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Abstract: The effect of the addition of fluorane microcapsules and urea formaldehyde resin (UF)
waterborne acrylic resin microcapsules on the comprehensive properties of the water film on the
surface of basswood was studied. Three-factor and two-level orthogonal experiments were carried
out with “fluorane microcapsule content”, “aqueous acrylic resin microcapsule content” and the
“fluorane microcapsule addition method” to prepare a self-repairing thermochromic coating. The
optical, mechanical, microstructure and self-repairing properties of the film were optimized by
independent experiments on the maximum influence factors of the fluorane microcapsule content.
It was concluded that the topcoat with 15% fluorane microcapsules and primer added with 15%
water acrylic resin microcapsules had better comprehensive properties. The temperature range was
30–32 ◦C, the color difference at 32 ◦C was 72.6 ± 2.0, the 60◦ gloss was 3.3%, the adhesion was
0 grade, the hardness was 4 H, the impact resistance was 15.0 ± 0.8 kg·cm, the elongation at break
was 17.2% and the gap width was reduced by 3.5 ± 0.1 µm after the film was repaired. The repair
rate reached 62.5%. By using microcapsule embedding technology, the repair agent and discoloration
agent are embedded in the matrix. The waterborne acrylic resin microcapsules can effectively inhibit
crack formation in the coating, and the fluorane microcapsules can achieve the thermochromic
property of the coating. This study provides a new research idea for the self-repairing thermochromic
dual function of a water-based coating.

Keywords: film properties; microcapsules; self repair; thermochromism

1. Introduction

As a natural polymer heterogeneous composite material [1], wood has always been
favored by people and has always maintained an important position in the field of building
decoration materials [2]. However, due to changes in environmental factors [3], wood’s wet
expansion and dry shrinkage [4], insufficient film toughness [5] and mismatches with the
wood’s interface [6], cracks appear in the film during use [7,8], which reduces the sealing
performance and leads to film failure. Microcapsule technology is widely used in coatings,
wood products, furniture, agriculture and so on. Yuan [9] used melamine formaldehyde
(MF) resin microcapsules to improve the efficacy of pesticides and the influence of process
conditions on the properties of microcapsules [10]. Uzoma et al. [11] stated that the multi-
stimulus response coating prepared by UF has the effect of corrosion protection. Fang
et al. [12] studied improvements in the interfacial adhesion with wood veneer, but this may
damage wood at the same time. Therefore, in the application of microcapsule technology,
the response between the microcapsule and substrate should be fully considered, and
new functions can be given without changing the properties of the wood substrate. The
self-repairing coating prepared by microcapsule technology [13] can effectively solve the
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generation of microcracks. Cho et al. [14] were able to automatically repair and prevent the
corrosion of the underlying substrate by dispersing microencapsulated healing agents in the
polymer film to form a self-repairing coating. Samadzadeh et al. [15] added microcapsules
into the coating and quickly released the repair agent after the crack in the coating expanded,
so that the coating had the ability of self-repairing. The waterborne acrylic resin coating [16]
takes water as the dispersion medium, which has excellent mechanical properties, a good
compatibility mode and easy modification. It has the characteristics of green environmental
protection, is safe and has high efficiency. It is suitable to be used as the capsule core of
microcapsules, which can effectively heal the generation of microcracks and achieve the role
of being self repairing. Zhu et al. [17] reported a UV responsive, bifunctional microsphere
system for repairing coating cracks for efficient self-healing coatings. Therefore, the self
repair of a water-based coating on a wood surface can further protect the wood substrate.

With the improvement in people’s taste, there are greater requirements for the intel-
ligent [18,19] and visual use of decorative materials. The application of thermochromic
coatings to wood surfaces can not only provide people with excellent visual effects [20],
but also meet users’ personalized needs for decorative materials. Therefore, it has been
broadly developed in decoration and other fields. In addition, wood often needs surface
treatment before use, and its discoloration characteristics mainly depend on the material’s
surface, while fluorane dyes themselves are colorless or a light color, which can produce
different colors through different types and structures of substituents [21]. Because of its
small particle size, thin wall thickness and large specific surface area, microcapsule technol-
ogy can guarantee the heat transfer area and increase the heat transfer efficiency [22,23],
thus effectively improving the thermochromic properties. The fluorane microcapsules
can effectively realize the thermochromism of wood surfaces. Liu et al. [24] modified the
background color and material color of poplar to obtain the best value. Yan et al. [25] stud-
ied the changes in the coating films of color-changing microcapsules in different seasons
and temperatures. Zhu et al. [26] prepared transparent thermochromic microcapsules by
an in situ method, which can be used in intelligent wood coatings. The application of
color-changing microcapsules to wood coating is a highly effective method. It is worth
studying to endow the coating with new functions. Jamil et al. [27] studied a clean and
smooth photothermal coating that shows excellent deicing performance for a long time at
low temperatures. Aziz et al. [28] studied nanocomposites that were evenly dispersed in
bio-based epoxy resin to obtain bonding properties. Ahmed [29] reviewed the technical
applications of nanocomposites with different functional materials and geometric shapes.
At present, there are few reports about the self healing and discoloration of water-based
coatings on wood surfaces at the same time. The water-based coating takes water as the
dispersion medium, which is environmentally friendly and green. The texture of the water-
based coating is thin, which can better adapt to the material’s surface [30]. Therefore, two
kinds of microcapsules, thermochromic and self healing, are added to the water-based
coating, respectively, so that the film can realize the dual functions of being self repairing
and thermochromic.

