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Abstract: Liquid metal (LM)–polymer composites that combine the thermal and electrical conductiv-
ity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in
the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic
effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein,
a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a
Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite
exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase
transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing
abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environ-
mental temperature, is designed and built. Similarly, combining the electrical conductivity and the
dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is
produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and
recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling
efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed
elastomers and the pristine ones.

Keywords: liquid metals; polyurethane elastomers; shape memory; recyclable electronics; self-healing

1. Introduction

Nature has served as the inspiration for copious inventions, by virtue of well-coordinated
engineering design, material design, and continual evolution. This holds especially true for
the fields of robotics and soft robots, and humankind has mimicked ample design concepts
to achieve abilities and adaptabilities that resemble those of natural living systems [1]. These
robots can run with high flexibility and adapt to complex environments, such as narrow
gaps, or even inside the human body, which holds great promise in fields ranging from
manufacturing to medicine, i.e., drug delivery, treatment, and diagnostics [2–4]. Generally,
soft robots are built with compliant materials, including fluids, gels, and elastomers, which
exhibit similar elastic moduli to the materials found in living creatures [5,6]. Recently,
gallium-based room temperature liquid metals (LMs) have emerged as attractive materials
for the design and production of soft robotic systems, owing to their excellent flexibility,
intriguing shape-shifting abilities, and negligible toxicity [7–9]. The pristine liquid metal
(without an oxide skin) exhibits a high surface tension (SFT, ~600 mN/m for galinstan) and,
in contact with water, a high interface tension (IFT) of ~490 mN/m [10,11]. Surface oxidation
is known to reduce the SFT (and IFT) of the LM considerably: the SFT of oxidized galinstan
is about 360 mN/m and the IFT in water is even lower [12]. Notably, the IFT can be lowered
to near 0 mN/m by applying voltage to oxidize the LM in an electrolyte solution [13]. This

Polymers 2022, 14, 2259. https://doi.org/10.3390/polym14112259 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14112259
https://doi.org/10.3390/polym14112259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-7822-5256
https://doi.org/10.3390/polym14112259
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14112259?type=check_update&version=1


Polymers 2022, 14, 2259 2 of 14

electrochemically tunable IFT can trigger the expansion and contraction of LM droplets
in sodium hydroxide (NaOH) solution, a technique that has been employed to mimic the
heartbeat, as well as for muscle contractions [14,15]. In addition, the tunable IFT can serve
as the driving force for LM droplet-based soft robots, fabricated by encapsulating the LM
droplets and electrolyte solutions in a closed system [16,17]. However, the forces exerted
by IFT-induced movement are rather small. Therefore, other strategies for liquid metal soft
robot actuation have been developed, which are based on internal fuels, ultrasound, and
magnetic field actuation [18–22]. Although many LM droplet-enabled soft robotic systems
have been reported and applied in copious areas, such as microfluidic pumping, cargo
transportation, and drug delivery, they are still limited by the fact that they have fewer
shape-shifting patterns and small actuation strains.

In addition to LM droplet-based soft robots, combining LM with soft polymers is
of great interest to soft robotics [23–25]. Generally, soft polymers embedded with rigid
particle fillers exhibit high stiffness and low stretchability [26,27]. In contrast, LM is an
attractive liquid inclusion material for polymer modification, and facilitates the production
of functional soft composites that possess intriguing mechanical, thermal, and electrical
properties [28]. In the LM–polymer composites, soft polymers offer large actuation strains
and various shape changes, while LMs can improve the thermal and electrical conductivi-
ties of the polymer matrix without significantly altering its mechanical properties, which is
favorable for the fabrication of electrothermally powered soft actuation systems [29]. For ex-
ample, incorporating LMs into liquid crystal elastomers (LCEs) can enable multifunctional
soft actuators [30–34]. In these actuators, the LMs can form conductive paths and gener-
ate joule heat in order to induce the phase transition of LCEs, leading to shape-shifting
in the LM-LCE composites. Importantly, due to their intrinsic fluidity (in their liquid
state) [35,36], LMs can deform synchronously with the composite, rather than constrain
the shape morphing of the LCE as is the case with solid conductive fillers, endowing the
actuators with high flexibility and large actuation strains [29]. In addition, the enhanced
thermal conductivity [37,38] and negligible change in the electrical conductivity during
deformation [39,40] facilitate the efficient and smooth functioning of the electrothermally
powered actuators. Based on these advantages, various LM–LCE soft actuation systems
have been produced by applying different strategies, such as magnetic printing of LM on
LCE substrates [30], 4D printing of LM–LCE composites [31], and extrusion-based direct
ink writing for LM–LCE fibers [32].

