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Abstract: The goal of the current article was to obtain data regarding the application of a series
of grafted pullulan derivatives, as flocculating agents, for removal of some pesticide formulations
from model wastewater. The pullulan derivatives are cationic polyelectrolytes, with various content
and length of grafted poly[(3-acrylamidopropyl)-trimethylammonium chloride] chains onto the
pullulan (P-g-pAPTAC)]. The commercial pesticides are either fungicide (Bordeaux Mixture) (BM)
or insecticides (Decis (Dc)—active ingredient Deltamethrin, Confidor Oil (CO)—active ingredient
Imidacloprid, Confidor Energy (CE)—active ingredients Deltamethrin and Imidacloprid and No-
vadim Progress (NP)—active ingredient Dimethoate). The removal efficiency has been assessed by
UV-Vis spectroscopy measurements as a function of some parameters, namely polymer dose, grafted
chains content and length, pesticides concentration. The P-g-pAPTAC samples showed good removal
efficacy at doseop, more than 94% for BM, between 84 and 90% for DC, CO and CE and around 93% for
NP. The maximum percentage removal decreased with the pesticides (DC, CO, CE, NP) concentration
declining; no effect of BM concentration in suspension on its removal efficiency process has been
noted. Differences indicated by zeta potential and particle size distribution measurements regarding
the pesticides removal mechanisms by pullulan derivatives (charge neutralization, bridging, etc.)
are discussed.

Keywords: pullulan-based flocculant; insecticides; synthetic wastewater; flocculation mechanism;
UV-Vis spectroscopy

1. Introduction

Graft copolymers are compounds obtained by one of the widely used chemical modi-
fication method of synthetic or natural polymers, namely graft copolymerization one, with
the three synthesis strategies (the “grafting onto”, the “grafting from”, and the “grafting
through”) [1]. The possibility of combining a large number of monomers and polymers
has been materialized in obtaining compounds with tailored compositions (functional
groups type, grafting density, side/graft chains lengths, etc.), and hence improved or
new properties suitable for a wide range of applications in various industrial, biomedical,
pharmaceutical, agricultural, environmental fields, etc. [2–4]. Over time, many researchers
have focused on the synthesis and characterization of soluble grafted polysaccharides used
in the wastewater treatment processes, the interest in developing these materials being
prompted by the possibility to combine the advantages of polysaccharides (cheap, non-toxic,
biodegradable and fairly shear stable) [5] and those of synthetic polymers (low dosage).
Thus, many grafted copolymers of chitosan, cellulose, starch, konjac glucomannan, gum
guar, gum tragacanth, alginate etc. have been synthetized and used for removal of clays,
dyes, metal ions, etc. [3,5–10]. Few grafted copolymers have been used for adsorption of
some pesticides from aqueous medium [11,12]. It is well known that this type of refractory
contaminants used, especially, in the agriculture field to increase world food production
have been a worldwide concern as a result of their undesired consequences (toxic effects)
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on the environment (soil, air, water) [13] and living organism health [14]. Therefore, the
reduction of pesticide level in surface and wastewater resulting from pesticide production
plants and agricultural activities by some physical, chemical and biological methods has
been given lots of attention [15–19]. In recent years, polysaccharide derivatives-based
flocculation method has been used with good results to reduce the content of some fungi-
cides and insecticides commercial formulations from the synthetic wastewater (removal
efficiency between 90 and 97%). Polysaccharide derivatives were based on chitosan [20],
dextran [21] and pullulan [22]. Regarding pullulan and its derivatives, the literature survey
of some valuable reviews [5,22,23] revealed that these compounds, including the grafted
ones were less tested as flocculant [24,25], in spite of the high flexibility of the pullulan
backbone which afford a suitable arrangement of the polymer chains on the particles sur-
face. In addition, the ionic derivatives have the advantage of charged groups presence,
able of electrostatically attracting charges from the surface of contaminant particles. The
excellent properties mentioned above have been recently demonstrated by some pullulan
derivatives containing either pendent tertiary amine groups or quaternary ammonium
salt one (grafted chains onto the pullulan), which have been tested and proved to be very
efficient in separation of kreutzonit particles and their mixture with kaolin, K-feldspar,
hematite (95-99% in the optimum dose domain) [26]. Moreover, the flocs resulting from the
separation of kreutzonit particles by the pullulan derivative sample with grafted cationic
chain (poly[(3-acrylamidopropyl)-trimethylammonium chloride]) (P-g-pAPTAC) reduced
successfully fungicide Bordeaux mixture (BM) from synthetic wastewater (removal efficacy
more than 95%). This result led us to question whether the soluble P-g-pAPTAC samples
containing various amount and length of grafted cationic chains could be also effective in
removing BM, but also other commercial pesticide formulations from simulated dispersions.
The answer was found in the present investigation that, mainly, considered the impact
of the pullulan derivatives chemical structure (grafted chains content and length) and
polymer dose (the flocculant concentration in its mixture with pesticide dispersions) on the
removal of some commercial insecticide formulations Decis (Dc) (Delthamethrin—active
ingredient), Confidor oil (CO) (Imidacloprid—active ingredient), Confidor Energy (CE)
(Deltamethrin and Imidacloprid—active ingredients), Novadim Progress (NP) (Dimethoate-
active ingredient) and fungicide BM (copper ion as copper sulfate). To the best of our
knowledge, there have been no reported data regarding the impact of grafted pullulan
derivatives, as purification agents in pesticide-containing wastewater.

