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Abstract: The ablation mechanism and performance of carbon fiber (CF)-reinforced poly aryl ether
ketone (PAEK) thermoplastic composites were studied in this paper. The results show that the
ablation damaged area is controlled by the irradiation energy, while the mass loss rate is controlled
by the irradiation power density. In the ablation center, the PAEK resin and CFs underwent decom-
position and sublimation in an anaerobic environment. In the transition zone, the resin experienced
decomposition and remelting in an aerobic environment, and massive char leaves were present in
the cross section. In the heat-affected zone, only remelting of the resin was observed. The fusion
and decomposition of the resin caused delamination and pores in the composites. Moreover, oxygen
appeared crucial to the ablation morphology of CFs. In an aerobic environment, a regular cross
section formed, while in an anaerobic environment, a cortex–core structure formed. The cortex–core
structure of CF inside the ablation pit was caused by the inhomogeneity of fibers along the radial
direction and the residual carbon layer generated by resin decomposition in an anoxic environment.
The description of the ablation mechanism presented in this study broadens our understanding of
damage evolution in thermoplastic composites subjected to high-energy CW laser irradiation.

Keywords: thermoplastic composites; ablation mechanism; continuous wave laser

1. Introduction

Carbon fiber (CF)-reinforced polymer composites (CFRPCs) have become important
structural materials in the aeronautic industry because of their outstanding properties,
such as high specific stiffness, strength-to-weight ratio, and low thermal expansion coeffi-
cient [1–3]. Recently, the rapid development of high-energy laser weapons has become a
new kind of threat to CFRPC applications in aircraft [4,5]. Generally, structural damage
induced by lasers is attributed to the thermal ablation effect. The high-energy laser can
cause resin decomposition, fiber fracture, delamination, and even direct penetration. This
damage will seriously reduce the bearing capacity of composites and threaten the safety
of internal electronic components and equipment. Therefore, it is of great significance
to investigate the damage process and ablation mechanism of CFRPCs subjected to laser
irradiation, which is prospective for the evaluation of residual strength and laser protection
of composites applied in aircraft [6].

Currently, research on laser damage to resin matrix composites mainly focuses on
the physical damage and ablation behavior of the material. At the physical level, it was
found that laser shock can cause composite delamination. Regarding the ablation behavior,
researchers analyzed the decomposition and sublimation reactions that occurred in the
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composites and discussed the influencing factors. Ecault et al. [7] quantified the residual
deformation of composites after laser damage by optical microscopy, X-ray radiography,
and interferometric confocal microscopy. They successfully measured the defect position
and deformation morphology of T800/M21 composites under different power densities of
the laser shock. Ferrante et al. [8] investigated the effect of basalt fiber hybridization on the
damage tolerance of carbon/epoxy laminates subjected to laser shock waves and found
that such sandwich structures had excellent damage tolerance. Kaludjerovi et al. [9] studied
the ablation behavior of carbon/epoxy composites under pulsed-wave (PW) laser ablation
at different energy densities. The depth and area of the crater-like ablation zone were
quantitatively analyzed by ImageJ software, and the ablation area curve under different
energy densities was fit. The results showed that the area of the ablation zone was positively
related to the laser energy density. Multidirectional composites showed a higher damage
threshold than unidirectional composites because of their uniform thermal conductivity.
Ma et al. [10] analyzed the ablation behavior of glass/polybenzoxazole composites under
continuous-wave (CW) laser irradiation and characterized the morphology as well as
measured the mass ablation rate after ablation under different power densities. It was found
that laser parameters such as power density and irradiation time have significant effects
on the damage of composite materials. A mixture of residual coke and molten glass fiber
can cover the surface of the ablation pit to prevent oxidation. Compared with experiments,
finite element analysis (FEA) offers an effective approach to simulate temperature field,
stress field, and damage effect of resin matrix composites. Gay et al. [11] studied the
delamination damage of laminates ablated by PW lasers at different power densities
and obtained the interlaminar stress through finite element simulation. They proved
that the laser shock generated axial tension on the composite laminates, thereby causing
delamination. Aiming at determining the thermomechanical properties of composites,
Liu et al. [12] investigated the effect of CW laser ablation on the interlaminar damage of
T700/BA9916 composites under different laser parameters and analyzed the interface stress
by thermomechanical coupling simulation. It was found that interlaminar cracks caused by
maximum normal tensile stress and interlaminar shear stresses appeared in the cooling
stage, when the maximum temperature gradient was increased in the laminates. Based
on the bridging theory, Liu et al. [13] proposed a multiscale progressive damage model of
carbon/epoxy composites under laser mechanical coupling, which can effectively predict
the failure load of laminates. Nan et al. [14] studied the ablation process of composite
laminates under CW laser irradiation through tests and simulations. They found that
the difference in thermal conductivity of material components and the layup scheme of
laminates have a great effect on the ablation morphology. Sihn et al. [15] established
a prediction model for the temperature distribution of T650/bismaleimide composites
heated by a laser and adopted an infrared thermal imager to verify the temperature.
The nonlinear transient 2D finite element model can precisely predict the temperature
distribution of specimens at both the heating and the cooling stages. The variety of
environmental conditions also has an incredible influence on the ablation behavior of resin
matrix composites. Sato et al. [16] compared and analyzed the influence of different types
of airflow, such as atmosphere, dry air, and nitrogen, on the laser cutting of laminates. They
found that the temperature and the area of the heat-affected zone dramatically decreased
in dry air and nitrogen environments. The above research comprehensively discussed the
decomposition and sublimation reactions in resin matrix composites during laser irradiation
and the delamination phenomenon of composites under laser shock. Additionally, further
discussion on the laser irradiation effects was conducted by considering the material
composition, microstructure, blowing airflow, etc.