Furthermore, owing to the low melting point of LMs, the solid-to-liquid phase transi-
tion can be employed to tune the electrical and mechanical properties of the LM–polymer
composites, and to realize the shape programming of LM–polymer composites at or near
room temperature. For the polymer composites embedded with LM droplets, the LM
droplets expand upon solidification (freezing) [41]. This property can be used to render
an insulating composite reversibly conductive. In addition, shape reconfiguration of the
composites can be achieved through the melting and solidification of LM droplets. The
compliant LM droplets allow the composites to be easily programed into a new shape,
while the solidification of the LM droplets reinforces the composites and fixes the new
shape [42]. By finely tuning the distribution of LM droplets in the polymer matrix, the
shape-morphing properties of the composites can be improved. For example, bilayer-
structured LM droplet–elastomer composites have been fabricated by the gravitational
sedimentation of LM droplets during the curing of the elastomers [43]. The phase transition
of the LM droplets caused a mechanical mismatch between the LM-rich layer and the
elastomer-rich layer, endowing the resulting composites with a thermal- or light-induced
shape memory effect. Similarly, LM–elastomer composite fibers with gradient-dispersed
LM droplets have been reported; these exhibited reversible shape programmability, en-
abled by the phase transition of the LM droplets [44]. However, in these cases, the shape
morphing of the composites is only governed by the LM droplets, and the polymer matrix
did not show a shape changing ability, which limits the composites’ potential for complex
shape programming, and therefore limits their broader applications.
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Here, we report the fabrication of multifunctional LM–polymer composites with dual-
shape memory abilities and self-healing properties. Moreover, the composite can be reused
(reprocessed) and, after its obsolescence, the polymer and the liquid metal can be recycled
with high efficiency. The composites comprise gallium (Ga, melting temperature 29.4 ◦C)
and a polyurethane (PU) elastomer, and are fabricated via a sedimentation technique,
leading to the formation of a bilayer structure. Notably, the PU elastomers contain crys-
talline regions characterized by a melting point of around 40.0 ◦C. The phase transitions
of the gallium (microdroplets) and PU elastomer regulate the mechanical properties of
the gallium-rich layer and the elastomer layer, respectively, enabling complex shape pro-
gramming of the Ga–PU composites. The shape morphing can be programmed into the
composites by virtue of the two different crystalline temperatures. The shape recovery is
dominated by the two different melting temperatures. To demonstrate this, we employed
the shape-morphing composites to design and fabricate a soft gripper that can grasp and
release objects. Similarly, we employed the composite as a light-controlled reconfigurable
switch for a circuit. Moreover, the PU elastomers are crosslinked by Diels–Alder (DA)
bonds, which dissociate at a high temperature (~120 ◦C) and reform at a low temperature
(<70 ◦C) [45], endowing the composite with self-healing abilities and recyclability. Both
gallium and PU elastomers are recyclable, and the recycling efficiency of gallium is 96.7%.
Moreover, the PU elastomers can be reprocessed, and the reprocessed polymer shows
comparable mechanical properties to the original one.

2. Materials and Methods
2.1. Materials

Polycaprolactone diol (PCL-diol, Mn = 2000 g/mol) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Gallium (Ga, melting point: 29.4 ◦C), 1,6-hexamethylene di-
isocyanate (HDI, 99%), 4,4’-bismaleimidodiphenylmethane (BMI, 96%), 2,5-furandimethanol
(Fu-diol, 98%), anhydrous N, N-dimethylformamide (DMF, 99.8%), and dibutyltindilaurate
(DBTDL, 95%) were purchased from Aladdin (Shanghai, China). All reagents were used as
received, without further purification, unless otherwise noted.

