materials in hybrid composites can be further un-
derstood using thermogravimetric analysis, differential scanning calorimetry, and dynamic
mechanical analysis. The data obtained from these tests can reveal the thermal character-
istics and behavior of the composites. The thermal properties of the hybrid composites
depend on various factors such as fiber content, type of fibers, matrix, and manufacturing
process [28]. Sathyaseelan et al. [29] studied the effect of stacking sequences of woven
areca/kenaf-reinforced epoxy composite on the dynamic mechanical analysis. The author
concluded that woven kenaf in the outer layer of the hybrid composites had revealed
a balanced behavior between glassy and rubbery regions. Moreover, Oliveira et al. [30]
concluded that the increased woven fique fiber content had raised the storage modulus
and loss modulus of the composites.

Fiber-reinforced polymer composites have also been used in various areas such as
marine [31], aerospace, construction, automotive, medicine, and sports [32,33]. As most
application areas of composites may deal with heat and fire, the thermal and flamma-
bility behavior of the composites needs to be taken into consideration. The thermal and
flammability properties of the composites are essential parameters that can sometimes
restrict the application of the composites, especially in the construction and automotive
area [34]. Hence, the later problem associated with thermal degradation and flammability
behavior of the composites could be predicted. In aerospace applications, for instance, the
composites are required to be lightweight as the composites will be used in manufacturing
the structure of the plane (tails, wings, and fuselage) and must also be strong enough to
withstand the high loads [35]. Moreover, despite the aerospace industry, the lightweight
properties of the composites are required in the automotive industry to meet the fuel
efficiency requirement [36]. However, most of the previous works on woven kenaf hybrid
composites focused on investigating the mechanical performance of the hybrid compos-
ites [16,37–41], and only a few [42–44] studied the flammability and thermal properties of
the woven composites.

Based on the literature, it was found that there is no research on the thermal and
flammability properties of woven kenaf/polyester/PLA hybrid composites. Previous liter-
ature also suggested that the optimum fiber loading for hybrid composites is 40 wt% [45,46].
In this study, the woven kenaf and woven polyester were stacked in different layers and
fiber content with a control fiber weight of 40%. The research aims at evaluating the effect
of different stacking sequences and fiber content of woven kenaf/polyester/PLA hybrid
composites on the thermal and flammability properties of hybrid laminated composites.
Six hybrid laminate composites were fabricated, and two reference laminates of woven
kenaf/PLA and woven polyester/PLA were also fabricated.
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2. Materials and Methods
2.1. Material

The 100% woven kenaf and 100% woven polyester were used as reinforcement for
polylactic acid (PLA) to fabricate the hybrid composites. Woven kenaf (WK) was purchased
from Acheh, Indonesia, and woven polyester (WP) was supplied by Composites Ltd. in
Staffordshire, UK. As for the matrix (PLA), it was supplied by Shanghai Huiang Industrial
Co. Ltd. in Shanghai, China. The kenaf fiber composition is presented in Table 1.

Table 1. Chemical composition of woven kenaf.

Content Percentage (%)

1 Hemicellulose 21.75
2 Lignin 3.29
3 Cellulose 68.48

2.2. Material Preparation

Woven kenaf, woven polyester, and PLA were prepared with the dimension of
200 × 200 mm. Woven kenaf and woven polyester were oven-dried at 60 ◦C for 24 h to
remove moisture before the composite fabrication process.

2.3. Fabrication of Composite Laminates

The hybrid composites were produced using a film-stacking method with five layers
of fabrics (kenaf/polyester), and six layers of PLA film were stacked alternately in a mold,
as shown in Figure 1.
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Figure 1. Stacking sequences and fiber content of laminated composites.

The surface of the mold was previously sprayed with a mold release agent to prevent
the matrix from sticking to the mold after the hot compression process. The kenaf and
polyester fabrics were stacked in the same direction (warp/weft) with different stacking
sequences and then were compressed using Vechno Vation (40 tonnes) hot compression
machine. The PLA film softened and conformed to the shape of the mold. The fiber-to-
matrix (%wt.) ratio was prepared with a fixed ratio of 40:60, and the stacking configuration
for each laminated composite is presented in Table 2.

