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Abstract: Three-dimensional superhydrophobic/superlipophilic porous materials have attracted
widespread attention for use in the separation of oil/water mixtures. However, a simple strategy
to prepare superhydrophobic porous materials capable of efficient and continuous separation of
immiscible and emulsified oil/water mixtures has not yet been realized. Herein, a superhydrophobic
graphene/polystyrene composite material with a micro-nanopore structure was prepared by a single-
step reaction through high internal phase emulsion polymerization. Graphene was introduced into
the polystyrene-based porous materials to not only enhance the flexibility of the matrix, but also
increase the overall hydrophobicity of the composite materials. The resulting as-prepared monoliths
had excellent mechanical properties, were superhydrophobic/superoleophilic (water/oil contact
angles were 151◦ and 0◦, respectively), and could be used to continuously separate immiscible
oil/water mixtures with a separation efficiency that exceeded 99.6%. Due to the size-dependent
filtration and the tortuous and lengthy micro-nano permeation paths, our foams were also able to
separate surfactant-stabilized water-in-oil microemulsions. This work demonstrates a facile strategy
for preparing superhydrophobic foams for the efficient and continuous separation of immiscible
and emulsified oil/water mixtures, and the resulting materials have highly promising application
potentials in large-scale oily wastewater treatment.

Keywords: graphene; polystyrene; superhydrophobic; porous materials; oily wastewater treatment

1. Introduction

Treatment of oily wastewater has attracted growing attention from the academic and
industrial sectors in recent years due to the growing global environmental hazards associated
with the discharge of industrial and domestic sewage as well as oil spills [1,2]. Traditional
disposal techniques used to treat oily wastewater, such as gravity-driven separation, oil
skimmers, in situ burning, methods that rely on centrifugal separation, dispersion with
chemical reagents and microbial treatments, have low efficiencies, high costs and can even
cause secondary pollution to the environment [3–5]. Moreover, treatment of oily wastewater
composed of surfactant-stabilized emulsions is even more challenging [6–10]. Therefore, novel
techniques and materials that efficiently separate immiscible and emulsified oil/water
mixtures are needed for practical use in wastewater treatment.
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The high porosity, interconnected pore structure and unique wettability of porous
materials make them highly valued in oily wastewater treatment [11,12]. Moreover, the sur-
face wettability of porous materials can be adjusted to tune their selectivity and separation
ability for oil/water mixtures [13–20]. For example, Li et al. [21] modified Fe3O4 nanoparti-
cles with siloxanes and then used the modified nanoparticles to adjust the hydrophobicity
of polyurethane foams by a simple drop-coating method. The resulting magnetic materi-
als were able to remotely magnetically absorb oil from water and achieve gravity-driven
oil/water separation. Kang et al. [22] prepared a superhydrophobic/superoleophilic mate-
rial based on the surface modification of wood fibers that showed excellent performance in
oil/water separations. Moreover, the prepared material could be used in multiple environ-
ments and achieved highly efficient absorption- and filtration-based separation of oil/water
mixtures. While these materials were able to absorb oil from wastewater, treating large-scale
oil spills with such types of oil sorbents is a time-consuming and labor-intensive task. A
large amount of absorbent material is often required because the absorbents have a limited
capacity for the oils [23]. Moreover, absorbent-based separations are not scalable for large-
scale oily wastewater treatment because the oil/water mixtures must be collected before it
can be filtered [24–27]. Therefore, in order to simplify the separation process, it is necessary
to design and manufacture devices based on oil absorbing materials that can continuously
and efficiently handle oily wastewater. Towards this goal, Ge et al. developed an in situ oil
collection device that was aided by the application of external force [28]. Such continuous
oil collection processes require oil absorbing materials with high mechanical performances
as well as excellent hydrophobic and lipophilic properties [29]. Many strategies have been
developed for the modification of commercial melamine foams, polyurethane foams or
metal foams (pore sizes ranging from 100 to 500 µm) to create materials with the desired
characteristics for the continuous clean-up of large-scale oil spills [22,30–32]. Although the
design of these superwetting foams is exquisite, the pore structure of the matrix material is
not sufficient to act as particle sieves and separate emulsions, especially emulsions with
particle sizes less than 20 µm [33–35]. On the other hand, the surface modification of the
matrix material requires either complicated procedures or expensive equipment, and even
fluorochemicals are utilized to reduce the surface energy, causing secondary environmental
pollution. Therefore, the exploration of new strategies for the preparation of superwettable
materials with controlled pore structures is needed to realize the continuous and efficient
separation of immiscible and emulsified oil/water mixtures.