2.2. Synthesis of PU Prepolymers

PCL-diol and Fu-diol were vacuum dried (80 ◦C) overnight before use. PCL-diol
(2 g, 1 mmol), Fu-diol (0.128 g, 1 mmol), and anhydrous DMF (15 mL) were mixed in
a glass vial by stirring for 5 min. Then, HDI (0.336 g, 2 mmol) and DBTDL (3 droplets)
were added into the glass vial. The reaction commenced at room temperature and contin-
ued for 24 h. Afterwards, a solution comprising 0.179 g (0.5 mmol) BMI and 1,4-hydroxy
benzene (3.0 wt% of BMI) in 5 mL DMF was prepared, and added to the vial [46]. Subse-
quently, the resulting mixture was concentrated to a viscous solution by using a rotary
evaporator, operating at 65 ◦C for 10 min (removing most of the solvent), and the PU
prepolymers were obtained.

2.3. Preparation of Bilayer-Structured Ga–PU Composites

First, Ga was liquefied at 60 ◦C for 30 min, and mixed with the PU prepolymers by
mechanical agitation. During the mixing process, liquid Ga was broken into microdroplets,
which were dispersed into the prepolymers. The resulting mixture was poured into a Teflon
mold or another non-stick mold, and degassed in vacuo. Afterwards, the mixture was
solidified at 60 ◦C in an oven. In the meantime, the Ga microdroplets settled down. After
48 h, the Ga–PU composite with a bilayer structure was obtained.

2.4. Characterization

The morphology of the Ga–PU composites was recorded on a scanning electron
microscopy (SEM) (APREO S, ThermoFisher Scientific, Waltham, MA, USA) coupled with
an energy dispersive X-ray spectroscopy (EDS). The SEM accelerating voltage was 5 kV.
To acquire the cross-sectional SEM images, the samples were prepared by fracturing in
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liquid nitrogen. The thickness of the gallium-rich layer was measured at three different
positions by analyzing the cross-sectional SEM image of one sample, and the results were
averaged. The Fourier transform infrared (FT-IR) spectra were recorded on an IR Affinity-1
(Shimadzu, Kyoto, Japan) spectrometer. The phase transitions of the Ga–PU composites
were measured using a differential scanning calorimeter (DSC, DSC-200F3, NETZSCH,
Selb, Germany) in the temperature range of −80 ◦C to 100 ◦C, at a rate of 10 ◦C min−1

under a nitrogen atmosphere (flow rate: 50 mL min−1), and the data were recorded after the
first heating scan that eliminated the thermal history. The sheet resistance was measured by
a four-probe method using a Keithley 2400 sourcemeter (Tektronix, Beaverton, OR, USA).
Three samples were examined for each Ga–PU composite, and the average was taken.
The temperature and IR image of the Ga–PU composites were recorded by an IR camera
(FLIR ONE Pro, Beijing Justsun Science & Technology, Beijing, China). Tensile tests were
performed using a CMT6103 electronic universal testing machine (SANS, Shenzhen, China).
The tests were conducted at room temperature at a speed of 10 mm/min. Three samples
were examined to calculate the elastic modulus and the strain at break for each Ga–PU
composite. The molecular weight of the PU prepolymer was measured by a gel permeation
chromatography (GPC) system (Waters 515, Waters Corporation, Milford, MA, USA), with
polystyrene as a standard and DMF as eluent (solvent), at a flow rate of 1.0 mL min−1.

The tests of the gel fraction and swelling ratio of the composites were executed as
follows: a small piece of the Ga–PU composite sample was immersed into DMF at room
temperature for 48 h. The masses of the original sample (m0), the swelled sample (m1),
and the dried sample (m2) were measured. The gel fraction (G (%)) and the swelling ratio
(S (%)) were calculated according to Equations 1 and 2, respectively. Three samples were
examined for calculating the G (%) and S (%) for each Ga–PU composite.