The UV–Vis spectroscopy together with the zeta potential and particle aggregates
size measurements were the tools used to determine the separation efficiency and the
flocculation mechanism for each pesticide investigated.

2. Materials and Methods
2.1. Materials

Pullulan derivatives samples (P-g-pAPTAC) with various amount and length of grafted
cationic chains, were obtained by free–radical grafting of (3-acrylamidopropyl)-
trimethylammonium chloride (APTAC) onto pullulan (Mw = 200 kg mol−1) (Hayashibara
Lab. Ltd., Okoyama, Japan), in the presence of initiator potassium peroxydisulfate, as it
was described by Constantin et al. [27] (Figure 1).The polymers abbreviations are given in
the footnote of Table 1 which collects the synthesis parameters and some characteristics for
the pullulan derivatives.

Pesticides: Bordeaux mixture MIF type (IQV, Barcelona, Spain) (BM)—commercially
accessible in packs of 50 g. Decis (Bayer CropScience, Leverkusen, Germany) (Dc)—
commercially accessible in vials with 2 mL solution. Confidor Oilsc0.04 (CO) (Bayer, Lev-
erkusen, Germany) and Confidor Energy (CE) (Bayer)—commercially accessibles in bottles
with 100 ml concentrated suspension. Novadim Progress (NP) (Cheminova A/S, Lemvig,
Denmark)—commercially available in vials with 20 mL solution. The chemical structure of
active ingredients for each pesticides formulation as well as some other their characteristics
and of model pesticides dispersions are shown in Table 2.
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Figure 1. General chemical structure of polycations based on pullulan P-g-pAPTAC.

Table 1. Synthesis parameters of pullulan derivatives P-g-pAPTAC [25].

Polymer
p

(g)
APTAC

(·10−2 mol)
KPS

(·10−2 mol)

Product
Mw 2 × 10−3

(g·mol−1)
[η] 3

Rao
(mL·g−1)pAPTAC

(wt %)
Graft Ratio 1

(%)

P-g-pAPTAC1 1.0 0.487 0.0369 22.53 29.09 13.81 67

P-g-pAPTAC2 1.0 0.967 0.0369 29.05 40.94 21.13 500

P-g-pAPTAC3 1.0 0.487 0.0924 34.51 52.69 33.28 77

P = pullulan, APTAC = (3-acrylamidopropyl)-trimethylammonium chloride, KPS = potassium peroxydisulfate,
pAPTAC = grafted cationic chains, poly[(3-acrylamidopropyl)-trimethylammonium chloride] (pAPTAC). 1 Graft
ratio is calculated with the equation: (weight of grafted polymer–weight of substrate)/weight of substrate;
2 Average molecular weight in 0.5 M NaCl at 25 ◦C; 3 [η]Rao = the intrinsic viscosity determined by the Rao
method (1993) [28] (see [25]).

Table 2. Pesticides and dispersions characteristics.