Therefore, in this paper, to prepare the water-based coating on the surface of the
basswood with excellent thermochromic and self-healing functions, the addition method
and preparation process of color change and self-healing microcapsules applied to the
primer and topcoat were studied. The effects of the independent addition of thermochromic
microcapsules (fluorane microcapsules) and UF @ waterborne acrylic acid microcapsules
on the comprehensive properties of the water-based coating on the surface of basswood
were discussed. The UF @ waterborne acrylic acid-coated microcapsules (hereinafter
referred to as waterborne acrylic resin microcapsules) were compounded by the method
of in situ polymerization [31–33]. The three factors of “fluorane microcapsule content”,
“water-based acrylic resin microcapsule content” and the “fluorane microcapsule addition
method” were selected for orthogonal experiments. The prepared film sample had the better
thermochromic performance, so the biggest influencing factor on the film’s discoloration
performance is obtained. Then the single factor independent experiment was conducted out
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to find the most influential factors. Combined with the results of the orthogonal horizontal
experiment, the effects of waterborne acrylic and fluorane microcapsules on the properties
of the water-based coating on basswood’s surface were explored through the analysis of its
optical and mechanical self-healing properties and microstructure. The best preparation
process for the water-based coating on basswood’s surface was determined to realize the
self-repairing and thermochromic coating, so as to broaden the use scope and application
prospect of wood and create more social benefits.

2. Materials and Methods
2.1. Experimental Materials

The reagents required for synthesizing UF @ waterborne acrylic acid microcapsules
and testing the coating rate of microcapsules are shown in Table 1. The 1,2-benzo-6-
diethylaminofluorane microcapsules were provided by Shenzhen Huancai Color Changing
Technology Co., Ltd. and its components are melamine formaldehyde resin, methyl palmi-
tate, ethyl stearate, 1,2-benzo-6-diethylaminofluorane, styrene maleic anhydride random
copolymer. The waterborne acrylic resin was provided by Dulux Coatings Co., Ltd. Dulux
waterborne acrylic resin coating consists of aqueous acrylic copolymer dispersion, matting
agent, additive agent and water. Dulux Muyun Jingwei scratch resistant wood primer
and finish were provided by Shanghai Dulux Co., Ltd. The main components include
waterborne acrylic acid dispersion, additive agent, dulling agent, and the solid content is
about 30.0%. Basswood substrates, width size 100 mm × 65 mm × 4 mm, had the uniform
color after sanding pretreatment.

Table 1. Materials and reagents.

Experimental Materials Purity Manufacturer

37.0% formaldehyde analytically pure Nanjing Chemical Reagent Co., Ltd., Nanjing, China
urea analytically pure Nanjing Chemical Reagent Co., Ltd., Nanjing, China

triethanolamine analytically pure Nanjing Chemical Reagent Co., Ltd., Nanjing, China
sodium dodecyl benzene sulfonate analytically pure Tianjin Beichen Fangzheng reagent factory, Tianjin, China

n-octanol analytically pure Sinopharm Chemical Reagent Co., Ltd., Shanghai, China
citric acid monohydrate analytically pure Sinopharm Chemical Reagent Co., Ltd., Shanghai, China

absolute ethanol analytically pure Suzhou Jiading Chemical Technology Co., Ltd., Suzhou, China
ethyl acetate analytically pure Hubei handafei Biotechnology Co., Ltd., Hubei, China