G(%) =
m2

m0
× 100% (1)

S(%) =
m1

m2
× 100% (2)

To demonstrate the shape memory behavior of the Ga–PU composites, a strip of
Ga–PU composite (50 × 8 × 1 mm3) was heated to 65 ◦C to melt both the Ga and the PU
elastomer, followed by bending at a given angle (90◦) (Figure S1). Afterwards, the strip
was quenched at −10 ◦C to fix it in the first temporary shape (S1) by crystallization of PU
elastomer, and the angle α was recorded. Subsequently, the strip sample was continuously
bent to another given angle (180◦) and quenched at −35 ◦C to fix the second temporary
shape (S2). The angle β was recorded. Thereafter, the programmed strip-like sample was
first heated to 35 ◦C to recover its shape to the first temporary shape (S1) and the angle θ
was also recorded. By heating to 65 ◦C, the composite recovered its original shape, and
the angle γ was recorded. The shape fixity ratio and shape recovery ratio were calculated
according to Equations 3 to 6. Three samples were examined for calculating the shape fixity
ratio and shape recovery ratio for each Ga–PU composite.

FS0→S1 =
180◦ − α

90◦
× 100% (3)

FS1→S2 =
α− β

α
× 100% (4)

RS2→S1 =
θ − β

α− β
× 100% (5)

RS1→S0 =
γ− θ

180◦ − θ
× 100% (6)



Polymers 2022, 14, 2259 5 of 14

3. Results and Discussion
3.1. Fabrication and Characterization of the Ga–PU Composites

The preparation of the bilayer Ga–PU composites is illustrated in Figure 1a. PU prepoly-
mers containing furan (Fu) group were synthesized from polycaprolactone diol (PCL-diol),
hexamethylene diisocyanate (HDI), and 2,5-furandimethanol (Fu-diol) through polycondensa-
tion (Scheme S1). The resulting PU prepolymer exhibited a number average molecular weight of
6.6× 104 g/mol (Figure S2). Afterwards, liquid gallium, N-dimethylformamide (DMF) solution
of PU prepolymer, and crosslinker (4,4’-bismaleimidodiphenylmethane, BMI) were blended
by shear mixing, resulting in the formation of a viscous suspension of Ga microdroplets. The
resulting mixture was poured into a Teflon mold, followed by degassing, and curing at 60 ◦C
for 48 h. During the curing process, the Ga microdroplets sedimented, the DMF evaporated,
and the PU prepolymer was crosslinked by BMI via the DA reaction. The as-prepared LM–PU
composite is flexible and exhibits a bilayer structure (Figure 1b–d). The Fourier transform
infrared (FT-IR) spectra of the composite demonstrates the near completion of the DA reac-
tion. The absorption band for the DA bond at 871 cm−1 emerges in the FT-IR spectra of the
composite, while the absorption bands for maleimide at 837 and 689 cm−1, and for the furan
ring at 1008 cm−1, almost vanish (Figure S3) [46–48]. In addition, the formation of such a DA
reaction-based crosslinking network was further confirmed by a swelling test (Figure S4).Polymers 2022, 14, x FOR PEER REVIEW 6 of 15 
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Figure 1. Fabrication and characterization of bilayer-structured Ga–PU composites. (a) Schematic
illustration of the fabrication procedure of the composites, together with a schematic depiction of the
elastomer structure and the mechanism of the formation and dissolution of the dynamic DA bonds.
(b–d) Optical photographs of the as-fabricated Ga–PU composite (15 vol% Ga): (b) elastomer-rich
layer, (c) flexibility of the composite, and (d) Ga-rich layer. (e–f) SEM micrographs and (g) EDS
mapping of the cross-section of one representative composite (25 vol% Ga); the upper area is the
Ga-rich phase of the composite. (h) Thickness of the Ga-rich layer and (i) sheet resistance of the
Ga–PU composites dependent on the vol% of Ga.
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The cross-section of the Ga–PU composite was analyzed by scanning electron mi-
croscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The SEM image shows
that the composite is divided into two layers, namely, the pure PU elastomer and the
enriched Ga microdroplet layer (Figure 1e). The Ga microdroplets are 50 to 100 µm in di-
ameter (Figure 1f and Figure S5). The EDS mapping illustrates the hierarchical distribution
of Ga and C elements, further confirming the discernable bilayer structure of the Ga–PU
composites (Figure 1g). The thickness of the Ga-rich layer is strongly dependent on the
Ga content. As the vol% of Ga increases from 10% to 25%, the thickness of the Ga-rich
layer increases nearly linearly from 150 µm to 500 µm (Figure 1h). In the Ga-rich layer,
Ga microdroplets are in close proximity to each other and form a percolation network,
endowing the Ga–PU composites with electrical conductivity. In previous studies, a high
LM content (>30 vol%) and a mechanical sintering process were often required to realize
electrical conductivity in LM polymer composites [49–54]. By comparison, the present
bilayer-structured Ga–PU composites can acquire good electrical conductivity at a relatively
low Ga content without necessitating a mechanical sintering process. The sheet resistance
of the Ga–PU composites is 28 Ω/sq at 10 vol% of Ga, and decreases to 12 Ω/sq at 15 vol%
Ga (Figure 1i). By further increasing the Ga content to 20 and 25 vol%, the sheet resistance
of the composites barely changes. After storage at ambient conditions for 30 days, the sheet
resistance of the composite with 25 vol% Ga slightly increases to 18 Ω/sq, which may be
attributed to the oxidation of the Ga (Figure S6).