In summary, the ablation mechanism of CFRPCs under laser irradiation has been
extensively studied in experiments and simulations. However, the above literature was pri-
marily focused on traditional thermoset matrix composites. With the gradual improvement
of the properties of high-performance thermoplastic (TP) matrix materials, thermoplas-
tic composites (TPCs) are expected to be widely used in next-generation aircraft, owing
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to their high toughness, outstanding damage tolerance, and recoverability [17–21]. The
thermophysical properties of TP resin are quite different from those of thermosetting resin.
Thermosetting resins form an infusible cross-linked network structure after curing. There-
fore, they only decompose at high temperature [22], while thermoplastic resins experience
remelting and decomposition [23]. Thus, the laser ablation mechanism of TPCs is also
different at certain temperatures [24,25], which will result in different damage modes and
degrees of composite structures. Hence, it is necessary to study the ablation mechanism
of TPCs. From the above review, however, it appears that there is little work focused on
this subject. Compared with PW lasers, CW lasers are closer to the damage mode of laser
weapons, and irradiation can make the temperature of an object rise sharply to hundreds
or even thousands of degrees Celsius, which is commonly used in extreme temperature
tests and finish machining of materials [26]. Moreover, it is also an effective method to
simulate the damage of structural materials by laser weapons. Therefore, the present work
concentrates on the ablation mechanism and performance of CF-reinforced thermoplastic
composites (CFRTPCs) under CW laser irradiation. First, CFRTPCs were prepared by a
hot-pressing process. Second, CW laser ablation tests were carried out to investigate the
ablation performance of the composites by changing the laser power, irradiation time and
spot diameter. Third, the macromorphology and microstructure of the ablated CFRTPCs
were characterized. Finally, the microablation evolution behavior was deduced, and the
ablation mechanism was proposed. This work contributes to the damage assessment of
CFRTPCs subjected to CW laser irradiation.

2. Experiment
2.1. Materials and Specimens

The CFRTPCs were prepared from CF (TZ700S-12K, Weihai Tuozhan Fibre Co., Ltd.
Weihai, China)-reinforced poly(aryl ether ketone) (PAEK-L) unidirectional prepreg pro-
vided by Heilongjiang Yingchuang New Materials Co., Ltd. Jiamusi, China The areal
density of the CF was 149 g/m2, and the resin content of the prepreg was 37 wt%. More-
over, the nominal ply thickness of the prepreg was 0.15 mm. The thermophysical properties
of the CF and PAEK-L resin are presented in Table S1 in the supplementary information.
The CFRTPCs were prepared by a hot-pressing process, and a schematic illustration is
shown in Figure 1a. First, the prepreg was stacked and welded by ultrasonic spot welding
with a layup sequence of [0/90]7s (i.e., the total thickness was 4.2 mm with 24 plies). Second,
the welded preform was placed in a combination die for hot pressing and cured by the
process shown in Figure 1b. The die was heated to 360 ◦C and held at this temperature for
30 min with a pressure of 5 MPa in a hot press. After that, the die was cooled to 140 ◦C
with a pressure of 5 MPa. The CFRTPCs named CF/PAEK were obtained after demolding
(as shown in Figure 1c). Finally, the internal quality of the CF/PAEK (see Figure 1d) was
characterized using a scanning acoustic microscope (SAM, PVA Tepla SAM 300, Wettenberg,
Germany), and the cross section (see Figure 1e) was observed by an optical microscope
(Leica DMC 4500, Weztlar, Germany). The internal quality of the CF/PAEK was uniform
without obvious defects, and the fiber volume fraction was approximately 53.4%.
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Figure 1. Preparation process and morphology of CF/PAEK: (a) schematic illustration of the prepa-
ration process; (b) curing cycle; (c) CF/PAEK after curing; (d) ultrasonic C-scan result; (e) optical
microscope photo of the cross section.

