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Abstract: In recent years, flexible and wearable strain sensors, consisting of a polymer matrix and
a conducting filler, have received extensive attention owing to their physical advantages, such as
being lightweight, stretchable, and having the potential for application to complex forms. However,
achieving a low hysteresis of the relative change in resistance, wide sensing range, and reduced
plastic deformation is still challenging. To address these issues, in this study, we developed hybrid
conducting composites with a wide range of sensing abilities and low hysteresis. The bi-layer com-
posites, comprising a carbon nanotube (CNT) composite layer with reinforced/conducting properties,
and a natural rubber-based layer with extreme strain properties, could effectively circumvent their
limitations. Compared to single-layer CNT composites, the bi-layer structure could increase the
tensile strain with reduced plastic deformation, resulting in the prevention of surface cracks on the
CNT composite. In addition, it has the benefit of measuring a wider sensing range, which cannot be
measured in a single-CNT composite system. A cyclic stretching/releasing test was performed to
demonstrate that the strain sensor exhibited excellent reproducibility. Our results can function as a
useful design guide for stretchable sensor applications.

Keywords: polymer composite; carbon nanotube; strain sensor; hysteresis; plastic deformation

1. Introduction

Research on flexible strain sensors has been extended to commercialize wearable
devices capable of tracking human motions [1–5]. Because conventional strain sensors are
made of metal, various materials for stretchable strain sensors are being introduced. In ad-
dition, many studies are focusing on improving stretchability, durability, and repeatability,
and lowering hysteresis. Since transformation into various forms is essential if a sensor
is to recognize human movements, there have been comprehensive studies on flexible
and stretchable polymer-based composites for sensor applications [6–10]. Furthermore,
because elastomeric polymers are electrically insulating, electrically conducting fillers must
be introduced for piezoresistive system-based sensors.

Commonly used conductive fillers include carbon nanomaterials, such as graphene [11,12],
carbon black (CB) [13–15], carbon nanotubes (CNTs) [16–21], and Ag nanowires (Ag
NW) [22,23]. Among them, CNTs are 1D materials with a high aspect ratio; therefore,
even if the range of strain increases, the electrical network can be maintained, which is
advantageous for a stretchable piezoresistive system [2]. CNTs can be classified into single-
walled CNTs (SWNTs) and multi-walled CNTs (MWNTs), based on the number of walls.
Because CNTs have excellent mechanical strength, electrical conductivity, and thermal
conductivity, they have the potential to be utilized in various applications [24–28].

Recently, new attempts have been initiated to meet the requirements of stretchable
devices, such as a wide sensing range, stability, and low hysteresis, by modifying the
composite structure. In particular, there has been an increase in studies on the fabrication
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of hybrid-structured composites covering the elastomeric polymer layer above and below
the conducting layer [2–5,29]. However, in practical terms, the analysis of the effect of such
a hybrid-structured system compared with the existing single composite is insufficient.

Therefore, we analyzed the advantages of a hybrid-structured composite compared
to a single composite from the perspective of hysteresis and strain range. The bi-layered
composite was prepared by sealing natural rubber (NR) with excellent tensile strain (<500%)
onto MWNT/NR with excellent electrical conductivity in a single composite. NR was se-
lected as the base polymer matrix and hybrid-structure layer owing to its ultra-stretchability
and biocompatibility. The effect of the pure NR layer was analyzed with MWNT contents
of 1 and 5 wt.%. In addition, the adhesion between homogeneous polymers was excellent,
according to the cross-sectional image after tensile strain. This bilayer composite could
lower the hysteresis of the change in the initial resistance, compared to the single composite
system, because the NR layers prevent surface cracks from forming on the conducting layer
due to strain. In addition, this hybrid structure can reduce plastic deformation and widen
the sensing range. Furthermore, this system showed excellent repeatability and durability
in a cyclic test (130% strain, 100 cycles) in the 5 wt.% sample.

2. Materials and Methods
2.1. Materials

Natural rubber (NR) purchased from InfoChems (RSS#3, Goyang City, Gyeonggi-do,
Korea) was adopted as an elastomeric matrix. Multi-walled carbon nanotubes (MWNT,
JEIO, Incheon, Korea) were used as conductive fillers. This MWNT had a diameter of
5–7 nm, a bundle length of 50–150 µm, and purity of >96.5 wt.%. Dicumyl peroxide (DCP),
used as a crosslinking agent, was purchased from Sigma Aldrich (St. Louis, MO, USA),
and chloroform, used as a solvent for NR and MWNT, was purchased from DAEJUNG
Chemicals (Siheung, Korea).