3.2. Dual-Shape Memory Effect of the Ga–PU Composites

The thermal behavior of the Ga–PU composite was characterized by differential scan-
ning calorimetry (DSC). As shown in Figure 2b, the Ga–PU composite shows
two melting temperatures in the DSC heating curve, and two crystallization tempera-
tures in the DSC cooling curve. In the composite, the Ga microdroplets crystallize at a
much lower temperature (–33.3 ◦C) during the cooling process, due to the supercooling
and size effects [55,56], while melting is observed at 29.4 ◦C during the heating process.
The other peak, at around −10.0 ◦C in the cooling curve, is attributed to the crystallization
of PCL segments in the PU elastomer. The resulting PCL crystalline region melts at 40.0 ◦C
in the heating curve, which is slightly lower than the melting point of PCL-diol (43.0 ◦C,
Figure S7). Accordingly, the mechanical properties of Ga–PU composites strongly depend
on the crystallization of Ga microdroplets and PCL segments (Figure S8). The Ga–PU
composites possess a lower elastic modulus and smaller strain at break than the pure PU
elastomer, because the LM-rich layer is weakened by the high loading of Ga. As both Ga
microdroplets and PCL segments crystalize, the composites are stiff with elastic moduli
ranging between 121.3 and 130.6 MPa. The stiff composites transform into a semisoft
state with lower moduli between 23.4 and 32.3 MPa as the crystalline Ga microparticles
melt. By melting the crystalline region in the PU elastomer, the composites become soft
and stretchable, and possess moduli between 0.5 and 1.2 MPa and an average maximum
extension larger than 500%.

The bilayer structure, as well as the phase transitions of Ga and PU elastomers, endow
the Ga–PU composites with excellent shape-morphing capabilities. Pure PU elastomers
can be programmed into a curled shape by crystallization, and recover their original shape
upon melting (Figure S9). More importantly, the synergistic action of the phase transitions
of Ga and PU elastomer enables the dual-shape memory effect of the Ga–PU composites.
The strategy and mechanism for shape morphing of the composites are illustrated in
Figure 2a. As a demonstration, a strip of the composite is heated to 65 ◦C to liquefy the Ga
microparticles and transition the PU elastomer from a glassy to a rubbery state. Then, it
is deformed into a curled shape (temporary shape 1, S1) (Figure 2c). The curled shape is
fixed by freezing at −10 ◦C to trigger the crystallization of PCL segments. Subsequently,
the curled sample is folded into a circle-like structure (temporary shape 2, S2) and fixed
at −35 ◦C, where the Ga microdroplets solidify. Interestingly, the shape recovery can be
realized by gradually melting the solid Ga and the crystalline region in the PU elastomer.
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When heated to 35 ◦C, the solid Ga melts, and the circular-shaped sample recovers to the
previous curled shape (S1) (Figure 2d and Video S1). The driving forces for regaining the
previous shape are the stored energy in the elastomer and the stress release in the Ga-rich
layer. By further heating to 65 ◦C, melting of the crystalline regions in the PU elastomer
is induced, and the curled-shape sample recovers its original shape, owing to the stress
release in the elastomer.
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(c–d) Photographs showing (c) the programming and (d) the recovery process of the dual-shape
memory composite (20 vol% Ga). (e–f) The fixing ratio and recovery ratio for the shape change
of the composites.