In recent years, the high internal phase emulsion (HIPE) templating method has
been studied extensively to prepare polymer-based porous materials with adjustable pore
structures and porosities [36–43]. However, the HIPE templating method is typically
performed using rigid monomers, and the resulting porous materials have poor mechan-
ical properties in that they are highly brittle and easily pulverized [44,45]. In addition,
the hydrophobic properties of such materials need to be further improved for practical
applications in handling oily wastewater [46]. To address these limitations, here we pre-
pare graphene/polystyrene (GN/PSt) porous materials via the HIPE templating method.
The introduction of graphene simultaneously improves the flexibility and enhances the
hydrophobic properties of the polymer-based matrix. The as-prepared GN4/PSt superhy-
drophobic porous materials achieved in situ continuous absorption of heavy and light oils
from water with separation efficiencies that exceeded 99.6%. Moreover, the micro-nanopore
structure and wettability of the prepared materials allowed for the efficient and contin-
uous separation of surfactant-stabilized water-in-oil microemulsions. These advantages
demonstrate the potential value of our prepared foams for the large-scale and continuous
separation of immiscible and emulsified oil/water mixtures.

2. Materials and Methods
2.1. Materials

Styrene (St) and Span 80 were obtained from Innochem Technology Co., Ltd., Bei-
jing, China. Divinylbenzene (DVB), sodium persulfate (Na2S2O8) and sodium dodecyl
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sulfonate (SDS) were obtained from Aldrich, Shanghai, China. Graphene (GN, lamellae size
5–15 µm) was supplied by Deyang Carbonene Technology Co., Ltd. (Deyang, China), and
the lamellae were composed of five to six layers of graphene. Absolute ethanol, petroleum
ether, chloroform, toluene and acetone were all purchased from Chengdu Kelong Chemical
Reagent Factory. Ultrapure deionized water from an ultrapure water machine was used to
prepare all solutions.

2.2. Fabrication of GN/PSt Foams

In a typical preparation process, 0.02 g of Na2S2O8, 0.004 g of SDS and 0.02 g of GN
were ultrasonically dispersed in 20 mL deionized water to obtain a homogeneous solution.
This solution was then gradually added to a beaker containing 0.3 g of St, 0.2 g of DVB
and 0.15 g of Span 80, and the mixture was stirred at 200 rpm until a homogeneous and
viscous solution was formed, which was the HIPE pre-polymerization mixture. The beaker
was sealed and kept at 65◦C for 8 h to allow the polymerization reaction to proceed. After
polymerization, the product was washed with absolute ethanol to remove the Span 80 and
unreacted organic monomers. The obtained gray monolith was dried at 50 ◦C for 10 h in a
blast oven. The prepared superhydrophobic polystyrene-based porous material containing
4 wt% GN was labeled as GN4/PSt. Samples containing 0 wt%, 2 wt%, 8 wt% and 10 wt%
GN were prepared following the same protocol and were labelled as GN0/PSt, GN2/PSt,
GN8/PSt and GN10/PSt, respectively. The fabrication process is schematically illustrated
in Figure 1.
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Figure 1. Schematic illustration of the fabrication of superhydrophobic GN/PSt foams.