waterborne acrylic acid - Shanghai Dulux Co., Ltd., Shanghai, China

2.2. Preparation Method of UF @ Waterborne Acrylic Resin Microcapsules

The 27.0 g of 37% formaldehyde and 20.0 g urea were added to the beaker at a 1:1
molar ratio [34,35]. Then the 40 mL distilled water was added, and the mixture was placed
in a magnetic stirrer for stirring. The triethanolamine was added dropwise, and the pH was
adjusted to 8.0. Then the transparent UF prepolymer was obtained by stirring for 1.5 h at a
water bath temperature of 70 ◦C and a stirring speed of 1200 rpm. Then the 1.37 g of sodium
dodecylbenzene sulfonate white powder and 135.60 mL of distilled water were added
to another beaker and stirred until completely dissolved. The sodium dodecylbenzene
sulfonate solution with concentration of 1.0% was obtained as emulsifier. The 17.5 g of
waterborne acrylic resin was emulsified. It was stirred in a water bath at 60 ◦C at 1200 rpm
for 30 min. Then 1–2 drops of n-octanol were added for defoaming. Under stirring at
300 rpm, UF prepolymer was slowly added to the core material. The pH was adjusted
with citric acid until the solution was completely dissolved. Finally, the polymer reacted
slowly in a water bath for 3 h. The prepared microcapsules were filtered with ethanol and
distilled water. The dried microcapsules were in powder form to facilitate the preparation
of self-repairing waterborne coatings.
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2.3. Preparation Method of Thermochromic Self-Repairing Bifunctional Coating

The orthogonal design of three factors and two levels were designed with “fluorane
microcapsule content”, “aqueous acrylic resin microcapsule content” and “fluorane mi-
crocapsule addition method”, as shown in Table 2. According to the relevant report of
Yan et al. [36], when the content of fluorane microcapsule in aqueous primer or finish is
15%, the thermochromic performance is better. Therefore, the horizontal range of “fluorane
microcapsule content” is selected around 15.0%, so 10.0–20.0% is used to determine the
best value. Thus, the content of microcapsules was determined to be 10.0%. Therefore, the
horizontal range of “water-based acrylic resin microcapsule content” in this experiment
was about 10.0%, that is, 5.0–15.0%.

Table 2. The orthogonal experimental test of discoloration and self-repairing film.

Sample (#) Content of Fluorane
Microcapsule (%)

Content of Waterborne Acrylic
Resin Microcapsules (%) Addition Method of Fluorane Microcapsule

1# 10.0 5.0 Primer with fluorane microcapsules, and topcoat
with waterborne acrylic resin microcapsules.

2# 10.0 15.0 Topcoat with fluorane microcapsules, and primer
with waterborne acrylic resin microcapsules.

3# 20.0 5.0 Topcoat with fluorane microcapsules, and primer
with waterborne acrylic resin microcapsules

4# 20.0 15.0 Primer with fluorane microcapsules, and topcoat
with waterborne acrylic resin microcapsules

The ingredients for the two microcapsules are shown in Table 3. The 1–4# samples
are the materials corresponding to the orthogonal experiment. For example, 1# sample
preparation: 0.2 g fluorane microcapsule was weighed and 1.8 g primer was mixed evenly.
After coating the basswood substrate with SZQ four side film preparer (Chengdu Zhentong
Trading Co., Ltd.), it was heated in the oven at 35 ◦C for 20 min, then the basswood was
taken out. The surface was gently polished by 800# sandpaper and the floating powder
removed [37,38]. The primer coating was completed and the coating process repeated
twice. The coating method of the topcoat is the same as that of the primer. The preparation
methods of other samples are the same as that of 1# samples. The prepared dry film
thickness is about 60 µm.

Table 3. Ingredients of thermochromic self-repairing coatings.

Sample (#)
Fluorane

Microcapsules
(%)

Waterborne
Acrylic Resin
Microcapsule

(%)

Fluorane
Microcapsules

(g)

Waterborne
Acrylic Resin
Microcapsule

(g)

Primer (g) Topcoat (g)
Thermochromic
Self-Repairing

Coating (g)

1# 10.0 5.0 0.2 0.1 1.8 1.9 4.0
2# 10.0 15.0 0.2 0.3 1.7 1.8 4.0
3# 20.0 5.0 0.4 0.1 1.9 1.6 4.0
4# 20.0 15.0 1.4 0.3 1.6 1.7 4.0
5# 0 15.0 0 0.3 1.7 2.0 4.0
6# 5.0 15.0 0.1 0.3 1.7 1.9 4.0
7# 15.0 15.0 0.3 0.3 1.7 1.7 4.0
8# 20.0 15.0 0.4 0.3 1.7 1.6 4.0
9# 25.0 15.0 0.5 0.3 1.7 1.5 4.0

10# 30.0 15.0 0.6 0.3 1.7 1.4 4.0
11# 15.0 0 0.3 0 2.0 1.7 4.0

2.4. Testing and Characterization

Test of coating rate of microcapsules: First, the 1.0 g microcapsule (M1) was weighed,
and fully grinded. The amount of ethyl acetate was added to it, so that it could be thor-
oughly soaked in 72 h and replaced every 24 h. Then washed and filtered with deionized



Polymers 2022, 14, 2500 5 of 18

water. After drying, the quality of residual wall material (M2) was weighed. The coating
rate (C) of microcapsules is calculated with the Formula (1).