2.2. Laser Ablation Test

The laser ablation experimental system is shown in Figure 2. The test system was
mainly composed of a fiber laser (RFL-C3000S, wavelength 1080 nm, Wuhan Raycus
Fibre Laser Technologies Co., Ltd., Wuhan, China), a power meter (PM3K+FieldMaxII-To,
Coherent, Palo Alto, CA, USA), baffles, and an optical platform. The CF/PAEK was cut into
rectangular samples with a size of 120 mm × 30 mm × 4.2 mm. The spot center was set on
the edge of each region to intuitively observe the damage status (see Figure 2). The influence
of the laser parameters on the ablation damage of CF/PAEK was studied by changing laser
power, irradiation time, and spot diameter. Table 1 lists the 10 irradiation conditions, i.e.,
No. 1–No. 4, to discuss the effect of laser power, No. 4–No. 7 to investigate the effect of
irradiation time, and No. 4, No. 8–No. 10 to study the effect of spot diameter. As shown in
Table 1, all three test schemes were controlled by only one variable. The laser power was
set from 600 W to 1500 W, the irradiation time was set from 2 s to 8 s, and the spot diameter
was set from 1 mm to 4 mm. The weight of the samples before and after the ablation
test was measured by an analytical balance with 0.1 mg readability (METTLER TOLEDO,
Zurich, Switzerland). After testing, the damaged areas of the ablated composites were
characterized by SAM and measured by Photoshop software. The damaged depths of the
ablated composites were characterized by a digital microscope (OLYMPUS DSX1000, Tokyo,
Japan). The micromorphology of the ablated composites was characterized by scanning
electron microscopy (SEM, HITACHI S4800, Tokyo, Japan). The chemical composition of
the ablated regions was identified by energy-dispersive X-ray spectroscopy (EDS).
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Table 1. Experimental parameters of the laser ablation test and experimental results.

Number LP/W IT/s SD/mm MLR/mg·s−1 DA/mm2

1 600 2 4 14.7 82.4
2 900 2 4 19.7 93.4
3 1200 2 4 35.9 118.4
4 1500 2 4 38.6 121.4
5 1500 4 4 36.1 201.4
6 1500 6 4 38.2 290.4
7 1500 8 4 35.8 376.4
8 1500 2 3 43.4 121.9
9 1500 2 2 42.5 121.9
10 1500 2 1 40.2 120.2

Note: LP is laser power; IT is irradiation time; SD is spot diameter; MLR is mass loss rate (mass loss per second);
DA is damaged area.

3. Results and Discussion
3.1. Ablation Performance

The changes in laser power (samples 1–4), irradiation time (samples 4–7), and spot diam-
eter (samples 4, 8–10) had different effects on the damage of CF/PAEK, as shown in Table 1.
Damaged areas of CF/PAEK characterized by the SAM and damaged depths of CF/PAEK
characterized by the digital microscope are respectively presented in Figures S1 and S2 in
the Supplementary Information. When the spot diameter was 4 mm (samples 1–7), the
relationship between the damaged area and mass loss rate of CF/PAEK on one hand and
the irradiation energy on the other is shown in Figure 3a. The damaged area showed an
approximately linear relationship with irradiation energy. Since samples 1–4 and samples
4–7 were irradiated at different laser powers and irradiation times, the effects of laser power
and irradiation time were equivalent. On the other hand, the damage area did not seem
related to the power density, since the power densities of samples 4–7 were constant, while
the damage area increased with increasing irradiation energy. Figure 3a also shows that the
mass loss rate increased nearly linearly for samples 1–4 and remained constant for samples
4–7. This indicates that the mass loss rate is positively correlated with laser power but not
with irradiation energy, because the power densities of samples 1–4 increased linearly, while
the power densities of samples 4–7 remained constant. These results are rarely reported
in previous works. Since the mass loss rate is primarily caused by ablation, while the
damaged area is mainly induced by thermal conduction, the damaged area is controlled by
irradiation time and laser power, according to the thermal conduction theory [27]. However,
the mass ablation rate pertains to the power density based on the ablation theory proposed
by Dimitrienko [28]. Consequently, the damaged area is determined by the irradiation
energy, while the mass loss rate is controlled by the laser power density. It should be noted
that these linear relationships are only empirical relationships within this energy range.
In fact, these relationships cannot be strictly linear due to the influence of air scattering,
material energy absorption rate, material phase change, heat transfer, etc.