2.3. Characterization

The microscopic pore structures in the prepared materials were characterized with
scanning electron microscopy (SEM, JEOL JSM-5009LV), and the pore size distribution
and porosity of the GN4/PSt composites were determined using an automatic mercury
porosimeter (Mike 9500). The water contact angles (WCA), rolling angles (RA) and oil
contact angles (OCA) were characterized using a contact angle goniometer (OCA 25, Data
physics Instruments GmbH, Filderstadt, Germany). Contact angle measurements were
made by dropping 3 µL of deionized water or petroleum ether on three different locations
of each sample surface, and the average value is presented. The compressive properties of
the porous materials were evaluated using a universal material testing machine (CMT4104,
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MTS, USA) with a compression rate of 2 mm/min. Samples used in the compressive tests
were cylindrical with a height of 20 ± 2 mm and a diameter of 24 mm.

2.3.1. Oil Absorption Capacity

The saturated oil absorption capacity (k) of the GN4/PSt superhydrophobic porous
material was calculated according to Equation (1) [12]:

k =
m1 − m0

m0
(1)

where m0 is the original mass of the GN4/PSt porous material, and m1 is the mass of the
GN4/PSt porous material saturated with oil.

2.3.2. Oil/Water Mixture Separation Efficiency

The model oil/water mixtures were continuously separated using the prepared porous
materials with the aid of an external pump, and the separation efficiency (η) was calculated
following Equation (2):

η =
ma

mb
× 100% (2)

where mb and ma denoted the water mass before and after separation, respectively.

2.3.3. Emulsified Oil/Water Mixture Separation Experiments

Three surfactant-stabilized water-in-oil (W/O) emulsions (water/petroleum ether;
water/toluene; water/chloroform) were prepared to simulate stable oil/water mixtures
found in real world applications. The emulsions were prepared by mixing water and oil
(Vwater:Voil = 1:100) with 1 g/L Span 80 under vigorous stirring for 1 h. The resulting
emulsions were stable for at least 24 h.

Continuous oil/water emulsion separation experiments were performed with the
aid of an external power source. Microscopic images of the emulsions before and after
separation with the GN/PSt composites were taken with an eyepiece inverted fluorescent
digital microscope (AMG EVOSFL, USA).

The separation efficiency (E) of the oil/water emulsion was calculated according to
Equation (3) [47]:

E =

(
1 − Cs

C0

)
× 100% (3)

where C0 and Cs represent the moisture content in the emulsion and the filtrate, respectively,
and the moisture contents in the oil were determined using a Karl Fischer moisture meter
(Mettler V10S).

3. Results and Discussion
3.1. Characterizations of the GN/PSt Composites

During HIPE, water was dispersed in an organic continuous phase consisting of St
and DVB, forming a water-in-oil emulsion stabilized by the lipophilic surfactant, Span 80,
co-Pickering-surfactant and GN nanosheets. The organic phase, St and DVB, was then poly-
merized to form the skeleton of the porous material [48], and the water phase was removed
from the pore cavities to give the GN/PSt porous materials with high porosities and open
pore structures (Figure 2). As seen in the SEM images in Figure 2a, the GN/PSt compos-
ites contained interconnected polymer walls that formed large spherical pores (Figure 2a),
and many smaller pores were present within the polymer skeleton (Figure 2b) [49]. GN
randomly penetrated into the matrix of the porous materials, resulting in a rougher mi-
crostructure and lower surface energy (Figure 2c–f) [50]. Similar interconnected porous
structures were seen in the GN0/PSt, GN2/PSt and GN4/PSt composites, which should be
advantageous for the better transfer of substances through the porous materials when the
monoliths are used to separate oil/water mixtures. Meanwhile, a more closed-cell structure
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was seen in the GN/PSt composites prepared with 8% and 10% GN (Figure 2g–j) because
the GN agglomerated and was harder to disperse at these high concentrations and such a
closed cell structure is not conducive to the transfer of matter through the materials.
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Figure 2. SEM images of the GN0/PSt (a,b), GN2/PSt (c,d), GN4/PSt (e,f), GN8/PSt (g,h) and
GN10/PSt (i,j) composites.