The hot compression plates were heated from room temperature until the temperature
reached 165 ◦C. The stacked material in a mold was placed between the previously heated
plates before being compressed. The layered material between the plates was further
pre-heated at 165 ◦C for 10 min. After pre-heating, the plates were closed, and the samples
were compressed at 165 ◦C for another 10 min. The sample was later cold pressed for
another 5 min before being taken out immediately after the time ended.
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Table 2. Fiber matrix ratio and thickness of the laminated composites.

Weight (%) of Constituent

Code Laminate
Configuration

Woven
Polyester (P)

Woven
Kenaf (K) PLA Thickness

(mm)

S1 K/P/K/P/K 16.5 23.5 60 2.97 ± 0.05 b

S2 P/K/P/K/P 24.5 15.5 60 2.93 ± 0.04 b

S3 P/K/K/K/P 16.5 23.5 60 2.85 ± 0.01 a

S4 P/P/K/P/P 32.3 7.7 60 3.06 ± 0.05 d

S5 K/K/P/K/K 8.3 31.7 60 2.94 ± 0.05 b

S6 K/P/P/P/K 24.5 15.5 60 3.01 ± 0.01 c

S7 K/K/K/K/K 0 40 60 2.85 ± 0.03 a

S8 P/P/P/P/P 40 0 60 2.84 ± 0.02 a

Values with different letters in the figures are significantly different (p < 0.05).

2.4. Thermogravimetric Analysis (TGA)

The thermal degradation behavior of the hybrid composites was evaluated using a
Q500 thermal analyzer (Washington, DC, USA). The sample was drilled to form a hole,
and the drilled sample was collected up to a weight of 5 mg and placed in the thermal
analyzer sample compartment. The samples were heated up to 600 ◦C of temperature
under a nitrogen atmosphere with a 10 ◦C/min heating rate. The weight of the samples
gradually decreased with the increment of temperature.

2.5. Differential Scanning Calorimetry (DSC)

A thermogravimetric instrument model Q500 (Washington, USA) was used to perform
the differential scanning calorimetry tests. The testing temperature was gradually increased
in the range of 25–300 ◦C at a heating rate of 10 ◦C/min. Several peaks can be observed
in the thermogram to indicate the glass transition temperature (Tg), melting temperature
(Tm), and cold crystallization temperature (Tc) of the hybrid composites.

2.6. Dynamic Mechanical Analysis (DMA)

The DMA properties of the laminated composites were evaluated using a Perkin Elmer
D8000 DMA Analyzer. Samples in the dimension of 10 mm in width, 30 mm in length, and
3 mm in thickness were prepared. The composites were tested from a temperature range of
30–150 ◦C, at an oscillation frequency of 1 Hz and a heating rate of 5 ◦C/min.

2.7. Flammability (UL-94)

The flammability test (UL-94) was carried out in accordance with ASTM International
D635 [47]. The samples in the dimension of 125 × 13 × 3 mm were clamped horizontally at
one end, and a burner was placed toward the other end for the flame to impinge on the
free end. The time and extent of burning were measured for the flame that traveled from
the 25 mm marking to 100 mm needed to be recorded. The burning rates of the composites
were calculated as follows (Equation (1)) [48–50]:

V = 60L/t (1)

where V is the burning rate (mm/min), L is burned length (mm), and t is the time of
burning (sec).

3. Results
3.1. Thermogravimetric Analysis (TGA)

Figures 2 and 3 show the thermogram of weight loss as a function of temperature
for the laminated composites (S1–S8). The degradation of the samples occurred within
the temperature range of 25–600 ◦C. The degradation stages such as initial degradation,
major degradation, final degradation, and char amount can be observed based on the TG
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and DTG thermogram. Figure 2 revealed three steps in the thermal degradation of the
laminated composites.
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The small initial degradation step can be observed below 100 ◦C. The weight loss of the
sample at this stage is due to the loss of moisture and dehydration of the samples [51–53].
The moisture release and dehydration of woven kenaf in the temperature range of 30–110 ◦C
contributed to the weight loss. The main thermal degradation stage can be observed in the
temperature range of 250–370 ◦C. The degradation of three major constituents of natural
hemicellulose in woven kenaf is easily hydrolyzed. Previous works revealed that the main
component of natural fibers decomposes at different temperature ranges. Hemicellulose de-
composes between 220 and 315 ◦C, cellulose at 315–400 ◦C, and lignin degradation covers the
entire temperature range [54–56]. The high crystallinity of cellulose resulted in a higher decom-
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position temperature compared to hemicellulose. However, as for lignin, it is different from
hemicellulose and cellulose, which is a highly branched polymer consisting of polysaccharides
that are responsible for the higher decomposition temperature of the lignin [57].