Pesticide Chemical
Structure

Chemical Composition
(wt %)

Dispersion
Concentration

(c%, w/w)

Zeta
Potential
(ζ), mV

λ

(nm) pH

BM - (20% copper as copper sulfate) 0.05
0.025 −20 652 7

CO
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2.2. Methods

The stock solutions of the grafted pullulan derivatives were prepared in distilled water
(concentration: 1 gL−1). They were stabilized at room temperature for one day before use.
The pesticide dispersions, with characteristics indicated in Table 2, were also prepared
in distilled water and stabilized by sonication for 15 min (ultrasonicator VCX 750 SON-
ICS, Newtown, CT, USA) before starting tests. A Cole Parmer Nine-Position Stirring Hot
Plate was used for assessing the polycations based on pullulan, as flocculants, in aqueous
pesticide dispersions. The flocculation tests were carried out according to Ghimici and
Nichifor [29]. Thus, the addition of pullulan derivatives to simulated dispersions of pesti-
cides (50 mL placed into 100 mL beakers) took place under stirring at a speed of 500 rpm,
which was kept constant for another 3 min. Afterwards the speed was decreased to about
200 rpm for 15 min. The flocs were then allowed to settle down. At the end of the optimum
settling period fixed for each particle (the period of time after which the pollutants residual
absorbance (%) remained almost constant), absorbance measurements (spectrophotometer
SPECOL 1300 (Analytik Jena GmbH, Jena, Germany)) at λ values mentioned in Table 2 and
zeta potential ones (Zetasizer Nano-ZS, ZEN-3500 model, Malvern Instruments, Malvern,
England) were performed on supernatant samples (10 mL). The optimum settling time
for each pesticide formulation was established in preliminary experiments, as follows:
60 min for BM, 1200 min for CO, Dc, CE and 120 min for NP. Also, to evaluate the "natural"
separation of the dispersions, blank tests were carried out on pesticide dispersions without
pullulan derivatives. Thus, the residual absorbance values were 90.16% for BM, 92.5% for
CO, 90% for CE, 85% for Dc and 80% for NP after the same settling time as that established
in the presence of polymers. The fungicide removal efficacy was expressed as percent
of the initial absorbance recorded for the fungicide particles suspensions, at time zero
(without polymer).

The size distribution measurements of the insecticide particles in initial dispersion and
of polymer/pesticide aggregates at doseop, have been also carried out with Laser Particle
Size Analyzer—Partica LA-960V2 (Horiba, Kyoto, Japan) (D(50), µm).

3. Results and Discussion
3.1. Effect of Polymer Dose and Grafted Chain Content and Length
3.1.1. Fungicide Bordeaux Mixture

BM—a combination of copper sulfate, lime, and water is an effective bactericide and
fungicide that provides a long-lasting protection to fruit trees, ornamental plants, vine
fruits, etc. [30]. However, the excessive use of BM is risky, as it can be toxic to livestock,
earthworms, fish, and even humans [31–33]. Hence, the reduction content of copper and
even elimination from soil and water is very important. In a comprehensive review, Al-
Saydeh et al. (2017) [34] have focused on various treatment methods (physical, chemical and
biological) of wastewater contaminated with copper. Also, Oustriere et al. [35] treated BM
effluents by rhizofiltration in constructed wetlands (pilot-scale). Recently, the flocculation
method was used with very good results for the removal of BM particles from simulated
wastewater in the presence of some polysaccharide derivatives, pullulan with pendent
tertiary amine groups [36] and chitosan [20].

In the following, the effects of flocculant dose and of the grafted pAPTAC content and
length in the pullulan derivatives on the removal efficiency of BM are shown in Figure 2.

A maximum efficacy in removal of BM (around 94% and more) was noticed for the
samples investigated at optimum polymer doses (doseop—the polymer dose corresponding
to the maximum removal efficiency of particles). The explanation for this result can be
found below. In order to be a good flocculant, a polymer must be adsorbed on the sur-
face of the particles by means of some forces such as hydrogen bonding and electrostatic
attractions and/or hydrophobic ones and ion binding [37]. The conformations of the ad-
sorbed chains (loops, trains, and tails) resulted as a consequence of the polymer/particles
interactions mentioned above lead to various flocculation mechanisms, such as: bridging
(where tails and loops of a few polymers with high affinity to the particle surface make
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bridges between two or more particles), charge neutralization (where the particle surface
charges are neutralized by the oppositely charged groups of the macromolecular chain so
that the particles attract each other by van der Waals forces), or a charge patch mechanism
(when aggregation occurs as a result of the electrostatic attraction between oppositely
charged regions on partially covered particles) [37]. Quite often these separation mech-
anisms act in combination, depending on the properties of particles and polymers. The
grafted pullulan derivatives studied herein, contain quaternary ammonium salt groups
which can electrostatically attract the SO4