To further evaluate the shape-morphing efficiency of the Ga–PU composites, a bending
test (Figure S1) was performed to calculate the shape fixity ratio (Rf) and shape recovery
ratio (Rr) of the composites [57–59]. As shown in Figure 2e,f, the composites exhibit a good
shape memory performance, with the shape fixity ratio beyond 80% and the shape recovery
ratio beyond 70%. According to the shape-morphing mechanism, the crystallization of PCL
segments in the PU elastomer plays the main role in the fixing of the first temporary shape
(S1), while the solidification of LM microdroplets is primarily responsible for the fixing
of the second temporary shape (S2). Therefore, by increasing the content of Ga, Rf(S0→S1)
decreases while Rf(S1→S2) increases slightly. In particular, both Rf(S0→S1) and Rf(S1→S2) are
higher than 90% for the composite with 25 vol% Ga. In addition, Rf(S0→S1) is always larger
than Rf(S1→S2) for all Ga loadings. This is because the crystallization of the PCL segments
enhances the mechanical properties of the composites better than the solidification of
Ga microdroplets (Figure S8). Similarly, during the recovery process, Rr(S2→S1) is always
larger than Rr(S1→S0) for all Ga loadings. The melting of solidified Ga governs the shape
transformation from S2 to S1, while the melting of the PCL crystalline regions dominates
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the transformation from S1 to S0. Eventually, the composite becomes soft and deformable,
and its low modulus slightly weakens its ability to recover its original shape [60].

Based on the composite’s excellent shape-morphing performance and dual-shape
memory abilities, a four-fingered gripper is designed and constructed using the LM–PU
composites (Figure 3a). To make this gripper work, a shape programming process is
performed. Specifically, the gripper, which is initially in an open state (Figure 3(a1)), is
folded into a clenched state (Figure 3(a2)) as the first temporary shape. Subsequently, the
gripper shape is fixed by the crystallization of PCL segments at −10 ◦C. The clenched
gripper is forced to open again to form the second temporary shape (Figure 3(a3)), which
is fixed by the solidification of Ga microdroplets at −35 ◦C. As proof of concept, the pre-
programmed gripper is employed to move an object from one beaker to another (Figure 3b
and Video S2). When the gripper reaches into the first beaker filled with 35 ◦C water, which
melts the solidified Ga microparticles, the gripper gradually recovers its clenched state and
tightly grasps the ball. Subsequently, the gripper takes the ball out of the first beaker and
moves it to the second beaker, which is filled with 65 ◦C water. The PCL crystalline regions
melt in such an environment, and the gripper returns to the original shape, releasing the
ball in the process.
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Figure 3. A soft gripper fabricated with the Ga–PU composite (20 vol% Ga). (a) The programed
gripper undergoes shape change in response to temperature variation. (b) The gripper grasps and
transfers an object.

3.3. Light-Controlled and Self-Healing Circuits Enabled by the Ga–PU Composites

Due to the photothermal effect of Ga, remote localized heating of the Ga–PU compos-
ites can be realized by near infrared (NIR) light irradiation [43,59]. For all of the samples,
the temperature at the irradiated region increases with irradiation time (Figure 4a). The
pure PU elastomer shows an equilibrium temperature of 40 ◦C under irradiation (2 W/cm2).
By loading 10 vol% Ga, the equilibrium temperature of the composite reaches nearly 100 ◦C
in less than 10 min of irradiation. As the Ga content increases from 10 to 25 vol%, the
heating rate gradually slows down, and the equilibrium temperature decreases to 70 ◦C
(Figure 4a,b). This phenomenon is attributed to the high thermal conductivity of Ga [37,38].
With higher Ga loadings, the Ga-rich layer of the bilayer-structured composites exhibits
higher thermal conductivity, enabling it to distribute and dissipate the thermal energy
more efficiently. As shown in Figure 4c, the heat is limited to the irradiated region of the
pure PU elastomer, owing to its poor thermal conductivity, while the heat transport in the
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Ga-rich layer occurs for composites. Accordingly, the higher Ga loadings enable faster heat
transport along the LM-rich layer, and thus lower the temperature of the irradiated region.
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for the composite under NIR irradiation (2 W/cm2). (b) Infrared thermal images for the composites
with different vol% of Ga under NIR irradiation. (c) Heat transport under localized NIR irradiation.