C = (M1 − M2)/M1 ∗ 100% (1)

Self-repairing performance test of film: On the glass plate, manually scratch the coated
water-based coating film with an art knife and immediately place it under the optical
microscope. On a computer connected to an optical microscope, the width of the gap W1
(µm) was observed. After 5 days of standing at room temperature, the width of the gap
W2 (µm) was measured again under the optical microscope, and the size of the gap was
marked. In the later stage, the film gap width before and after scratching was compared to
characterize whether the microcapsule had a certain self-repairing function to the film. The
self-repair recovery rate is calculated with the Formula (2):

W = (W1 − W2)/W1 ∗ 100% (2)

Optical performance test: The test temperature range was set with the indoor tem-
perature of 16 ◦C in Nanjing in winter as the starting point and the maximum indoor
temperature of 40 ◦C in summer as the end point. The sample was heated by HGQ grating
cutter (Guangzhou Keyu New Material Technology Co., Ltd., Guangzhou, China). At the
same time, the temperature change in the coating surface was measured with a UT308H
infrared handheld thermometer (Shenzhen Yimei Technology Co., Ltd., Shenzhen, China).
The chromaticity parameters of the coating under 16–40 ◦C temperature rise and 40–16 ◦C
cooling process were tested by SEGT-J portable chromatic aberration instrument (Shenyang
Guotai precision test instrument Co., Ltd., Shenyang, China). L indicates lightness. The
larger value shows that the color of the coated film is brighter, and the smaller value is
darker. The “L”, “a” and “b” show the chromaticity of the coating film. The higher the
value of L, the brighter the color of the coating; the larger the value of “a”, the redder
the color of the film. The larger the b value, the color of the film tends to be yellow. The
chromaticity parameters of the reversible color changing samples at 16 ◦C were taken as the
reference points, and during two independent tests, the chromaticity values with various
test temperatures were recorded. According to Hunter’s chromatic aberration equation,
the chromatic aberration trend of samples at different temperatures was calculated. The
chromatic aberration (∆E) of the coating is calculated with the Formula (3).

∆E = [(∆L)2 + (∆a*)2 + (∆b*)2]1/2 (3)

Mechanical property test: In this experiment, a portable pencil hardness tester (Guangzhou
biageda Precision Instrument Co., Ltd., Guangzhou, China) and 6H–6B pencil were used to
measure the coating hardness. QFH-HG600 griddle knife film scriber (Tianjin Shengnuo
Instrument Technology Co., Ltd., Tianjin, China) was selected to measure the film adhesion.
The adhesive force is the best when the adhesion force is 0. QCJ-50 film impact tester (China
Hebei yaoyang Instrument Equipment Co., Ltd., Hebei, China) was used to detect the shock
resistance of the film. The impact strength is expressed in kg·cm. The breaking elongation
of the film was measured by a precision electronic machine (Suzhou jianzhuo Instrument
Technology Co., Ltd., Suzhou, China). The tensile speed of the coating is 0.12 mm/min.

Microstructure test: The Olympus-CX23-Optical microscope (Jinan Taiyi Biotechnology
Co., Ltd., Jinan, China) and Zeiss Evo10 scanning electron microscope (Beijing presys
Instrument Co., Ltd., Beijing, China) were used to observe the structure of microcapsules
and coatings.

Infrared spectrum test: The chemical components of microcapsules and coatings were
measured by Fourier infrared spectrometer (Germany Brooke Co., Ltd., Germany).

All experimental errors were controlled within 5% and repeated 4 times, and the
statistical significance of the experimental results was analyzed.
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3. Results and Discussion
3.1. Properties and Morphology of UF @ Waterborne Acrylic Resin Microcapsules

According to the calculation of the coating rate, the coating rate of the prepared
waterborne acrylic resin microcapsule is 57%. Figure 1 shows the micro morphology of
waterborne acrylic resin microcapsules and fluorane microcapsules, respectively. Figure 1a
shows the electron microscope of the waterborne acrylic resin microcapsule at high magni-
fication. Figure 1c shows the scanning electron microscope of the fluorane microcapsule
under high magnification. It can be seen from the diagram that the morphology of the
two groups of microcapsules is round and granular, and some microcapsules are adhered
together. As shown in Figure 2, the particle size of waterborne acrylic acid microcapsules is
distributed evenly and the distribution is relatively narrow. The proportion of microcap-
sules with a particle size of 4–5 µm is the highest, which is the ideal microcapsule. The light
produces a diffraction ring at the interface of the medium [39]. The diffraction pattern of
the waterborne acrylic resin microcapsules and fluorane microcapsules shows that there are
two different media, as shown in the OM diagrams (Figure 1b,d). The dark and transparent
parts represent the wall material and core material, respectively. The microcapsules show a
round shape and clear core wall structure.
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SEM (C), OM (D) light diffraction ring phenomenon of fluorane microcapsules.