Table 3 shows the degradation parameters of thermogravimetry analysis. The elevated
weight loss was recorded within the temperature range of 300–400 ◦C. The degradation of
PLA also occurs at this temperature range [58]. Based on Figure 3, it can be observed that
there are two distinct decomposition stages of the laminated composites. The first stage is
between 250 and 400 ◦C of the temperature range and the second stage occurs between 400
and 470 ◦C. The different peak intensities that can be observed in Figure 3 are due to the
material composition of the hybrid composites, as these materials degraded at different
temperatures [59]. The first stage is related to the decomposition of the major component in
natural fibers and PLA. While the second decomposition stage is due to the decomposition
of polyester fiber at a higher temperature. Aisyah et al. [60] also reported the same thermal
degradation temperature range of 220–420 ◦C, where a major decomposition of kenaf fiber
and the degradation of polymers occurred. The decomposition of the laminated composites
was completed at 600 ◦C, leaving char residue of 5.8–10%. Teh et al. [61] reported that the
formation of the volatile oligomers has contributed to the weight loss of polyester at this
temperature range. The decomposition temperature range of the polyester fiber obtained
also agrees with the finding by Achagri et al. [62].

Table 3. The transition temperature at 5% weight loss (T5%), initial degradation temperature (Tmax1),
major degradation temperature (Tmax2), final degradation temperature (Tmax3), and residue of lami-
nated composites.

Code T5%
(wt.%)

Tmax1
(◦C)

Tmax2
(◦C)

Tmaxt3
(◦C)

Residue
(wt.%)

1 S1 318.7 97.2 362.8 431.2 8.3
2 S2 327.2 93.7 362.4 432.8 7.9
3 S3 317.1 96.8 363.1 431.5 7.7
4 S4 330.2 91.2 366.7 437.7 7.1
5 S5 316.8 98.3 359.4 427.3 9.6
6 S6 326.8 94.1 364.9 433.1 8.2
7 S7 314.3 106.8 358.8 426.1 10.0
8 S8 337.5 91.4 369.8 438.2 5.8

Figure 2 also depicts that the high layers of woven kenaf in the S7 sample reduced the
thermal stability of the composites. However, other hybrid samples are more thermally
stable than the S7 samples. The result obtained is due to the effect of hybridization with
woven polyester. The same finding has been reported by Zuhudi et al. [42], who studied
the impact of hybridization on the thermal properties of woven natural/synthetic fibers.
The report revealed that the TGA curves demonstrated an increase in the thermal stability
of the matrix with the incorporation of woven bamboo and glass fibers.

The fiber content influenced the thermal properties of the laminated composites. The
S7 sample revealed the highest char yield among all samples. High char yield generally
will improve the thermal resistance of the composites [63]. The high kenaf content in the
S7 composites consists of more lignin which is responsible for the high char yield [64–66].
Moreover, in terms of decomposition temperature, the S8 sample exhibited the highest
decomposition temperature (Tmax); thus, revealing the most thermally stable samples.
However, as for hybrid composites, the S4 laminate depicted the most stable sample. In
terms of stacking sequences, no significant effect can be observed for samples with different
stacking sequences with the same fiber content for samples S1/S3 and S2/S6. The TGA
curves for these composites portrayed almost the same pattern.
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3.2. Differential Scanning Calorimetry (DSC)

The DSC analysis can further explain the thermal behavior of the laminated composites.
Figure 4 shows the DSC curves of laminated composites that experienced the exothermic
and endothermic processes. The DSC curves demonstrated almost the same trend for all
samples in which the exothermic and endothermic processes can be identified based on
multiple peaks obtained in Figure 4. Table 4 shows the differential scanning calorimetry
analysis of the laminates.
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Table 4. The values of glass transition temperature (Tg), melting temperature (Tm), and the cold
crystallization peak temperatures (Tc) of laminated composites.