The relationship between damaged area and mass loss rate of CF/PAEK on one hand
and spot diameter on the other is shown in Figure 3b. The damaged area remained almost
constant as the spot diameter increased. This further proved that the damage area is
related to the irradiation energy but not to the power density. The result is similar to
that of Pagano et al. [29]. When the CW laser beam with the same power density passed
through the composite, the change of the ablation width with energy density was not
obvious. On the contrary, the ablation depth increased significantly with the increase of
energy density. However, the mass loss rate increased first and then decreased as the spot
diameter enlarged. The power density is inversely proportional to the square of the spot
diameter when the laser power and irradiation time are constant. When the spot diameter
increases to a certain extent, the laser is insufficient to cause ablation of the material due
to the low power density. According to the research by Allheily et al. [4], the surface
temperature of composites irradiated by a CW laser increased with the increase of power
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density. Therefore, a peak of mass loss rate appeared with increasing spot diameter. This
indicates that increasing the power density to ablate the composite in the depth direction
more easily threatens the internal structure.
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CF/PAEK, with the same laser energy (3000 J).

In summary, the ablation damaged area is controlled by the irradiation energy, while
the mass loss rate is controlled by the power density. According to the above conclusions,
different damage effects can be achieved by adjusting the laser parameters. For example,
the smallest spot diameter and highest laser power should be chosen to destroy internal
electronic components and equipment. In contrast, a high laser power and large spot
diameter are more suitable for structural destruction owing to the larger damaged area.

3.2. Morphology and Characteristics

Figure 4 shows the typical morphology of a specimen after laser ablation. As shown
in Figure 4a, there are three distinct semicircles in the front view of the ablation region,
which can be divided into an ablation center (inner red circle, labelled R2), a transition zone
(between the yellow and red circles), and a heat-affected zone (between the yellow and blue
circles, labelled R3). Furthermore, the original spot radius R1 was larger than the bottom
radius (i.e., R4) of the ablation center but smaller than the top radius (i.e., R2) of the ablation
center (see Figure 4b). This result denoted that also outside of the laser beam, resin and
fiber decomposed and sublimated due to the high temperature. The above phenomena are
similar to those observed for thermoset composites, in which the diameter of the ablation
zone was larger than that of the laser spot, and the energy of the laser damaged the vicinity
of the ablation center through heat conduction [10,11,15,30]. Because the temperature
in the direct laser irradiation region was extremely high, a high-temperature zone also
formed in the surrounding area due to heat conduction and convection, which caused
the PAEK resin to fuse and the CF to sublimate, resulting in a significantly larger damage
projection diameter of the upper surface with respect to that of the spot. In the ablation
center, the PAEK resin and CF were ablated, leaving an ablation pit. In the transition
zone, the PAEK resin experienced decomposition, fusion, and cooling processes. In the
heat-affected zone, there were only fusion and cooling processes (see Figure 4a). These
phenomena indicate that decomposition and fusion phenomena were closely related to
the temperature distribution. In addition, there was no obvious ablation in the CFs in
these two zones because of the relatively low temperature. However, in the ablation center
of the thermoset composite, the resin and carbon fibers were decomposed or sublimated
directly, and there was no clear transition zone [9,10]. These differences will greatly affect
the residual strength of the composite after laser ablation.
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Figure 4c shows that the shape of the ablation center looked like a cone. This was
because the energy distribution of the laser was Gaussian, and there was no significant
change in the energy distribution of the laser during ablation. Therefore, the specimen
formed an inverted conical ablation pit along the laser propagation direction with limited
irradiation time [31,32]. Similarly, the ablation center, transition zone, and heat-affected
zone can also be clearly distinguished from the cross-section morphology (see Figure 4c). In
addition, there was plenty of residual carbon attached to the surface of the transition zone.
Furthermore, massive delamination caused by thermal stress can be observed in the cross
section of the ablation center and transition zone (see Figure 4c,d). The gas pressure caused
by resin decomposition was another reason for delamination. However, no delamination
could be found in the heat-affected zone, since the PAEK resin only remelted instead of
decomposing, which is significantly different from what observed for a thermoset resin,
where the boundary of the ablation center was not clear, and there was an obvious hole
structure 10. Therefore, the delamination area of CF/PAEK may be smaller than that of a
thermoset composite and maintain a higher damage tolerance. This result is crucial for the
laser damage assessment of thermoplastic composites.