Figure 3 shows the infrared spectrum of the wall material (UF), core material (wa-
terborne acrylic resin) and UF @ waterborne acrylic resin microcapsules. The absorption
peaks at 3355 cm−1 and 1560 cm−1 are N-H and C-N absorption peaks, respectively, which
are the functional groups [40] of UF. The 1638 cm−1 belongs to the stretching vibration
of C=O in UF. The characteristic peak of C-H is at 2966 cm−1. The 1730 cm−1 represents
the absorption peak of C=O in aqueous acrylic resin [41]. The corresponding peaks also
appeared in the infrared spectrum of the waterborne acrylic resin microcapsules. It was
determined that the corresponding UF and waterborne acrylic resin were formed in the
prepared microcapsules, and the components were not damaged. Therefore, the UF @
waterborne acrylic resin microcapsules were successfully prepared.
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3.2. Orthogonal Experimental Analysis

Table 4 shows the effect of the 16 ◦C to 40 ◦C temperature rise on the film colorimetric
parameters of the microcapsule complex. The effect of temperature (16 ◦C to 40 ◦C) on the
chromatic aberration of the coating film added with the microcapsule complex is shown in
Figure 4. It is concluded that the color difference of coating 1–4# increases gradually with
elevated temperature. Overall, the color difference of 1# is smaller than that of orthogonality
2–4#. The increase trend of the color difference of the coating film is small between 16
and 30 ◦C. The increase range of the color difference of the film becomes larger when
the experimental temperature rises from 30 ◦C to 32 ◦C, and it tends to a maximum at
32 ◦C. The chromatic aberration does not change significantly and is in a stable state when
the temperature is within the range of 32–40 ◦C. It can be shown that the discoloration
temperature range of the sample is 30–32 ◦C, and thermochromism occurs at 32 ◦C.
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Table 4. The temperature rise (16 ◦C to 40 ◦C) on colorimetric aberration of film.

Sample
(#)

Chromatic
Aberra-

tion
16 ◦C 18 ◦C 20 ◦C 22 ◦C 24 ◦C 26 ◦C 28 ◦C 30 ◦C 32 ◦C 34 ◦C 36 ◦C 38 ◦C 40 ◦C

1

∆E

0 4.4 ± 0.1 8.5 ± 0.2 9.8 ± 0.1 9.7 ± 0.2 11.9 ± 0.2 15.3 ± 0.4 32.0 ± 0.8 53.9 ± 1.2 54.5 ±1.4 54.7 ± 1.4 54.9 ± 1.0 54.9 ± 1.0
2 0 2.4 ± 0.1 2.6 ± 0.1 3.9 ± 0.1 4.7 ± 0.1 10.4 ± 0.2 15.2 ± 0.4 35.1 ± 0.1 75.1 ± 0.8 75.2 ± 2.7 75.6 ± 2.1 75.8 ± 1.8 76.1 ± 1.5
3 0 2.6 ± 0.1 7.7 ± 0.2 9.0 ± 0.2 10.3 ± 0.2 10.8 ± 0.4 14.3 ± 0.5 34.4 ± 0.9 77.0 ± 1.4 77.2 ± 2.7 78.0 ± 1.6 77.8 ± 2.0 78.4 ± 2.4
4 0 5.7 ± 0.1 7.7 ± 0.2 10.8 ± 0.2 11.9 ± 0.1 11.9 ± 0.1 17.2 ± 0.5 36.0 ± 0.8 82.5 ± 1.0 83.4 ± 1.8 83.8 ± 1.6 83.7 ± 1.7 84.3 ± 1.7
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In order to optimize the thermochromic performance of the film, the color difference
of 16–32 ◦C was used as the experimental result to analyze the orthogonal experiment
in Table 5 and Figure 5. The results show that the main factor leading to the chromatic
aberration of the film is the “fluorane microcapsule content”. The second is the “content of
waterborne acrylic resin microcapsules” and “addition method of fluorane microcapsules”.
According to the mean 1 and mean 2, it is determined that the amount of waterborne acrylic
resin microcapsules is 15%. The fluorane microcapsules were added into the topcoat, while
the waterborne acrylic resin microcapsules were added into the primer. It has a greater
influence on the color difference of the coating. Therefore, the next step is to change the
content of the fluorane microcapsules and analyze the effects of the “fluorane microcapsule
content” (5.0%, 10.0%, 15.0%, 20.0%, 25.0%, 30.0%) on various properties of the coating.