2− anions (the negative species of this fungicide
(ζ = −20 mV)) inducing, thus, the BM particles aggregation and settling. On the other
hand, the chemical structure (Figure 1) shows that these polymer samples contain amide
groups which can bind Cu2+ ions. Consequently, the polyions/Cu2+ ions interactions
can have some contribution in the BM separation process. However, in the case of all
P-g-pAPTAC samples an increase of the residual absorbance at polymer dose higher than
doseop has been observed; this could happen as at overdose the surface BM particles is
less charged, and hence a high number of charges on the P-g-pAPTAC chains remain
uncompensated leading to restabilization of suspension as an effect of the electrostatic
and/or steric chain repulsions.
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0.05, settling time 60 min.

The results have also indicated that there was a difference between polyelectrolyte
amount required for the maximum BM particles removal (Figure 2a). For the same grafted
chain length, the sample with the highest ionic groups content, P-g-pAPTAC3 (pAPTAC
(wt %) = 34.51, see Table 1) accomplished the lowest residual BM absorbance (4.9%) at
doseop of 8 mg·L−1, as against P-g-pAPTAC1 (pAPTAC (wt %) = 22.53), where the minimum
residual BM absorbance (6.18%) was noticed at doseop of 10 mg·L−1; the higher pAPTAC
content determined the increase polyions/SO4

2− anions interactions and hence a lower
doseop for P-g-pAPTAC3. As regard P-g-pAPTAC2, a percent BM removal more than 95%
has been observed in a large doseop interval (between 8 mg·L−1 and 16 mg·L−1). This
sample contains the longest cationic pAPTAC chains grafted on pullulan backbone, and
hence a larger hydrodynamic coil volume than the other two samples (see the [η] values
in Table 1). This implies a more facile accessibility, and consequently a higher number of
attached fungicide particles to the positive sites of the polymer chain. The binding of more
particles by a polymer chain is characteristic, as it is already mentioned, for the bridging
mechanism [37] which has to be taken under consideration for this system. On the other
hand, the smaller number of cationic positions uninvolved in interactions with the BM
particles, may cause poorer repulsive interactions between the polyion segments, and hence
the lagging redispersion.

The zeta potential measurements have provided information regarding the separation
mechanism (Figure 2b). Kleimann et al. [38] have found that ζ value near zero at doseop cor-
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responds to the charge neutralization mechanism. Accordingly, the value of ζ = −3.69 mV
(at doseop) pleads for the mechanism mentioned above, as the predominant one involved
in the separation of BM particles by P-g-pAPTAC3. In case of P-g-pAPTAC2, the ζ mea-
surements recorded values between −10.5 mV and 2.9 mV in the optimum dose interval;
this confirms the UV-Vis measurements data, namely that alongside charge neutralization
mechanism and the polyions/Cu2+ ions interactions, the bridging mechanism could have a
noteworthy implication in the BM removal process. This was also checked by evaluation of
the BM particle separation by a solution of P-g-pAPTAC2 prepared in 0.1 M NaCl (Figure 3).
It is well known that the addition of an excess of salt in a polyelectrolyte solution leads to
the screening of charged segments, its viscometric behavior in solution becoming similar to
that of neutral polymers [39]. This happened for P-g-pAPTAC2 in solution of 0.1 M NaCl,
when the reduced viscosity values (ηsp/cp) decreased linearly with dilution (Huggins plot)
(the inset of Figure 3).

Polymers 2022, 14, x  6 of 14 
 

 

values in Table 1). This implies a more facile accessibility, and consequently a higher 

number of attached fungicide particles to the positive sites of the polymer chain. The 

binding of more particles by a polymer chain is characteristic, as it is already mentioned, 

for the bridging mechanism [37] which has to be taken under consideration for this sys-

tem. On the other hand, the smaller number of cationic positions uninvolved in interac-

tions with the BM particles, may cause poorer repulsive interactions between the polyion 

segments, and hence the lagging redispersion.  