Code Tg (◦C) Tm (◦C) Tc (◦C)

1 S1 58.79 93.15 168.80
2 S2 59.83 93.80 169.12
3 S3 59.21 93.27 169.09
4 S4 59.92 96.00 169.54
5 S5 58.90 95.49 168.17
6 S6 59.58 94.71 168.95
7 S7 58.51 92.65 167.92
8 S8 60.19 96.70 170.45

The peaks in the DSC thermogram provide the glass transition temperature (Tg),
crystallization temperature (Tc), and melting temperature (Tm) for each sample. It can be
noticed that the first transition occurs in the temperature range of 58–61 ◦C, indicating
the glass transition temperature (Tg) of PLA [67,68]. It can be seen that the addition of
woven polyester in hybrid composites improved the glass transition temperature of all
hybrid composites compared to S7. The S7 sample consists of woven kenaf and PLA only,
while the S8 sample, which consists of woven polyester and PLA, recorded the highest
glass transition temperature among all samples. Based on Table 3, it shows that all hybrid
samples (S1, S2, S3, S4, S5, and S6) revealed a higher glass transition temperature compared
to the S7 sample. The result depicted that the glass transition temperature of the hybrid
laminates increased with the addition of woven polyester. The higher glass transition
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temperature means a higher temperature is needed to turn the sample from a glass to a
rubbery state.

The continuous heating of the laminates contributed to the exothermic crystallization
process known as cold crystallization, in which the transition of laminates from glassy to
amorphous phase occurs [69]. At a higher temperature, the peak can be observed in the
temperature range of 92–96 ◦C, indicating the cold crystallization temperature of PLA [70].
Iannace et al. [71] reported that the fastest cold crystallization rate of PLA occurs between
95 and 115 ◦C in the temperature range. Subsequently, the samples were heated until
300 ◦C, and two endothermic peaks can be observed. The peaks obtained are known as the
melting temperature (Tm), denoting the melting temperature of PLA and polyester. The
first peak is in the range of 166–171 ◦C revealing the melting point (Tm) of PLA [72,73].
Moreover, in the range of 252–257 ◦C, the peak obtained is due to the melting point (Tm)
of polyester [74].

3.3. Dynamic Mechanical ANALYSIS (DMA)
3.3.1. Storage Modulus (E′)

Dynamic mechanical analysis (DMA) was used to measure the temperature-dependent
properties of polymer composites such as storage modulus (E′), loss modulus (E′′), and
damping factor (Tan δ). The result gathered reflected the stiffness and damping characteris-
tics of the laminated composites as a function of temperature. Figure 5 shows the storage
modulus of different laminated composites. The storage modulus (E′) provides information
regarding the rigidity, fiber-matrix adhesion, and stiffness of the composites [49,75].
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Figure 5 demonstrates a variation in storage modulus (E′) of different laminated com-
posites as a function of temperature. The storage modulus property was found to gradually
decrease as the temperature increased for all laminates as a result of the reinforcement of
fibers in the laminates [76,77]. Figure 5 also demonstrated the increasing trend with an in-
crement in woven kenaf fiber loading in the following order: S8 < S4 < S6 < S2 < S3 < S1 <
S5 < S7. Sathyaseelan [29], in his report, concluded that an increase in the kenaf fiber layer
in composite samples made the composites stiffer and increased the storage modulus. It
can be noticed that the composites experienced three phases under increasing temperature
denoting the glassy, transition, and rubbery phases. These phases are a typical trend for
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polymer composites’ dynamic mechanical analysis curves, in agreement with the previous
report [43,78]. In the glassy region, the composite structure is very tightly packed with the
highest stiffness property that results in high storage modulus for all samples [78]. The tightly
packed structure limited the molecular mobility of the composites; thus, contributing to the
high stiffness property [79]. It was found that the S7 sample possessed the highest storage
modulus, and the S8 sample consisting of all five layers of woven polyester in composite
showed the lowest storage modulus.