Moreover, the Raman spectra of GN and the GN4/PSt composite are shown in
Figure S1. Two obvious peaks corresponding to D and G bands appeared at approxi-
mately 1358 cm−1 and 1586 cm−1, respectively. The G band was generally associated with
the E2g phonon of the C sp2 atom, while the D band arose from the activation of the first-
order scattering process of the sp3 carbon atom in graphene sheets [51]. In the GN4/PSt
composite, the same characteristic peaks as GN clearly appeared. This result demonstrated
that the composite was successfully prepared. Furthermore, the intensity ratio of D bands to
G bands (ID/IG) is usually adopted to evaluate the defects of graphene sheets. The ID/IG
of GN used in this experiment was approximately 0.1071, and it increased substantially to
0.1897 for the GN4/PSt composite. The higher ID/IG of GN4/PSt resulted from a decrease
in the crystalline sp2 domains of GN, which may be caused by the intercalation of monomer
polymerization in the GN layers [52].
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3.2. Hydrophobicity of the GN/PSt Composites

The wettability of the GN/PSt porous materials was quantified by their water contact
angles. As shown in Figure 3, the WCA of the GN/PSt composite foams was higher than
that of the pure foam prepared without GN or GN0/PSt (WCA—140.5 ± 0.7◦), suggesting
that the addition of the GN nanosheets made the PSt-based foams more hydrophobic. The
highest WCA was measured for the GN4/PSt composite monolith (WCA—150.9 ± 0.6◦),
indicating that it was the most hydrophobic of the prepared materials.
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3.3. Mechanical Properties of GN/PSt Composites

To be useful in practical applications, the porous material used for oil/water separation
processes must have excellent mechanical properties [53]. Figure 4 shows that the overall
trends in the compressive stress–strain curves measured for the GN/PSt composites with
different GN contents were similar, and the curves could be divided into three stages.
At strains less than 10%, the stress increased linearly with the applied strain. Between
10% and 60% strain, the measured stress plateaued, indicating that the porous material
absorbed a large amount of compressive energy and suggesting that the skeleton of the
structure was highly deformed. At strains greater than 60%, the material began to fracture
under the applied pressure and underwent a densification process. At this time, the
stress increased sharply with the increase in the strain [54]. Materials prepared by HIPE
polymerization have poor mechanical properties, for example, they are highly brittle and
easily pulverized, due to the use of rigid monomers and the high crosslinking densities
of the final materials [44]. Here, we see that as the amount of GN added during the HIPE
polymerization increased, the compressive strength of the resulting composite materials
first decreased and then increased. Small amounts of added GN increased the flexibility of
the material, but the addition of excessive amounts of GN resulted in uneven dispersion and
agglomeration of the nanosheets, which concentrated the stress and reduced the flexibility
of the final composite material. From the present studies, the addition of 4% GN was the
optimal amount to effectively improve the flexibility of the porous material while also
increasing its hydrophobicity. Therefore, GN4/PSt was selected for the subsequent tests.
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3.4. Wettability of GN4/PSt Composites