As the temperature of Ga–PU composites under NIR light irradiation are higher than
the melting point of gallium and the PCL crystalline regions, the shape memory behavior
of the composites can be controlled by light. In addition, combining the light-induced
shape-memory effect and good electrical conductivity, a light-controlled light-emitting-
diode (LED) circuit is designed and fabricated using the composite (Figure 5a). To realize
this circuit, a composite strip is programmed into a half-folded shape (the first temporary
shape), and then the half-folded strip is straightened again as the second temporary shape.
The resulting composite strip is applied as a light-controlled switch, which can be used to
remotely turn the LED lamp on and off by use of light-induced shape recovery. As shown in
Figure 5b and Video S3, under NIR light irradiation, the straight composite strip gradually
returns to the half-folded shape and makes contact with the copper conductor, and thus
the LED lamp lights up. The LED lamp can be turned off again by further irradiating
the composite strip to raise its temperature and trigger the second recovery process to its
original straight shape.

Moreover, the Ga–PU composites can enable self-healing circuits, as DA bond-based
networks in the PU elastomer can be broken at high temperatures (>120 ◦C) while re-
forming upon cooling. To evaluate the self-healing performance, a strip of the pure PU
elastomer was cut into two pieces, and then heated to 120 ◦C for 10 min to fuse the
two pieces together. Afterwards, the merged sample was heated to 65 ◦C for 72 h to allow
the rebuilding of DA bonds. The healed sample shows a repair efficiency of 92% for the
elastic modulus, 71% for the strength at break, and 68% for the strain at break, indicating
the good self-healing performance of the PU elastomer (Figure S10). To reach the threshold
temperature for DA bond disassociation, NIR light with higher power density (3 W/cm2)
is employed to heat the composites. As shown in Figure 5c, the temperature at the irradi-
ated region increases rapidly to 120 ◦C within 3 min, indicating the possibility of highly
localized light-induced self-healing of the composites. To demonstrate the self-healing
of the composite, a simple LED circuit with the composite as a self-healable conductor is
fabricated. As shown in Figure 5d and Video S4, the LED lamp emits light at the beginning.
Upon severing the composite using a knife, the LED stops emitting light. By treating the
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gap with an NIR light, the composite melts and electrical conductivity is reestablished.
Accordingly, the LED lamp lights up again.
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Figure 5. Light-controlled and self-healing LED circuits enabled by Ga–PU composites. (a) Schematic
illustrations showing a light-controlled switch made of the composite for an electric circuit. (b) An
LED circuit is remotely controlled by the composite switch (20 vol% Ga) under NIR light irradiation.
(c) The temperature as a function of time for the composite with 25 vol% Ga under NIR irradiation
(3 W/cm2). (d) Photographs demonstrating the self-healing LED circuit with the composite (25 vol%
Ga) as conductor; the composite is severed by a knife and healed by irradiating the break with NIR light.