Figure 5 shows the lateral micromorphology (i.e., regions A1, A2, and A3 in Figure 4c)
and element composition of the ablated region. It is clear that two orthogonally oriented
broken CFs can be found in the ablation pit (as shown in Figure 5a). The damage effect
of the transition zone was gradient-distributed; the closer to the ablation center, the more
serious the damage, which is consistent with the phenomena observed in the front view of
the ablation region. Meanwhile, a large quantity of resin decomposition and carbonization
products could be observed on the surface of the transition zone. Furthermore, Figure 5b
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shows that the resin among the fibers was completely carbonized, and obvious delami-
nation was found in the transition zone. This was probably caused by thermal stress and
gas generated from the resin decomposition. In contrast, the heat-affected zone was less
affected by high temperature, and the PAEK resin was retained among the fibers. However,
many cavities formed after resin fusion and cooling (see Figure 5c). These phenomena
are different from those observed in thermoset composites, where there was no obvious
division around the ablation pit, and the edges were blurred with only fibers 91,014. The
carbon/oxygen atomic ratio obtained by EDS is shown in Figure 5d. The carbon/oxygen
atomic ratios of A1 and A2 were as high as 61:1 and 40:1, respectively, which was caused
by the decomposition and carbonization products of CF and PAEK resin after ablation. In
contrast, the carbon/oxygen atomic ratio of A3 was only 9:1, which corresponded to the
remelted PAEK resin.
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3.3. Ablation Evolution Behavior of Fibres

The ablation behavior and its mechanism are significant issues in laser damage as-
sessment. Figure 6 shows that four obviously different ablation morphologies of CF were
observed in the ablation pit, which were located in different positions. When the laser beam
irradiated the surface of CF/PAEK, the PAEK resin decomposed first due to the extremely
rapid heating process. As the resin decomposed into gas, a relatively positive pressure
environment formed in this region, resulting in air being inaccessible to this zone. There-
fore, resin and CF decomposed and sublimated in an anoxic environment. In addition, the
high-temperature gas generated by the decomposition of PAEK resin and the sublimation
of CF continuously absorbed heat and eroded the ablation pit, causing decomposition of
the PAEK resin and sublimation of the CF outside the laser spot. Hence, the diameter of
the ablation pit (i.e., R2 in Figure 4b) became larger than that of the laser spot (i.e., R1 in
Figure 4b).



Polymers 2022, 14, 2676 9 of 13

Polymers 2022, 14, x FOR PEER REVIEW 9 of 13 
 

 

addition, the high-temperature gas generated by the decomposition of PAEK resin and 
the sublimation of CF continuously absorbed heat and eroded the ablation pit, causing 
decomposition of the PAEK resin and sublimation of the CF outside the laser spot. Hence, 
the diameter of the ablation pit (i.e., R2 in Figure 4b) became larger than that of the laser 
spot (i.e., R1 in Figure 4b). 

 
Figure 6. Ablation morphology of CFs in the ablation pit: (a) schematic for layup; (b) schematic for 
0°/90° plies; SEM photograph for (c) center of 0° ply; (d) edge of 0° ply; (e) 90° ply; (f) edge of the 
ablation pit. 