2.2. Fabrication of MWNT/NR Single Composite and MWNT/NR Bi-Layer Composite

Both the MWNT/NR single composite and the MWNT/NR bi-layer composites with
low contents (1 wt.%) and high contents (5 wt.%) were fabricated using the ultrasonication
method. Because the dispersion of MWNT is essential in manufacturing the composite,
a solution process using an ultrasonicator (Sonics & Materials Inc., Newtown, CT, USA,
VC 505) was performed.

First, 5 g of NR was dissolved in 250 mL of chloroform using a magnetic stirrer (IKA,
C- MAG HS7) at 45 ◦C, 500 rpm for 24 h. The MWNTs were then mixed with 150 mL of
chloroform in another beaker for uniform dispersion, and the first ultrasonic dispersion
was performed at 200 W for 30 min. Next, a secondary ultrasonic dispersion was performed
for 1 h by adding an NR solution to the CNT dispersion, which was then sufficiently mixed.
Then, 2 wt. % DCP was added to the resultant dispersion and mixed for 30 min. Finally, the
solvent was evaporated in a vacuum oven at 45 ◦C for 16 h. Because NR is a thermosetting
polymer, the obtained MWNT/NR film was pre-pressed at 3 MPa for 2 min at 170 ◦C in a
0.5 mm mold, and then pressed at 15 MPa for 18 min. This process fabricated 0.5 mm of the
MWNT/NR single composite.

The NR film, previously prepared to fabricate the MWNT/NR bilayer composite, was
placed at the upper and lower ends of the single composite and heat-pressed in the same
manner as mentioned above. In the case of the bilayer composite, a 1.5 mm mold was used
to design all layers with thicknesses of 0.5 mm. This process is illustrated in Figure 1.
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Figure 1. Scheme of the fabrication method of the MWNT/NR single composite and the MWNT/NR
hybrid structure.

2.3. Characterization

To confirm the MWNT/NR dispersion and interface adhesion of the bilayer composite,
the composite cross-section was examined by scanning electron microscopy (SEM, ZEISS
Inc., New York, NY, USA, Gemini SEM 300). SEM was operated under an accelerated
voltage of 5 kV, and a cryo-fractured sample was prepared to obtain a cross-sectional
view of the composite. In addition, to measure the interfacial adhesive force, the broken
cross-section, which was coated with Pt, was measured after tensile strain.

A 2-wire mode multimeter (DMM7510, Keithley, Solon, OH, USA) was used to measure
the electrical conductivity of the MWNT/NR composite. First, an electrode was formed
with Ag paste (Protavic, Levallois-Perret, France) after 5 min of UV etching to reduce
contact resistance. Then, the Ag electrode was crosslinked in a convection oven at 130 ◦C
for 1.5 h.

The mechanical properties, such as Young’s modulus and elongation, were measured
using a universal testing machine (UTM, DRTECH, Seongnam-si, Korea). The specimen
used for the UTM test was a linear-type sample with a dimension of 5.0 × 50.0 × (0.5 for
single composite, 1.5 for bi-layer composite) mm3. All of the samples were measured at the
same speed of 20 mm/min.

Finally, the dynamic strain test of the composite, according to the uniaxial strain,
was performed using a 3D stretching machine (3D-SM, NAMIL Optical Instruments Co.,
Hongkong, China). For the bilayer composite, Cu tape was attached inside the Ag paste
to form a long electrode. Hysteresis analysis was performed in the range of 50–100% in
all samples, and a continuous stretching/releasing test was performed for 100 cycles for
repeatability and durability analysis.

3. Results and Discussion
3.1. Morphology Analysis

Figure 2 shows SEM images of the cryo-fractured surfaces of the 5 wt.% MWNT/NR
composite, and the excellent adhesion interfaces of the bilayer composite. Because CNTs
exist as bundles by van der Waals forces, a well-dispersed state must be obtained when
used as a conductive filler in composites. Because obtaining well-dispersed high contents
of MWNTs in the composite is more challenging than it is with low contents, measuring
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the dispersion state of high contents is essential. Therefore, we measured the dispersion
state image of the 5 wt.% MWNT/NR composite at low and high magnifications, as
shown in Figure 2a,b, respectively. As shown in Figure 2a,b, we obtained uniformly
dispersed MWNTs in the composite by ultrasonication. Ultrasonication is a useful method
for dispersing nanofillers in a matrix in a solution process [30,31]. Therefore, our sonication
operating conditions (200 W, 2-step process) were excellent for dispersing MWNTs in the
NR matrix.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 11 
 

 

MWNTs in the composite by ultrasonication. Ultrasonication is a useful method for dis-

persing nanofillers in a matrix in a solution process [30,31]. Therefore, our sonication op-

erating conditions (200 W, 2-step process) were excellent for dispersing MWNTs in the 

NR matrix. 