3.4. Recycling of the Ga–PU Composites

In addition to self-healing performance, the DA bond-based network also endows the
Ga–PU composites with recyclability. Notably, unlike other dynamic covalent bonds, such
as dynamic ester bonds, which require a catalyst to trigger bond dissociation [61,62], DA
bonds dissociate completely into furan groups and imide groups at a high temperature
(ca. 120 ◦C). Therefore, the DA bond crosslinked polymer can be fully dissolved in solvents
upon heating [46,63]. This chemical nature of DA bonds enables the separation of the Ga
microdroplets and the PU elastomer. The separated Ga microdroplets are easily recycled
because of their high interfacial tension in acidic or alkaline environments [64]. Accordingly,
both the Ga and polymer matrix from the Ga–PU composites can be recycled, which is an
important improvement compared to other electric fillers-based (e.g., carbon nanotubes [65])
composite systems, some of which are very challenging to be recycled. As shown in
Figure 6a and Video S5, a Ga–PU composite film is immersed into DMF and heated to
120 ◦C. By stirring for 320 s, the PU elastomer component of the composite is completely
dissolved, allowing the residual Ga microdroplets to precipitate at the bottom of the beaker.
After washing with DMF several times, the Ga residue is treated with a base (i.e., 0.6 M
NaOH aqueous solution). The oxide layer of Ga microdroplets is quickly removed, which
significantly increases the interfacial tension of the Ga/base solution and provides the
driving force for the Ga droplets to merge into a large LM droplet (reducing the surface
area of Ga) [10,66,67]. Finally, a macroscopic Ga droplet is obtained, which can be reused
readily. In this experiment, the recycling efficiency is as high as 96.7%, which is comparable
to the result (~96%) obtained in a previous report where liquid metal is filled into polymer
microchannels [64]. Moreover, the PU prepolymer can also be obtained by removing
the DMF, and reprocessing by heating in the oven at 70 ◦C for 48 h, during which the
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prepolymer is crosslinked again via the DA reaction between the Fu groups and BMI.
The recycled PU elastomer exhibits similar mechanical properties to those of the pristine
elastomer (Figure 6b,c).
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Figure 6. Recycling of the Ga–PU composites (25 vol% Ga). (a) Photographs showing the recycling
processes for the LM and PU elastomer. (b) Typical stress–strain curves for the as-prepared (original)
elastomer (red) and the reprocessed elastomer (green). (c) Retention (percentage) of the elastic
modulus, strength at break, and strain at break upon reprocessing. The figure of 100% denotes the
mechanical properties of the original elastomer.

4. Conclusions

In conclusion, we have fabricated a bilayer-structured composite comprising gallium
microdroplets and a DA bond crosslinked crystalline PU elastomer, via a sedimentation
method. Importantly, gallium and the PU elastomer show different melting and crystalline
temperatures, which can regulate the mechanical properties of the Ga–PU composites.
The combination of the bilayer structure and the two different phase transitions enables
complex and reliable shape programming of the composites:

• The composites exhibit high shape-morphing efficiency, with the shape fixity ratio
exceeding 80% and the shape recovery ratio exceeding 70%.

• A four-fingered gripper was designed and fabricated by the shape programming of
the composite; the gripper demonstrated the ability to catch and release an object.

• Combining its photothermal effect, electrical conductivity, and shape-morphing prop-
erties, the composite was used to design a light-controlled LED circuit that can re-
motely turn an LED lamp on and off, signifying that remote, on demand, and localized
shape morphing is possible.

• The nature of DA bond crosslinked networks makes the composites self-healable and
recyclable. Both Ga and PU elastomer are readily recycled, and the recycling efficiency
of Ga is as high as 96.7%. The mechanical performance of the recycled PU elastomer is
close to that of the pristine one.

• This multifunctional Ga–PU composite incorporates the properties of liquid metals
and PU elastomers in terms of material and structural design, and exhibits enhanced
performances for potential applications in soft robotics, reconfigurable electronics, and
transient devices.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14112259/s1, Scheme S1: schematic of the chemical synthesis
of the PU prepolymer; Figure S1: schematic illustration of the definition of the released angle and
the recovered angle; Figure S2: molecular weight distribution of the PU prepolymer measured by a
gel permeation chromatography (GPC) system with polystyrene as a standard and DMF as eluent
(solvent) at a flow rate of 1.0 mL min−1; Figure S3: FT-IR spectra of Fu, BMI, and PU elastomer; Figure
S4: gel fraction and swelling fraction of the Ga–PU composites; Figure S5: SEM micrographs of the
Ga–PU composites; Figure S6: sheet resistance of the Ga–PU composite changing with storing time;
Figure S7: DSC curve of PCL-diol; Figure S8: mechanical properties of the PU elastomer and Ga–PU
composites; Figure S9: shape programming and shape recovery of the pure PU elastomer; Figure
S10: mechanical properties of the pristine and healed PU elastomers; Video S1: shape recovery of the
programmed Ga–PU composite; Video S2: a soft gripper grasping and transferring an object; Video
S3: a light-controlled switch made of Ga–PU composite for a LED circuit; Video S4: a self-healing
LED circuit with Ga–PU composite as conductor; Video S5: the recycling of the LM and PU elastomer.
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