Table 5. Results of orthogonal experiment.

Sample Fluorane Microcapsule
Content (%)

Content of Waterborne
Acrylic resin

Microcapsules (%)
Add Method Temperature of 16–32 ◦C

Color Difference Results

1# 10.0 5.0 Primer with fluorane microcapsules, and topcoat
with waterborne acrylic resin microcapsules. 53.9 ± 1.2

2# 10.0 15.0 Topcoat with fluorane microcapsules, and primer
with waterborne acrylic resin microcapsules. 75.1 ± 0.8

3# 20.0 5.0 Topcoat with fluorane microcapsules, and primer
with waterborne acrylic resin microcapsules. 77.0 ± 1.4

4# 20.0 15.0 Primer with fluorane microcapsules, and topcoat
with waterborne acrylic resin microcapsules. 82.5 ± 1.0

Mean 1 64.500 64.450 68.200
Mean 2 79.750 78.800 76.050
Range 15.250 13.350 7.850

Significance - - -
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3.3. Single Factor Experimental Results and Analysis of “Fluorane Microcapsule Content”
3.3.1. Effect of Fluorane Microcapsule Content on Optical Properties of Coating

Figure 6 shows the chromaticity parameters [42] of 5–10# samples with different
contents of fluoranthene microcapsules. It is known that for the whole trend, with the
increase in test temperature, the b value of the chromaticity parameters of 5# (excluding
fluoranthene microcapsule coating) is maintained at 27.0–29.0, almost unchanged [43].
Figure 5 shows the decreasing b value of the fluorane coating with 5.0–30.0% content.
It indicates that the film changes from yellow to colorless. For the whole trend, the b
value of each coating in the 16–28 ◦C interval does not change significantly. When the test
temperature is 30 ◦C, the b value of the film begins to show a downward trend. The b value
of the coating tends to be stable between 32 ◦C and 40 ◦C. Therefore, it can be preliminarily
determined that the film has changed to being colorless at the node of 32 ◦C.

Figures 7 and 8 show the changes in the chromatic aberration of 5–10# samples (with
different accounts of fluorane microcapsules, primers and 15% waterborne acrylic resin
microcapsules). The color difference increment of all samples in the 16–28 ◦C interval is
very small, almost all are less than 20 ◦C. When the film continues to heat up to 30 ◦C,
the increase range of the color difference becomes larger. The color difference reaches
the maximum when the temperature is 32 ◦C. In combination with Figure 5, it can be
preliminarily determined that the color of the film has changed at the node of 32 ◦C.
Among the samples, for 6# (the coating film with 5.0% fluorane microcapsules added to
the topcoat and 15.0% waterborne acrylic resin microcapsules added to the primer), the
color difference value at 32 ◦C is smaller than that of other coatings. The difference in the
chromatic aberration between 2# and 7–10# at 32 ◦C is not significant, 7# is at the maximum
value of 79.3 ± 2.8, followed by 7# at 72.6 ± 2.0. The color values of the primers and topcoat
were, respectively, added with the fluorane and waterborne acrylic resin microcapsules. The
change trend of the temperature was consistent with that of the fluorane microcapsules. It
is indicated that this way of adding will not change the temperature range of the chromatic
aberration, and the film prepared can still achieve temperature-reversible color change.
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The decreasing trend of the film gloss with the additional amount of fluorane micro-
capsules is shown in Table 6 and Figure 9. The gloss of 5# coating is higher than that of
6–11# coatings with different contents of fluorane microcapsules added to other topcoats.
This may be due to the fact that 5# topcoat does not contain fluorane microcapsules. The
primer is added with 15% waterborne acrylic resin microcapsules, and the surface of the
topcoat is smoother, so the gloss is relatively high. From the overall trend, the gloss of the
film decreases gradually with the increase in fluorane microcapsule content in the topcoat.
The reason may be that the roughness of the coating surface increases with the increase in
fluorane microcapsule content in the topcoat. This leads to light scattering, which reduces
the gloss of the coated surface [44].

Table 6. The fluorane microcapsule content on film gloss.