 

Figure 2. SEM image of cryo-fracture surface of 5 wt.% MWNT/NR composite: (a) low magnifica-

tion, and (b) high magnification. Cross-section view of hybrid structure: (c) low magnification, and 

(d) middle magnification. 

We then measured the adhesion between the NR layer and the 5 wt.% MWNT/NR 

composite using SEM images. Because the absence of cracks on the interface after stretch-

ing indicates that the NR and MWNT/NR layers are compatible, a tensile broken sample 

was prepared. As shown in Figure 2c, there were no cracks at the interfaces, indicating 

that adhesion between the homogenous polymer systems was successful. For precise anal-

ysis, a high-magnification image of the interface was measured, as shown in Figure 2d. 

Furthermore, the thicknesses of the MWNT/NR composite and pure NR regions were 

calculated to be ~500 μm. 

3.2. Electrical Conductivity and Electrical Percolation Theory 

The electrical conductivity of the composite mainly depends on the content of the 

conductive filler, the aspect ratio, and dimensions. Because the electrical pathway is 

formed by the contact points between conductive fillers and the tunneling effect [32,33], 

1D fillers are more effective in constructing an electrical network than 0D and 2D fillers 

[2]. Therefore, 1D fillers can allow the insulating polymer to be conductive, even with 

small contents, which 0D and 2D fillers cannot. This is referred to as the electrical perco-

lation phenomenon [34,35]. In this study, we calculated the electrical conductivity and 

electrical percolation threshold of MWNTs in the NR matrix. The electrical conductivity 

of the composite was calculated using the following equation: 

𝜎𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑙

𝑅𝐴
 (1) 

Figure 2. SEM image of cryo-fracture surface of 5 wt.% MWNT/NR composite: (a) low magnification,
and (b) high magnification. Cross-section view of hybrid structure: (c) low magnification, and
(d) middle magnification.

We then measured the adhesion between the NR layer and the 5 wt.% MWNT/NR
composite using SEM images. Because the absence of cracks on the interface after stretching
indicates that the NR and MWNT/NR layers are compatible, a tensile broken sample was
prepared. As shown in Figure 2c, there were no cracks at the interfaces, indicating that
adhesion between the homogenous polymer systems was successful. For precise analysis,
a high-magnification image of the interface was measured, as shown in Figure 2d.

Furthermore, the thicknesses of the MWNT/NR composite and pure NR regions were
calculated to be ~500 µm.

3.2. Electrical Conductivity and Electrical Percolation Theory

The electrical conductivity of the composite mainly depends on the content of the
conductive filler, the aspect ratio, and dimensions. Because the electrical pathway is
formed by the contact points between conductive fillers and the tunneling effect [32,33], 1D
fillers are more effective in constructing an electrical network than 0D and 2D fillers [2].
Therefore, 1D fillers can allow the insulating polymer to be conductive, even with small
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contents, which 0D and 2D fillers cannot. This is referred to as the electrical percolation
phenomenon [34,35]. In this study, we calculated the electrical conductivity and electrical
percolation threshold of MWNTs in the NR matrix. The electrical conductivity of the
composite was calculated using the following equation:

σconductivity =
l

RA
(1)

where σconductivity (σc) is the electrical conductivity of the composite, l is the distance
between the metal electrodes, R is the resistance of the composite, and A is the cross-
sectional area of the sample. Based on Equation (1), we measured the electrical conductivity
of the MWNT/NR composite at each concentration. As the number of MWNTs increases,
the contact points between MWNTs increase, which leads to higher electrical conductivity,
as shown in Figure 3. Owing to percolation, the MWNT/NR composite became electrically
conductive at certain points. This is referred to as the electrical percolation threshold,
measured at 0.1 wt.% in this study. According to the electrical percolation equation, the
relationship between filler content and electrical conductivity can be determined as follows:

σc = σ0(P − Pc)
t where P > Pc (2)

where σ0 is a constant, P is the filler content, Pc is the percolation threshold, and t is the
critical index. Using Equation (2), we calculated t to be 2.51, similar to previous studies [34].
However, when the MWNT content exceeds 3 wt.%, the electrical conductivity gradient
decreased. This implies that 3 wt.% is sufficient to form an electrical network.
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Figure 3. Electrical conductivity of MWNT/NR composites as function of contents (wt.%) and
electrical percolation threshold of MWNT/NR composite. Inset image is a loglog plot: relationship
between electrical conductivity of the composites and (P−Pc).