The zeta potential measurements have provided information regarding the separa-

tion mechanism (Figure 2b). Kleimann et al. [38] have found that  value near zero at 

doseop corresponds to the charge neutralization mechanism. Accordingly, the value of  = 

−3.69 mV (at doseop) pleads for the mechanism mentioned above, as the predominant one 

involved in the separation of BM particles by P-g-pAPTAC3. In case of P-g-pAPTAC2, the 

  measurements recorded values between −10.5 mV and 2.9 mV in the optimum dose 

interval; this confirms the UV-Vis measurements data, namely that alongside charge 

neutralization mechanism and the polyions/Cu2+ ions interactions, the bridging mecha-

nism could have a noteworthy implication in the BM removal process. This was also 

checked by evaluation of the BM particle separation by a solution of P-g-pAPTAC2 pre-

pared in 0.1 M NaCl (Figure 3). It is well known that the addition of an excess of salt in a 

polyelectrolyte solution leads to the screening of charged segments, its viscometric be-

havior in solution becoming similar to that of neutral polymers [39]. This happened for 

P-g-pAPTAC2 in solution of 0.1M NaCl, when the reduced viscosity values (ηsp/cp) de-

creased linearly with dilution (Huggins plot) (the inset of Figure 3). 

 

Figure 3. The residual BM absorbance (%) dependence on the polymer dose (salt solution of 

P₋g₋pAPTAC2 in 0.1M NaCl); cBM (%, w/w) - 0.05, settling time 60 min. The inset: the reduced vis-

cosity dependence on polymer concentration, c. 

A significant decline of the residual fungicide particle (%) in the presence of salt 

solution of P-g-pAPTAC2 was noticed, a maximum removal efficiency of around 70% 

being achieved in the doseop interval between 6 mg∙L−1 and 14 mg∙L−1. This finding sus-

tains the assumption above related to the predominant involvement of the bridging 

mechanism in the removal of BM particles by the pullulan derivative with the longest 

Figure 3. The residual BM absorbance (%) dependence on the polymer dose (salt solution of P-g-
pAPTAC2 in 0.1 M NaCl); cBM (%, w/w)—0.05, settling time 60 min. The inset: the reduced viscosity
dependence on polymer concentration, c.

A significant decline of the residual fungicide particle (%) in the presence of salt
solution of P-g-pAPTAC2 was noticed, a maximum removal efficiency of around 70% being
achieved in the doseop interval between 6 mg·L−1 and 14 mg·L−1. This finding sustains
the assumption above related to the predominant involvement of the bridging mechanism
in the removal of BM particles by the pullulan derivative with the longest grafted chains.
The implication of this type of flocculation mechanism in case of neutral grafted polymers
was previously reported [5,40].

One has also to stress that NaCl had no influence on the separation of this fungicide;
the suspension of BM particles prepared in 0.1 M NaCl solution was stable, a residual BM
absorbance of 87% after 60 min of settling time being observed.

In closing this discussion, one may remark that the flocculation performance of
the grafted pullulan derivatives with strong basic quaternary ammonium salt groups
is quite close (removal efficiency of 94% and more in the doseop interval between 8 mg·L−1

and 16 mg·L−1) to that recorded in case of the pullulan derivatives containing pendent
tertiary amine groups, (separation efficacy of around 98% in the doseop interval between
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3 mg·L−1 and 20 mg·L−1) [36]. The difference lies in the settling time after which these
results were obtained, namely 60 min for the former type of pullulan derivatives and
1200 min for the latter one. We assume that both the quaternary ammonium salt groups
and grafted chains presence in the chemical structure of P-g-pAPTAC samples could deter-
mine an intensification of the polycation/BM particles interactions, and hence a more rapid
separation of fungicide. Thus, the grafted pullulan samples could be used in the separation
processes where a shorter settling time is preferred.

3.1.2. Insecticides Decis, Confidor Oil, Confidor Energy

The CO and Dc formulations are systemic insecticides employed for the control of
sucking insects (termites, thrips, aphids, etc) in crops of rice, cereal, vegetables, fruits,
cotton, etc [41]. The active ingredients of these pesticides are Imidacloprid (1-(6-chloro-
3-pyridyemethyl)–N-nitroimidazolidine-2-yliedeneamine) (neonicotinoids chemical fam-
ily [42]) for CO and Deltamethrin ([(S)-Cyano-(3-phenoxyphenyl)-methyl] (1R,3R)-3-(2,2-
dibromoethenyl)-2,2-dimethyl-cyclopropane-1-carboxylate) (pyrethroid chemical family)
for Dc. These insecticides can be applied as single substance but also as mixture, for
example in CE formulation which contains different amounts of both Imidacloprid and
Deltametrin (see Table 2).