As shown in Figure 6b, 0° plies and 90° plies showed different ablation morphologies 
when they were cut by the circular section of the laser spot. The 0° plies showed two dif-
ferent ablation morphologies, depending on the geometric relationship between the laser 
spot and the plies. The front of the laser spot circular section was tangent to the 0° plies; 
thus, the remaining 0° fibers were not cut off but were connected in filaments on both 
sides, as shown in Figure 6c. Meanwhile, the side of the laser spot circular section cut 0° 
fiber bundles, forming a multilayer stacked morphology, as shown in Figure 6d. Moreover, 
the ablated 90° fibers presented more significant characteristics, as shown in Figure 6e,f. 
The fiber section in the ablation pit was needle-like, and the outside was surrounded by a 
circle of loose cortex, forming a cylindrical nested cone structure, as shown in Figure 6e. 
However, the fiber section around the ablation pit was a smooth circle or oval, as shown 
in Figure 6f. This phenomenon was rarely reported in previous laser ablation behavior 
studies of resin matrix composites [30,33]. However, this phenomenon and its mechanism 
are significant to laser machining and laser damage evaluation. 

During the preparation of CF, a slight cortex–core structure of the precursor fiber 
formed due to double diffusion in the coagulation bath, which further intensified during 
the subsequent carbonization. The cortex was densely arranged and aligned along the ax-
ial direction with fewer defects, while the core was disordered, with a large number of 
pores [34–36]. Therefore, the heterogeneous structure along the radial direction of CF led 
to an uneven distribution of the thermophysical parameters. Specifically, the core should 
have the largest specific heat and the lowest thermal conductivity, while the cortex should 

Figure 6. Ablation morphology of CFs in the ablation pit: (a) schematic for layup; (b) schematic for
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ablation pit.

As shown in Figure 6b, 0◦ plies and 90◦ plies showed different ablation morphologies
when they were cut by the circular section of the laser spot. The 0◦ plies showed two
different ablation morphologies, depending on the geometric relationship between the
laser spot and the plies. The front of the laser spot circular section was tangent to the 0◦

plies; thus, the remaining 0◦ fibers were not cut off but were connected in filaments on both
sides, as shown in Figure 6c. Meanwhile, the side of the laser spot circular section cut 0◦

fiber bundles, forming a multilayer stacked morphology, as shown in Figure 6d. Moreover,
the ablated 90◦ fibers presented more significant characteristics, as shown in Figure 6e,f.
The fiber section in the ablation pit was needle-like, and the outside was surrounded by a
circle of loose cortex, forming a cylindrical nested cone structure, as shown in Figure 6e.
However, the fiber section around the ablation pit was a smooth circle or oval, as shown
in Figure 6f. This phenomenon was rarely reported in previous laser ablation behavior
studies of resin matrix composites [30,33]. However, this phenomenon and its mechanism
are significant to laser machining and laser damage evaluation.

During the preparation of CF, a slight cortex–core structure of the precursor fiber
formed due to double diffusion in the coagulation bath, which further intensified during
the subsequent carbonization. The cortex was densely arranged and aligned along the
axial direction with fewer defects, while the core was disordered, with a large number of
pores [34–36]. Therefore, the heterogeneous structure along the radial direction of CF led
to an uneven distribution of the thermophysical parameters. Specifically, the core should
have the largest specific heat and the lowest thermal conductivity, while the cortex should
have opposite values. It is noteworthy that the thermophysical properties of materials
significantly influence the ablation process and morphology. Since the decomposition
temperature of PAEK (i.e., 590 ◦C) is far lower than the sublimation temperature of CF (i.e.,
3550 ◦C), the axial thermal conductivity of CF is much higher than that of PAEK, and the
ablation rate of PAEK is much larger than that of CF. On the other hand, the highest specific
heat of the core led to the lowest temperature rise, resulting in the earliest sublimation of the
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cortex. Consequently, the needle-like structure was formed instantaneously. Liu et al. [37]
also reported this needle-like morphology of CF. The reason of this morphology in that
paper was that the core part of CF reached the highest decomposition temperature. There
are some other similar reports about the needle-like morphology of CF by Chen et al. [38]
and Li et al. [39]. However, a cylindrical nested cone structure was never reported, probably
because the matrix in previous research was SiC. Due to the anoxic environment in the
ablation pit, PAEK resin decomposition left residual carbon, and only approximately 40%
of the weight was lost when the temperature reached the carbonization temperature [40].
Therefore, a thin layer of residual carbon would leave the outside of CFs, forming a
cylindrical nested cone structure. However, in the aerobic environment at the edge of the
ablation pit, the PAEK resin could be oxidized, and there was no residual carbon layer.
In addition, the fiber could be continuously oxidized at a temperature lower than the
sublimation point [41,42]; thus, a flat section finally formed.