Sample (#)
Fluorane

Microcapsule
Content (%)

20 ◦ Gloss (%) 60 ◦ Gloss (%) 85 ◦ Gloss (%)

5# 0 5.9 ± 0.2 27.1 ± 0.8 40.8 ± 0.6
6# 5.0 3.5 ± 0.2 14.5 ± 0.2 28.7 ± 0.3
2# 10.0 2.0 5.2 ± 0.1 13.1 ± 0.1
7# 15.0 1.6 ± 0.1 3.3 10.5
8# 20.0 1.3 ± 0.1 2.5 12.6
9# 25.0 1.3 ± 0.1 2.0 ± 0.1 7.7 ± 0.1
10# 30.0 1.3 2.0 ± 0.2 8.0 ± 0.3

3.3.2. Effect of Fluorane Microcapsule Content on Mechanical Properties of Coating

The effect of the fluorane microcapsule content on film hardness, impact resistance,
adhesion and elongation at break is shown Figures 10 and 11. The experimental results
showed that the hardness (Table 7), impact resistance and elongation at break increased first
and then decreased with the increase in the content of fluorane. The adhesion decreased
from 0 to 1. When the content of the fluorane microcapsules is 0–15.0%, the adhesion of the
film is good and the grade is 0. This indicates that the proper addition of microcapsules
to the original coating film can ensure excellent adhesion. The adhesion drops to grade 1
when the content exceeds 15.0%. The adhesion drops to grade 1 when the content exceeds
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15.0%. This shows that excessive additional content will lead to the decrease in the bonding
force of the mechanical glue nail between the wood and the film, resulting in the decrease
in the adhesion [45]. When the content of the fluorane microcapsules is 15.0%, the hardness
is 4H, the adhesion force is 0, the impact resistance is 15.0 ± 0.8 kg·cm and the elongation at
break is 17.2%. The results show that when the content of the microcapsules in the coating
reaches a certain level, the microcapsules are evenly distributed in the coating matrix. The
microcapsule particles have good compatibility with the coating. Therefore, it has good
impact resistance. The wall material of the microcapsule has good compressive strength
and toughness when the coating is impacted. To some extent, it can play a buffer role, thus
reducing the film of the impact resistance [46,47]. When the film is stretched by external
force, the wall material UF in the primer waterborne acrylic resin microcapsule and the core
material released by stretching will be repaired in time. Therefore, the addition of certain
microcapsules will increase the toughness of the film and increase the elongation at break.
However, as the amount of addition increases, the microcapsules form agglomeration on
the surface of the film. This reduces the film’s flexibility [48].
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Table 7. The fluorane microcapsule content on mechanical properties.

Sample (#)
Fluorane Mi-
crocapsule

Content (%)

Hardness
(H)

Adhesion
(grade)

Impact
Resistance

(kg·cm)

Elongation
at Break (%)

5# 0 2 0 9.0 ± 0.8 15.0 ± 0.1
6# 5.0 3 0 10.0 ± 0.8 15.7 ± 0.8
2# 10.0 3 0 12.0 ± 1.4 16.5 ± 0.4
7# 15.0 4 0 15.0 ± 0.8 17.2
8# 20.0 5 1 16.0 ± 1.2 9.1 ± 0.1
9# 25.0 4 1 14.0 ± 0.8 7.2

10# 30.0 4 1 14.0 ± 1.8 4.3
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3.4. Microstructure and Infrared Spectrum Analysis

SEM images of fluorane microcapsules with different contents added to the topcoat
are shown in Figure 12. Figure 12a–d shows the water-based coating film with different
amounts of fluorane microcapsules added to the finish paint. With the continuous addition
of fluorane microcapsules in the topcoat, the morphology of the particles on the coating
surface tends to be obvious. When the content is 30.0%, there are small holes on the surface
of the film. This may be due to too much addition of microcapsules, resulting in a small
number of bubbles being generated during drying, or, in the grinding stage, due to the
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excessive force of sandpaper, the paint film will fall off or scratch slightly, and the surface
will be not smooth in the electron microscope [49,50]. Therefore, it is very important to
control the addition of microcapsules.
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Figure 12. SEM of films with different concentrations of fluorane microcapsules: (A) 5#, (B) 2#, (C) 8#,
(D) 10#.

The coatings with different amounts of fluoranthene microcapsules are shown in
Figure 13 infrared spectrogram. At 3340 cm−1, there are tensile vibration peaks of -NH
and -OH. The 2925 cm−1 peak is the tensile vibration of -CH3. The 1144 cm−1 is known to
be the telescopic vibration absorption of C-O-C. The 1584 cm−1 and 816 cm−1 points are
the absorption peaks and flexural vibration absorption peaks of the three zine rings. The
1660 cm−1 peak is the expansion vibration of C=O in the UF @ waterborne acrylic resin
microcapsules’ wall material. The 1455 cm−1 value is the characteristic peak of C-H. The
1730 cm−1 peak is accompanied by strong carbonyl characteristic absorption. It not only
represents the characteristic peak of C=O in the core of the fluorane microcapsule, but also
represents the characteristic peak of C=O in 1,2-benzo-6-diethylaminofluorane in the core
material of the fluorane microcapsule in the topcoat. When the fluorane microcapsules are
added into the paint, no peaks disappear or appear with the change in fluorane microcap-
sule content. It shows that there is no difference in the composition of the coating film with
the different content of fluorane microcapsules. This shows that there is no reaction between
the two microcapsules with aqueous coating on the surface of the basswood. Different
contents of fluorane microcapsules were added into the topcoat and 15.0% water-based
acrylic resin microcapsules in the primer can still have a thermochromic effect.