The data showing the effect of grafted pullulan derivatives dose on the percent removal
of the insecticides mentioned above are represented in Figure 4a,b and Figure 5.
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Figure 4. The residual pesticides absorbance (%) dependence on the polycation dose: P-g-pAPTAC1
(inverted triangle), P-g-pAPTAC2 (star), P-g-pAPTAC3 (circle) for CO (a) and Dc (b); settling time
1200 min; cCO (%, w/w)—0.1; cDc (%, v/v)—0.04, settling time 1200 min.

In case of the pesticide formulations containing a single active ingredient, the fol-
lowing aspects can be highlighted: (i) a rise of the insecticides removal efficiency with
increasing grafted pullulan derivatives dose, achieving the maximum at doseop which
depended on the ionic groups content; the higher the pAPTAC content, the lower doseop,
as follows: doseop (mg·L−1): 0.6 (P-g-pAPTAC3) against 1 (P-g-pAPTAC1) for CO and 1
(P-g-pAPTAC3) against 1.4 (P-g-pAPTAC1) for Dc; (ii) for both insecticides, no effect of
the grafted chain length in P-g-pAPTAC2 on the doseop was observed, the values being
located in the same interval as the other two polymers, namely 1 mg·L−1 for CO and
1.4 mg·L−1 for Dc. The findings above lead to the assumption that the electrostatic attrac-
tive interactions between the cationic sites on the polymer chains and the negative charged
insecticide particles (ζ (CO) = −29.3 mV; ζ (Dc) = −28.2 mV), which are an indication for the
charge neutralization or charge patch mechanisms, play the dominant role in the removal
process. This assumption was checked by the zeta potential measurements, as in the case
of BM. Looking at the experimental data in Table 3, one observes that for each pullulan
derivative/insecticide system, the ζ values corresponding to doseop are located around
to zero.
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Table 3. Zeta potential (ζ) values corresponding to the polymer optimum dose (doseop).

Polymer Sample

CO Dc

doseop, mg L−1 Zeta Potential
(ζ), mV

Removal
Efficiency (%)

doseop, mg L−1 Zeta Potential
(ζ), mV

Removal
Efficiency (%)

P-g-pAPTAC1 1.0 −4.8 84.5 1.4 −5.2 85.5
P-g-pAPTAC2 1.0 +4.5 88 1.4 +4.5 87.7
P-g-pAPTAC3 0.6 −0.88 89 1 +0.2 89.5

Based on this finding, one may assert that the charge neutralization mechanism prevails in the removal of Dc and
CO particles.

Since P-g-pAPTAC1 was slightly less efficient in removal of both insecticides, than P-g-
pAPTAC2 and P-g-pAPTAC3 (see Tabel 3), the tests for CE removal have been accomplished
using the last two pullulan derivatives (Figure 5).

As in the case of insecticides containing a single active ingredient, both polymers
proved to be efficacy in reduction of CE content in emulsion, the maximum removal
efficiency of 90% for P-g-pAPTAC3 and 87.5% for P-g-pAPTAC2 being noticed at doseop
values of 2 mg·L−1 (P-g-pAPTAC3) and 2.2 mg·L−1 (P-g-pAPTAC2).

3.1.3. Insecticide Novadim Progress

Novadim Progress is an organophosphorous insecticide - acaricide formulation with
systemic action that acts on contact and ingestion [43], used in agricultural area to protect a
wide range of crops (tomatoes, cabbage, cereals, fruits), tree and ornamentals from insect at-
tacks [44]. Its active ingredient is Dimethoate ([O,O-Dimethyl S-(N-methylcarbamoylmethyl)
phosphorodithioate]) which can undergo hydrolysis at the amide group [45], the insecticide
particles gaining negative charges (ζwater = −35.3 mV). Thus, they could be able to interact
electrostatically with the positive charges on the P-g-pAPTAC chains, the consequence
being their aggregation and separation from the model emulsion, as illustrated in Figure 6a.