3.4. Ablation Mechanism

According to the above analysis, the ablation mechanism of CF/PAEK under CW laser
irradiation can be summarized as follows (see Figure 7).
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Figure 7. Schematic of the ablation mechanism of CF/PAEK.

When a high-energy CW laser irradiates the surface of the CF/PAEK laminate, the
temperature in the spot center increases rapidly, causing the PAEK resin and the CFs to
decompose and sublimate instantly. According to the temperature distribution, the ablation
area can be divided into three regions: ablation center, transition zone, and heat-affected
zone. The ablation center is directly irradiated by the laser, showing the fastest heating rate
and the highest temperature (i.e., >3550 ◦C). The PAEK resin first decomposes to produce
small molecular gaseous products. When the temperature continues to rise above the
sublimation temperature of the CF, the CFs sublimate into gas. Since the laser energy has a
Gaussian distribution, a V-shaped ablation pit is formed. Due to the rapid formation of
abundant gaseous products, a positive vapor pressure is formed, which prevents external
air from entering the ablation pit. Therefore, the PAEK resin decomposes and leaves a thin
residual carbon layer on the surface of CFs. Meanwhile, the CFs sublimates and forms a
needle-like structure owing to the inhomogeneity of the fibers along the radial direction.
Therefore, the unique cylinder nested cone structure of CF forms.

The temperature in the transition region is between the decomposition temperature of
the PAEK resin and the sublimation temperature of CF. In the presence of air, the PAEK
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resin and the CFs on the surface layer are oxidized to gaseous products such as CO and
CO2 [43]. In contrast, in the internal anaerobic environment, the PAEK resin decomposes
into gaseous products, and residual carbon is formed and deposited on the surface of
the composite at high temperature. Thus, interlaminar delamination also occurs in the
composite. Therefore, the damage mechanism of the transition zone is thermochemical
oxidation and decomposition of the PAEK resin and thermochemical oxidation of the CF.
In addition, the lack of interlaminar resin leads to the delamination of the composite in the
ablation pit, and the top and bottom surfaces bulge outward.

The temperature in the heat-affected zone is between the melting temperature and
the decomposition temperature of the PAEK resin. The PAEK resin undergoes physical
changes associated with remelting and solidification during heating and cooling, while the
CFs do not change in this temperature range. The PAEK resin flows locally under gravity
in the molten state, leaving cavities in several areas after solidification. Since most resin
remains in the interlaminate, and no gas decomposition product is generated, there is no
delamination in the heat-affected zone. Therefore, the damage mechanism in this region is
only thermophysical melting of the PAEK resin, which is different from that observed for
the thermoset resin.

The above mechanism shows that the ablation behavior of thermoplastic composites
is obviously different from that of thermosetting composites in some respects. Compared
with thermoset resins, CF/PAEK formed a molten layer during the laser ablation process,
which protected the material from further oxidation and damage. This property enables the
composite structures to maintain high residual strength after laser ablation, thus showing
good laser damage resistance.

4. Conclusions

This paper concentrated on the ablation mechanism and performance of CF/PAEK
thermoplastic composites subjected to CW laser irradiation. The effects of laser power,
irradiation time, and spot diameter on the ablation damaged area and mass loss rate of
CF/PAEK thermoplastic composites were discussed. The results showed that the ablation
damaged area is controlled by the irradiation energy, while the mass loss rate is controlled
by the power density. The morphology and composition of the ablated composite were
characterized to reveal the ablation mechanism. According to the temperature distribution,
the ablation area was divided into three regions: ablation center, transition zone, and
heat-affected zone. The formation mechanism of the unique cylinder nested cone ablation
morphology of CF was explained.

The ablation mechanism presented in this study can deepen our understanding of the
damage evolution of CF/PAEK subjected to high-energy CW laser irradiation. Moreover,
this work lays the foundation for subsequent research on CF/PAEK damage tolerance
after laser ablation. The residual strength of the damaged laminate can be tested, and the
strain response of the laminate during laser ablation can be tested in situ. In addition,
research about the development of laser ablation-resistant coatings and protective effects
is meaningful.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14132676/s1, Table S1: Thermophysical properties of CF
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Damaged depths of CF/PAEK characterized by digital microscopy.
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