The wettability of porous materials towards water and oil is a vital indicator of their
performance in oil/water separations [55]. As seen in Figure 5a,b, the WCA and OCA of the
GN4/PSt porous composite were 151◦ and 0◦, respectively. To more clearly demonstrate
the superhydrophobicity and oleophilicity of the prepared composite, water and oil were
dropped onto the surface of the GN4/PSt monolith, and the water droplets remained
as spherical shapes while the oil droplets were rapidly absorbed (Figure 5c). Under the
application of an external force, a water droplet was forced to make contact and move on
the surface of the material, and the water droplet moved easily and did not remain on
the surface of the foam, suggesting that the water adhesion on the GN4/PSt composite
was extremely low (Figure 5d). Moreover, the rolling angle (RA) of the material was small
(RA = 8◦, Figure 5e). As shown in Figure 5f, the lightweight GN4/PSt porous material
could be placed on a thin blade, and a water droplet placed on the surface easily rolled off at
only a slight incline due to the low density and low RA of the prepared composite materials.
An automatic mercury porosimeter was used to characterize the pore structure of GN4/PSt
composites, and the density and porosity were 0.0276 g/cm3 and 97.2%, respectively. The
results indicated that the GN4/PSt foam had a hierarchical pore structure containing both
nanopores (40–1000 nm) and micropores (1–20 µm) (ESI; Figure S2), suggesting that the
prepared material should be able to separate oil/water emulsions through a size sieving
effect [56]. Moreover, the properties of the GN4/PSt porous sample were highly uniform,
and the monolith could be randomly cut into various segments without affecting the
shapes of the water droplets on any of the surfaces (Figure 5g). Figure 5h shows that the
GN4/PSt porous material also had a strong water-impact resistance [57]. In summary,
the addition of GN into an HIPE system resulted in GN4/PSt composite materials with
superhydrophobic/superoleophilic properties as well as a low density and high porosity,
making this material especially promising for the purification of oily sewage.
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Figure 5. (a) WCA and (b) OCA of GN4/PSt, (c) photographs of water (dyed with brilliant green
and methyl orange) and oil (dyed with oil red O) droplets on the surface of GN4/PSt, (d) dynamic
adhesion behavior of water droplets on GN4/PSt surface, (e) the rolling angle, (f) water droplets
falling on the surface of GN4/PSt, (g) water droplets on a random surface of GN4/PSt, (h) water
impact resistance of GN4/PSt.

3.5. Oil Absorption Capacity and Continuous Oil/Water Separation Using the
GN4/PSt Composites

As shown in Figure 6a,b, both light (petroleum ether) and heavy (chloroform) oils
were rapidly absorbed into the GN4/PSt composite by capillary forces, suggesting the
prepared composites should show good performance in water/oil separation experiments.
The saturated oil absorption capacity of the GN4/PSt foams for various types of organic
solvents (Figure 6c) and ranged from 27.44 to 56.9 g/g. These results suggested that the
prepared composites had a high absorption capacity for various organic solvents, and the
variations in the different oil absorption capacities were due to differences in the densities
and viscosities of the absorbed organic solvents [58]. The reusability of materials is also a
key factor in the actual treatment of oily wastewater. The reusability of GN4/PSt foam was
examined by absorption-centrifugation. After the oil absorption reached saturation, the oil
in the GN4/PSt foam was removed by centrifugation at 6000 rpm for 2 min, while the foam
was regenerated for the next absorption/centrifugation cycle without further treatment
(Figure S3a). The absorption/centrifugation cycle test was repeated 10 times and the results
are shown in Figure S3b. The porous material exhibited stable reuse performance with
almost no change in oil absorption capacity, and approximately 84% of petroleum ether
was removed by each centrifugation. It is speculated that the residual petroleum ether was
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stably adsorbed and retained in the micropores by van der Waals and capillary forces. In
addition, the GN4/PSt sample continuously absorb oil pumped through the foam, which is
a necessary feature of materials used in large-scale oily wastewater treatment. As shown in
Figure 6d and Video S1, both light oil (petroleum ether) and heavy oil (chloroform) were
quickly and continuously separated from water without leaving any residual red oil in the
water phase. As shown in Figure 6e, the GN4/PSt foams maintained a high separation
efficiency for various organic solvents in water (above 99.6%), further highlighting that the
GN4/PSt composite material has great application potential for efficient, large-scale and
continuous treatment of oily wastewater.
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Figure 6. Photographs showing the use of GN4/PSt composite materials for selective oil/water
separation. (a) Petroleum ether/water and (b) chloroform/water, (c) the saturated oil absorption
capacity of GN4/PSt foam for a variety of organic solvents, (d) images of the continuous separation
of light oil/water/heavy oil mixtures using the GN4/PSt foams and corresponding (e) separation
efficiencies for different oil/water mixtures.