In addition, the hydrogen bonds formed between the amide groups of Dimethoate
and of the pullulan derivatives could participate to the NP removal process.

A pronounced decrease of the NP content in the synthetic emulsion with the pullulan
derivatives dose increase, up to 18 mg·L−1 (P-g-pAPTAC3), 22 mg·L−1 (P-g-pAPTAC1)
and 30 mg·L−1 (P-g-pAPTAC2), when a high removal efficiency (between 90–93%) has
been noted. On the other hand, the low residual NP absorbance (%) values, below 10 were
observed on a larger flocculation interval for P-g-pAPTAC2 (20 mg L−1–40 mg L−1) against
one doseop for P-g-pAPTAC3. The fastest separation of NP and, also, its rapid redispersion
can be attributed to the enhanced content of cationic groups on the P-g-pAPTAC3 chain, as
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in case of the other pesticides already presented here. Both the high residual NP absorbance
(48%) found when 0.1 M NaCl solution of P-g-pAPTAC3 was used as flocculant (the
polymer becomes neutral as P-g-pAPTAC2 does—data not shown) and zeta potential
measurements of NP emulsion as a function of polymer dose indicated that the separation
process took place mainly by charge neutralization process (ζ value at doseop = −2.3 mV)
(Figure 6b).
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The monotonous increase of ζ with polymer dose and the negative values in the
optimum dose intervals obtained in the presence of P-g-pAPTAC1 (between −15 mV
and −9.5 mV) and P-g-pAPTAC2 (between −14.7mV and −8.6mV) suggested us that the
bridging mechanism and the hydrogen bonds established between the amide groups of
both Dimethoate and the pullulan derivatives could become dominant in the separation
process of NP.

From the data presented above, one may emphasize that the grafted pullulan deriva-
tives are as good flocculants as other polysaccharides (chitosan [20] and dextran deriva-
tives [21]) for NP particles (removal efficacy more than 90%). However, they are more
suitable, especially P-g-pAPTAC2, in the flocculation processes where large doseop intervals
are required.

3.2. Effect of Pesticide Concentration

Another important parameter which can have an impact on the removal efficiency of
grafted pullulan derivatives is the amount of pesticides from wastewater. Hence, it is useful
to perform experiments with dispersions containing different concentrations of pesticides
(see Table 2). The results are plotted in Figure 7. P-g-pAPTAC2 and/or P-g-pAPTAC3 have
been chosen in these experiments as they provided the best results in flocculation process,
in terms of doseop or percent of pesticides removal.

Both polymers showed the same behavior for all pesticides, at the new concentrations
investigated, as that noticed for the already discussed concentrations, namely the lowest
doseop values were found for the P-g-pAPTAC3 sample and the largest doseop intervals
for P-g-pAPTAC2. However, there are some differences indicating the impact of the initial
emulsions concentration on the removal pesticides efficiency. Thus, for the same pesticide,
the doseop values decreased with the decline of pesticide concentration (Table 4).
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Table 4. Optimum dose corresponding to the pesticide dispersion concentration.

Polymer Sample

BM Dc CE NP

Dispersion
Concentration

(c%, w/w)

doseop,
mg·L−1

Dispersion
Concentration

(c%, v/v)

doseop,
mg·L−1

Dispersion
Concentration

(c%, w/w)

doseop,
mg·L−1

Dispersion
Concentration

(c%, v/v)