Therefore, even if more MWNTs are present in the NR matrix, the electrical conductiv-
ity curve saturates at a certain value.
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3.3. Mechanical Properties

Tensile tests were conducted to analyze the mechanical properties according to the
MWNT content and structure form, and the results are presented in Figure 4. There are two
types of interaction between nano-fillers and a matrix polymer: covalent and non-covalent
interactions [36,37]. Since these different interactions could affect the composite’s mechan-
ical properties, considering the interaction between the filler and matrix is essential. In
our case, there are no active functional groups between the MWNT and the NR. Therefore,
only physical interactions were considered when discussing the composite’s mechanical
properties. When CNT is combined with a polymer, the tensile stress is transferred to the
interface between the CNT and the polymer and converted to shear stress. Therefore, CNT
composites are more mechanically strengthened than pure polymers [38]. Consequently,
as the MWNT content increased, Young’s modulus of the composites increased, but the
elongation decreased, owing to the trade-off relationship between the modulus and elonga-
tion [39]. In addition, we analyzed the effect on the mechanical properties of sealing the
pure NR layers in a single composite. Because pure NR has a lower modulus and better
elongation than a single composite, the hybrid composite not only has a moderate modulus,
but also increased elongation [3]. In addition, pure NR layers may prevent surface cracks
from tensile strain on the conductive composite layer, owing to the excellent adhesion
between the interfaces. These results are presented in Table 1. Based on the elongation
analyzed through the tensile test, the range for the stretching/releasing dynamic strain
sensing test of all samples was set.
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Table 1. Mechanical properties of pure NR and MWNT/NR composite.

Mechanical Property Pure NR
1 wt.% 5 wt.%

Single Hybrid Single Hybrid

Young’s modulus [MPa] 1.8 3.7 2.6 13.79 4.6
Elongation at break [%] 528 298 321 105 142
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3.4. Dynamic Strain Sensing Properties
3.4.1. Hysteresis and Plastic Deformation

The effects of CNT content and structure formation on hysteresis during the dynamic
strain sensing test were analyzed. All samples were stretched to 50% and 100% tensile strains,
and hysteresis analysis was performed in terms of the relative resistance change (R/R0) that
occurred in the first cycle. According to Figure 5a,b, the hysteresis of 1 wt.% MWNT/NR and
5 wt.% MWNT/NR decreased from 640% to 422%, and 315% to 292, respectively, at 50% strain,
when a hybrid structure was adopted. Hysteresis occurs because the electrical network of
the CNTs that are initially formed is deformed [17,22]. Therefore, when the strain range is
large and the CNT content is small, the deformation of the electrical pathway is large, which
leads to a large hysteresis. However, sealing with an NR layer can reduce the hysteresis in a
single composite. Further, owing to the excellent adhesion between the NR and composite
layers, the hybrid structure can prevent cracks on the composite surface. In addition, the elastic
recovery characteristics of pure NR can control the plastic deformation of the conductive layer,
which can reduce hysteresis. Plastic deformation is a phenomenon whereby plastic does not
return to its initial length when it relaxes after stretching. Because CNTs in elastomers can
interfere with the mobility of NR chains when relaxed after strain, plastic deformation of CNT
composites is an inevitable issue. In the case of our hybrid structure, it exhibited excellent
adhesion between the interfaces, thus reducing plastic deformation. Therefore, hysteresis can be
reduced by reducing plastic deformation. The reduced plastic deformation, based on content
and structure, is presented in Table 2. Because such hysteresis dominates the CNT content and
the initially formed electrical network, the effect of introducing the hybrid structure may not be
exhibited well for 5 wt.% MWNT/NR. Similar trends are observed in Figure 5c,d. The hysteresis
of 1 wt.% MWNT/NR and 5 wt.% MWNT/NR decreased from 710% to 220%, and 405% to
385%, respectively, at 100% strain in the hybrid structure. That is, the lower the CNT content
and the higher the tensile rate, the greater the hysteresis reduction effect of the hybrid structure.
However, the higher CNT content was relatively insufficient, owing to the well-constructed
initial electrical network.
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Table 2. Degree of plastic deformation of the MWNT/NR composite, based on each concentration
and structural formation.