Among hybrid composites, the S5 sample revealed the most optimum sample with
the highest storage modulus. Figure 5 shows that the storage modulus of all laminates
dropped when passing the glass transition region (Tg). As the temperature increased, the
breakage of cross-linking between the molecular chains for the composites that occurred
at higher temperatures increased the molecular mobility of the composites. Generally,
samples with high woven kenaf content show a higher storage modulus value than others.
Khan et al. [44] revealed that the existence of natural fibers in hybrid composites had
increased the storage modulus of the composites. The results revealed that the S7 and S5
samples that consisted of 5 and 4 layers of woven kenaf exhibited a higher storage modulus
compared to others.

More woven kenaf in the hybrid composites made the composite stiffer and revealed
a higher storage modulus. Moreover, the low storage modulus of the S8 sample is probably
due to the high elasticity properties of woven polyester fiber that cause a low resistance
to deformation [20]. The result also is in line with Nurazzi et al., who reported that pure
polyester demonstrated the lowest storage modulus of composites compared to others [75].

The storage modulus was found to be decreased in the second and third regions due to
the higher molecular mobility. A significant fall in curves can be observed in Figure 5 due to
the increasing movement of the polymeric chain that affects the fiber-matrix adhesion and
stiffness property of all composites [80]. However, the S2/S6 and S1/S3 composites with
the same fiber content but different stacking sequences showed that the S6 and S1 exhibited
slightly higher storage modulus values. Both composites used woven kenaf as the outer
layer of the composites. The effect of different stacking sequences for laminated composites
with the same fiber content seems to not significantly affect the storage modulus property.

3.3.2. Loss Modulus (E′′)

The loss modulus represents the energy dissipation as heat per cycle of sinusoidal
deformation because of the viscose motions inside the material. The loss modulus is maxi-
mum at the temperature, which shows that the maximum heat dissipation occurred [81].
Figure 6 shows the loss modulus of different laminated composites.

As the increasing temperature approached the glass transition temperature of each
laminated composite, the molecular segmental motion was initiated [43]. The peak height
of loss modulus in Figure 6 indicates the glass transition temperature (Tg) of the polymeric
system [82]. The S7 and S5 laminated composites exhibited a high loss modulus compared
to other composites. The finding was supported by Akil et al. [83], who reported the same
trend where the loss modulus peak increased with the increase in kenaf fiber content. The
peak of loss modulus is related to the stiffness of the material and signifies the dissipation
of heat energy [84]. The high loss modulus obtained is due to the increase in internal
friction in the composites and contributes to higher energy dissipation [80,85]. The Tg for all
laminates was recorded in the temperature range of 45–60 ◦C. The incorporation of woven
polyester content in the hybrid composites shifted the transition temperature composites
higher than S7, consisting of woven kenaf and PLA only.

The S8 sample recorded the lowest loss modulus value compared to others. The
lower loss modulus for the S8 sample shows that without woven kenaf reinforcement,
the composites become more mobile, and the finding is in agreement with what has been
reported by Haris et al. [86]. However, as for hybrid composites, the S5 sample revealed
the highest loss modulus compared to other hybrid composites due to the higher woven
kenaf content. The higher loss modulus property for the S7 sample compared to the other
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composites is due to the higher woven kenaf layers in hybrid composites; thus, reducing
the mobility of the matrix molecules of the hybrid laminated composites [87].Polymers 2022, 14, x 10 of 17 
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3.3.3. Damping (Tan δ)

Figure 7 demonstrates the Tan δ curves of different laminated composites. The energy
dissipation behavior of the material under deformation is known as the damping factor.Polymers 2022, 14, x 11 of 17 
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Figure 7 depicts the increase in the damping factor and demonstrates multiple peaks
in the transition region and then the drop in the rubbery region. An increment in Tan δ