doseop,
mg·L−1

P-g-pAPTAC2
0.05 14 0.04 1.6 0.03 2.2 0.7 30

0.025 10 0.02 1.4 0.02 2 0.5 20
0.01 0.8 0.01 1.6

P-g-pAPTAC3
0.05 8 - - 0.03 2 0.7 18

0.025 6 - - 0.02 1.4 0.5 14
0.01 1

This likely occurred since a lower insecticide particles content in dispersion required
less ionic polymer chains amount for the neutralization, hence the abatement of doseop.
Another aspect which has to be underlined is the slightly decrease of the pesticide removal
efficiency with reduction its concentration in dispersion from about 88% (c%, v/v = 0.04)
to 75% (c%, v/v = 0.01) in case of Dc (see Figures 4b and 7b), from 90% (c%, w/w = 0.03)
to 82% (c%, w/w = 0.01) in case of CE (see Figures 5 and 7c) and from about 93% (c%,
v/v = 0.7) to 86% (c%, v/v = 0.5) for NP (see Figures 6 and 7d). One may assume that
a large distance between contaminant particles, at lower concentration, leads to a lower
collision frequency and, thus, decreases the probability of their aggregation. A decrease of
doseop (mg L−1) with the decrease of Dc and NP concentration (%, v/v) has been noticed
in the presence of a dextran derivative sample (D40-Et94), too: (doseop = 1.4 (cDc = 0.04)
to doseop = 1.2 (cDc = 0.02) and doseop = 6 (cNP = 0.7) to doseop = 4 (cNP = 0.35) [21]. As
regard BM, the decrease of its concentration in suspension had an insignificant influence
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on the flocculation efficiency, a removal percent of around 95% being recorded at both
concentrations investigated (Figures 3 and 7a).

3.3. Particle Size Measurements

Both the Uv-Vis spectroscopy and zeta potential measurements have emphasized that
the mechanisms of pesticide removal processes depend on the content and length of grafted
cationic chains (pAPTAC). Thus, the pullulan sample with the highest charged groups
content (P-g-pAPTAC3) accomplishes pesticides removal, mainly, through the neutraliza-
tion mechanism while that with the longest grafted chains (P-g-pAPTAC2) through the
bridging one. This finding has been enforced by the particle size measurements (D(50), µm)
performed on the initial pesticide particles (before treatment with polymers) and aggre-
gates obtained at the optimum polycation doses. As the curves describing the aggregate
size distribution (volume fraction versus particle diameter), have not shown significant
difference in shape, those revealing the results obtained in the removal of NP particles by
P-g-pAPTAC3 and BM ones by P-g-pAPTAC2 are presented (Figure 8).
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Figure 8. Particle size distribution for NP particles (a) and BM particles (b); initial pesticide particles
(empty symbols); aggregates obtained in the presence of P-g-pAPTAC3, doseop = 18 mg·L−1, (c%,
v/v = 0.7) and in the presence of P-g-pAPTAC2, doseop = 10 mg·L−1, (c%, w/w = 0.05) (solid symbols).

The untreated NP particles have a unimodal distribution (Figure 8a), with D(50) of
0.132 µm. This type of distribution was also maintained in case of the NP aggregates
obtained in the presence of P-g-pAPTAC3; their narrow size distribution along with the
small size (1.169 µm) strengthen that the charge neutralization prevails in the NP particles
removal process. In case of fungicide dispersion, a bimodal size distribution of the BM
particles has been recorded both in the absence and presence of P-g-pAPTAC2; the D(50)
values were 0.308 µm and 5.697 µm for BM particles in the initial suspension and BM/P-g-
pAPTAC2 aggregates, respectively. The high-volume percentage of the peak corresponding
to particles of larger size confirms the assumption that the bridging mechanism could have
the most important role in the BM particles separation process.

4. Conclusions

The commercial formulations of fungicide Bordeaux mixture (BM) and insecticides
Decis (Dc), Confidor Oil (CO), Confidor Energy (CE) and Novadim Progress (NP) have
been separated from the synthetic wastewater by aqueous solutions of grafted pullulan
derivatives (P-g-pAPTAC) and the results can be resumed as follows:

The polymer doses required for maximum removal efficiency of the pesticides investi-
gated shifted to lower values with augmentation of ionic groups content and abatement of
pesticide concentration;

The longer the grafted chains, the larger the optimum dose interval, irrespective of the
pesticide type;

Zeta potential data showed that (i) the neutralization mechanism prevails in case of Dc
and CO particles removal by all of the pullulan derivatives as well as in case of BM and NP
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separation by the highest charged sample (P-g-pAPTAC3); (ii) the bridging mechanism has
a noteworthy contribution in the BM and NP particles removal by the sample containing the
longest grafted chain (P-g-pAPTAC2); (iii) the interactions of amide groups of the pullulan
derivatives with (1) Cu2+ ions (of BM) and (2) the hydrogen bonds formed with those of
Dimethoate (NP) could come into play in the separation process of these pesticides.

The good performance of the grafted pullulan derivatives in reducing the content
of pesticides in wastewater is a reason for us to consider other parameters in future
investigations (medium pH, mixture of pesticides as well as pesticides combined with other
pollutants (salts, clays, etc.)).
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