3.6. Continuous Separation of Surfactant-Stabilized Emulsions Using the GN4/PSt Composites

The separation of emulsions is much more difficult than the separation of immiscible
water/oil mixtures, and the separation of surfactant-stabilized microemulsions with small
droplet sizes and lower content of dispersive phase is especially challenging [59]. To
test the feasibility of separating oil/water emulsions using the GN4/PSt foams, three
surfactant-stabilized water-in-oil emulsions with micro-nano particle sizes were prepared,
and the separation of Span 80-stabilized water-in-petroleum ether emulsions are discussed
as an example. As shown in Figure 7a and Video S2, after the milky white emulsion
was pumped through the monolith, the filtrate was clear and transparent indicating that
in situ demulsification and continuous oil/water separation were realized. Moreover,
optical micrographs and digital photographs of the as-prepared water-in-oil emulsions
before and after separation using the GN4/PSt foams are shown in Figure 7b–d. While
numerous dispersed droplets were seen in the feed solutions, no droplets were observed in
the filtrate using an optical microscope, further highlighting the high-efficiency separation
performance of the GN4/PSt foams. Furthermore, the droplet size of the feed emulsions
and filtrates were measured using the dynamic light scattering. The initial emulsions
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contained a wide size distribution of droplets ranging from 30 nm to 7 µm (Figure 7e). In
comparison, the droplets in the filtrate were smaller than 100 nm (Figure 7f), and the particle
sizes were similar to those seen in a solution of the Span 80 surfactant in oil (Figure 7g).
Based on these results, we speculate that the filtrate was composed of a small number of
nano-sized emulsified water droplets and surfactant micelles [56,60].
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Figure 7. (a) Photographs of the setup using GN4/PSt composites for the continuous separation
of water-in-petroleum ether emulsions and corresponding optical microscopy images and digi-
tal photos of the emulsions before and after separation, (b) water-in-petroleum ether emulsions,
(c) water-in-toluene emulsions, (d) water-in-chloroform emulsions, (e) droplet size distributions in
the water-in-petroleum ether emulsion, (f) droplet size distribution in the filtrate, and (g) droplet size
distribution in a solution of 1 g/L Span 80 surfactant in petroleum ether.

To more quantitatively assess the demulsification efficiency of the GN4/PSt foams,
the moisture contents of the emulsions before and after the separation were measured
using a Karl Fischer moisture meter, and the results are shown in Figure 8. The separation
efficiencies of the GN4/PSt composites for the three emulsions were 98.2%, 98.5% and
98.2%, respectively. This high separation efficiency is due to a combination of size-sieving
filtration in the GN4/PSt foams as well as the completely opposite wettability towards
oil and water. The long and tortuous micro-nano permeation channels in the foams were
also crucial in the emulsion separation process [35,61,62]. In summary, the as-prepared
superhydrophobic GN4/PSt porous materials could be used for the efficient, large-scale and
continuous separation of emulsions to achieve rapid treatment of emulsified oily sewage.



Polymers 2022, 14, 2289 11 of 14Polymers 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 8. Separation efficiency of water-in-oil emulsions. 

4. Conclusions 

In summary, the superhydrophobic GN4/PSt composite material with micro-na-

nopore structures was successfully fabricated using a facile, low-cost HIPE polymeriza-

tion method. Compared with a neat porous material prepared with only PSt, the porous 

monolith prepared with 4 wt% GN was more hydrophobic (WCA increased from 140.5 ± 

0.7° to 150.9 ± 0.6°) and more flexible. Due to the ideal wettability, excellent mechanical 

properties and high porosity (97.2%), the GN4/PSt composite monolith could be used to 

continuously separate immiscible oil/water mixtures with a separation efficiency above 

99.6%. Arising from the lengthy micro-nanopore permeation path, the GN4/PSt enable ef-

ficient and continuous separation of surfactant-stabilized water-in-oil microemulsions. 