can be observed with the reduced woven kenaf in the laminated composites. The higher
the woven fiber content, the lower the value of the damping peak (Tan δ). Jawaid and
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Khalil [88] revealed that incorporating natural fibers in the composite polymeric system
would influence the damping properties. The same damping characteristic also has been
reported by several researchers [29,44]. Composites with higher woven polyester content
(S8 and S4) show a higher Tan δ peak than samples S1, S3, and S5. The lower Tan δ of the
hybrid composites is due to the stiffness property of the hybrid composites as the addition of
more woven kenaf has restricted the mobility of the polymer molecules [89]. Lee et al., 2021,
in their review concluded that the restriction of the polymer chain mobility is due to the
good interfacial bonding between plant-fiber-reinforced composites [90]. The same finding
by Ho et al. [91] concluded that the interaction between fiber-polymer composites had
restricted the polymer chain mobility of the composites. The lower Tan δ peak in the graph
reveals a good interfacial adhesion between fiber reinforcement and matrix [92,93], while
the higher peak indicates the lower fiber/matrix adhesion [94]. The finding shows that the
improved fiber/matrix adhesion of the laminates affected the reduction of composites, in
agreement with the previous works [75,93].

3.4. Flammability Test

The average burning rates of the composites measured by the horizontal burning
test are shown in Figure 8. The S4 composite showed the highest burning rate compared
to other samples. The highest burning rate of the S4 sample is due to the high polyester
composition among hybrid composites, which indicated that the sample had the highest
sensitivity to flame. The S4 sample had poor flammability behavior due to the fast thermal
degradation of polymers during burning [95]. Figure 8 also revealed that hybrid samples
S2, S3, and S4 with all outer layers of woven polyester displayed the top three highest
burning rates.
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significant difference.

On the other hand, the burning rate of the S7 sample revealed the lowest average burn-
ing rate. However, as for hybrid composites, the S5 sample consists of 31.7% of kenaf fiber,
and the result showed that increased kenaf fiber content in hybrid composites exhibited a
lower burning rate. The finding agrees with the finding by Karunakaran et al. [96], that
concluded that the burning rate was decreasing with increasing kenaf fiber content. The
result also revealed that the composites with the outer layer of woven kenaf (S1, S5, and
S6) slowed down the burning rate of the composites. The situation is possibly due to the
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char formation by woven kenaf that shields the layers from being penetrated by heat and
volatiles into the inner layer of the composites [96]. The char formation happened when
the flame was applied toward the composites that caused incomplete combustion. The
charring process removed oxygen and hydrogen; thus, the carbon remained in the char [97].
Table 5 shows the combustibility of the composite properties of the laminated composites.
The S7 sample with 40% (wt.) of woven kenaf content recorded the longest time needed for
the flame to reach the 100 mm mark due to the highest char formation compared to others.

Table 5. The UL94 combustibility properties of the laminated composites.

Code Time for the Flame Front to
Reach 100 mm Mark (sec) Remarks

1 S1 127.5 ± 12.859 * Fully burnt
2 S2 103.6 ± 3.067 * Fully burnt
3 S3 112.2 ± 10.256 * Fully burnt
4 S4 103.2 ± 0.322 * Fully burnt
5 S5 156.2 ± 7.491 * Fully burnt
6 S6 152.9 ± 12.693 * Fully burnt
7 S7 171.4 ± 7.407 * Fully burnt
8 S8 116.3 ± 13.850 * Fully burnt

* Note: Results expressed as mean ± standard deviation.

Bar et al. [98] and Subasinghe et al. [99] suggested that the char layer act as a physical
barrier and protection layer to the composites. The results exhibited the effect of fiber
content and stacking sequences that have influenced the flammability properties of the
hybrid composites.

4. Conclusions

The results gathered showed that the hybridization of woven kenaf and woven
polyester can improve the dynamic, thermal, and flammability properties of the hybrid
composites. In particular, the thermal results demonstrated the effect of the hybridization
of the composites on the thermal stability and viscoelastic properties of the laminates. The
work also measured the burning rate of the hybrid composites during the flammability test.
The S7 sample that consisted of all woven kenaf layers in composite recorded the highest
char residue of 10%, and the S8 sample displayed the highest decomposition temperature
among all samples. However, as for hybrid composites, the S5 sample shows the optimum
result with a high char yield and exhibited the lowest burning rate at 29 mm/min. The
result revealed that the addition of woven kenaf was responsible for high char yield and
prolonged the burning time of the laminates. The S5 sample also shows the optimum
viscoelastic properties such as storage and loss modulus among hybrid composites.
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