3.5. Self-Repairing Property

Figure 14 is a contrast map of 11# and 7# before and after restoration under an optical
microscope. Figure 14a is an optical microscope view of 11# sample immediately after
the coating film is scratched by the blade. Figure 14b is an optical microscope view after
standing for 5 days. Figure 14c shows the 7# sample after the water-based acrylic resin
microcapsule is added. Figure 14d is an optical microscope view after standing for 5 days.
The gap width before and after coating repair is used to characterize whether the coating
has a repair function. When the water-based acrylic resin microcapsules were added, the
crack width of the 7# coating film reduced after 5 days. The width of the crack was 5.6 µm
before the 7# coating was repaired. After 5 days at room temperature, the width of the
crack observed again was 2.1 µm. The gap width of the coating film was significantly
reduced by 3.5 µm. The repair rate reached 62.5%. The 11# coating film without aqueous
acrylic resin microcapsules is shown in Figure 14a,b. The crack width of the coating film
after 5 days reduced by 1.2 µm. It had little change. This shows that the cracks in the
film without microcapsules were hardly repaired. As a core material, the water-based
acrylic resin is a one component repair agent without a curing agent and catalyst. The
self-healing microcapsules were prepared by two-step in situ polymerization to inhibit the
generation and expansion of microcracks in the coating, which is suitable for the repairing
of waterborne coatings.
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The self-repairing rate of the paint film prepared by the independent addition method
of “the fluorane and lac resin microcapsules” is only 12.3% [36]. In comparison, the two
groups adopt the method of independent addition, which shows that the coating method
can enable the paint film to self repair, but the repair effect of the waterborne acrylic resin
is better than that of the lac resin, which has a better function for inhibiting cracks.

Compared with the mixed addition method [51], the best result is to add two kinds
of microcapsules into the primer at the same time, and the repair rate is 58.4%. The
independent addition method in this article is to add two kinds of microcapsules in the
topcoat and primer, respectively, and the repair rate is 62.5%, which is better than the mixed
addition method. The reason may be that when the coating film produces microcracks,
the capsule wall of the water-based acrylic resin microcapsule in the primer breaks due to
mechanical stress. At this time, the waterborne acrylic resin is released and can respond
quickly. In the mixed addition, there are two kinds of microcapsule polymers. Because
the content of the fluorane microcapsules is higher than that of the waterborne acrylic
microcapsules, the efficiency and effect of the repair will be affected to some extent. This
shows that the film with “15.0% fluorane microcapsules added to the topcoat and 15.0%
waterborne acrylic resin microcapsules added to the primer” can achieve a certain degree
of self repair.
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4. Conclusions

The encapsulation efficiency of the waterborne acrylic resin microcapsules was 57%.
The infrared spectrum proved that the UF @ waterborne acrylic resin microcapsules were
prepared successfully. Three factors were selected by orthogonal experiment, and the results
of the “fluorane microcapsule content, water-based acrylic resin microcapsule content and
addition method” were not significant. The content of the fluorane microcapsules obtained
by the range method is the most influential factor. It was concluded that the comprehensive
performance was better when the amount of fluorane microcapsule in the film was 15.0%.
The results of the optical, mechanical, microstructure and self-repairing experiments show
that the color difference at 32 ◦C is 72.6 ± 2.0, the gloss at 60◦ is 3.3%, the hardness is 4 H,
the impact resistance is 15.0 ± 0.8 kg·cm, the adhesion is grade 0 and the elongation at
break is 17.2%. The repair rate reached 62.5%. Comparing the two methods of independent
addition and mixed addition, the repair effect of the waterborne acrylic resin is the best,
and the independent addition can coordinate the two microcapsules to achieve a better
self-healing effect. In general, the coating film of the “15.0% fluorane microcapsule added
to the topcoat and 15.0% waterborne acrylic resin microcapsule added to the primer” has
the dual effects of a rapid response to thermochromism and the inhibition of microcracks.
However, the urea formaldehyde resin selected in this paper contains formaldehyde, and
the release of formaldehyde and its impact on the environment have not been tested. The
waterborne acrylic acid microcapsules have agglomeration phenomenon, and the coating
rate needs to be improved. In general, the thermochromic self healing water-based coating
significantly broadens the application range.
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