The special wettability, hierarchical pore structure with micro-nanopore and tortuous per-

meation channel play the significant roles in emulsion separation. The superhydrophobic 

GN4/PSt composite material prepared here showed great performance for the efficient and 

continuous separation of immiscible and emulsified oil/water mixtures and has promising 

application prospects in the practical large-scale treatment of oily wastewater. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1. Raman spectra of GN and GN4/PSt.; Figure S2. The pore size 

distribution of GN4/PSt porous material.; Figure S3. (a) The process of removal of petroleum ether 

from oil/water mixture and the regeneration of the foam. (b) Regeneration of GN4/PSt sponge dur-

ing the absorption of petroleum ether for 10 cycles.;  Video 1: Continuous separation of immiscible 

light oil/water/heavy oil by GN4/PSt porous material with the assistance of a pump.; Video 2: Con-

tinuous separation of surfactant-stabilized water-in-oil microemulsions with the assistance of a 

pump. 

Author Contributions: Conceptualization, C.Z. and Y.L.; methodology, H.H.; software, D.X. and 

Y.W.; validation, H.H. and J.L.; formal analysis, H.H., D.X. and Y.W.; investigation, H.H.; resources, 

C.Z. and M.Q.; data curation, H.H.; writing—original draft preparation, H.H.; writing—review and 

editing, C.Z. and Y.L; visualization, H.H. and G.W.; supervision, C.Z. and Y.L.; project administra-

tion, C.Z., H.H., and Y.L.; funding acquisition, C.Z and M.Q. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This work was supported by the Science and Technology Strategic Cooperation Special 

Project of Nanchong City and SWPU (SXHZ046), and the Innovation and Entrepreneurship Training 

Program for College Students of Sichuan Province (S202110615095). 

Figure 8. Separation efficiency of water-in-oil emulsions.

4. Conclusions

In summary, the superhydrophobic GN4/PSt composite material with micro-nanopore
structures was successfully fabricated using a facile, low-cost HIPE polymerization method.
Compared with a neat porous material prepared with only PSt, the porous monolith
prepared with 4 wt% GN was more hydrophobic (WCA increased from 140.5 ± 0.7◦ to
150.9 ± 0.6◦) and more flexible. Due to the ideal wettability, excellent mechanical properties
and high porosity (97.2%), the GN4/PSt composite monolith could be used to continu-
ously separate immiscible oil/water mixtures with a separation efficiency above 99.6%.
Arising from the lengthy micro-nanopore permeation path, the GN4/PSt enable efficient
and continuous separation of surfactant-stabilized water-in-oil microemulsions. The spe-
cial wettability, hierarchical pore structure with micro-nanopore and tortuous permeation
channel play the significant roles in emulsion separation. The superhydrophobic GN4/PSt
composite material prepared here showed great performance for the efficient and con-
tinuous separation of immiscible and emulsified oil/water mixtures and has promising
application prospects in the practical large-scale treatment of oily wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14112289/s1, Figure S1. Raman spectra of GN and GN4/PSt.;
Figure S2. The pore size distribution of GN4/PSt porous material.; Figure S3. (a) The process of
removal of petroleum ether from oil/water mixture and the regeneration of the foam. (b) Regeneration
of GN4/PSt sponge during the absorption of petroleum ether for 10 cycles.; Video 1: Continuous
separation of immiscible light oil/water/heavy oil by GN4/PSt porous material with the assistance
of a pump.; Video 2: Continuous separation of surfactant-stabilized water-in-oil microemulsions with
the assistance of a pump.
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