Plastic Deformation
1 wt.% 5 wt.%

Single Hybrid Single Hybrid

at strain 50% 8.54 4.01 17.12 10.19
at strain 100% 12.81 9.53 18.62 11.68

3.4.2. Wide Sensing Range

In this study, we analyzed the effect of the hybrid structure on the sensing range of
each MWNT content. Figure 6 shows the results for the 1 wt.% MWNT/NR composite.
Because the 1 wt.% content is small, the electrical network may be relatively easily destroyed
by external strain. Therefore, the tensile strain increases the electrical resistance of the
composite, which leads to an increase in the relative resistance. Figure 6a presents the 150%
stretching/releasing cycle test of the 1 wt.% MWNT/NR single composite at 30 s/cycle
rates. The relative resistance increased to approximately 130%; however, above that, the
electrical network was destroyed and an unrecognizable region appeared. This is shown in
the inset of Figure 6a. However, the measurement at 150% strain was uniformly performed
in the hybrid system (Figure 6b). Although the change in the relative resistance of the
hybrid structure decreased, R/R0 could be stably controlled, and sensing could be possible
in a strain range of 150%, which would not be achieved in a single composite.
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Figure 6. Dynamic strain-sensing curve for (a) 1 wt.% single composite strain at 150% and (b) 1 wt.%
hybrid composite strain at 150% under 5 cycles.

In Figure 7, the dynamic strain-sensing curve of the 5 wt.% MWNT/NR is shown.
According to the results presented in Figure 4, the 5 wt.% MWNT/NR single composite
broke by ~105%, while the hybrid structure broke by ~142%. That is, because the hybrid
structure can be measured in a strain range that was impossible in the single composite,
the result of repeating 130% stretching/releasing under 100 cycles was possible, as shown
in Figure 7a. The cyclic tests were conducted at a rate of 30 s/cycle. Figure 7b shows that
the sample can be operated stably. Furthermore, the 5 wt.% MWNT/NR hybrid structure
composite could be a strain sensor with excellent repeatability and durability in the 130%
strain range.
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Figure 7. Dynamic strain-sensing curve for (a) 5 wt.% hybrid composite strain at 130% under
100 cycles and (b) strain-sensing curve from 50th cycle to 56th cycle. (For (a,b), 20 pre-cycles were
conducted before the cyclic test.)

3.4.3. Mechanism

The changes in the surface morphology of the single- and hybrid-structured compos-
ites during tensile strain are shown in Figure 8. Unlike the ideal model, in the case of a
composite manufactured through a heat-pressing process, surface roughness was observed
on the surface to a minimal extent. That is, when the single composite was stretched, some
defects that had formed on the surface were expanded by tensile stress. This expansion
of surface defects can be predicted to lower the strain-sensing range, compared to the
results of the ideal model. In addition, the continuous diffusion of surface cracks during
repeated strain sensing can further increase the relative resistance (Figure 6). However,
in the case of the hybrid composite, the elastomer layer covered the surface of the single
composite to fill fine cracks. The elastomer layer can prevent the diffusion of cracks during
tensile strength testing, owing to the excellent adhesive property between the interfaces. In
addition, because the elastomer layer has a higher elongation than the MWNT composite
layer, the adhesive force can be stably maintained even at a high enough strain to break the
single layer. The prevention of crack diffusion increases the maximum elongation, and can
result in a larger measurable strain range than a single composite. Therefore, the hybrid
composite could operate as a wide-range sensor (Figure 7).
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4. Conclusions

Based on the MWNT content, we analyzed the effect of the hybrid structure, produced
by sealing the pure NR layers on the MWNT/NR composite, on the hysteresis and the sens-
ing range of the strain sensor. The adhesion between the pure NR layer and the MWNT/NR
composite was excellent, as can be observed from the SEM images. Electrical conductivity,
based on the number of MWNTs, was measured using the electrical percolation threshold.
The tensile stress test was conducted to set the strain-sensing range, and it was observed
that the elongation of the hybrid structure composite increased compared to that of the
single composite. Hysteresis analysis was performed at 50% and 100% CNT content, and
the hysteresis reduction effect of the hybrid structure was maximized in the case of low
CNT content and large tensile range. In addition, the inevitable plastic deformation in a
single composite can be reduced in the hybrid structure. Because the pure NR layer holds
sufficient surface roughness on the single composite, a strain sensing of approximately
150%, which was not possible in the 1 wt.% MWNT/NR single composite, was possible.
Repeatability and durability were excellent in the strain range of 130% in the 5 wt.% hybrid
composite. This study confirmed that the pure NR layer can control the structural surface
roughness to lower the hysteresis and increase the sensing range. The results of this study
show that the characteristics of a strain sensor can be modified through structural defor-
mation. Our conclusions constitute a significant milestone for the future development of
strain sensors.
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