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Abstract: Introduction: Three-layer structures with a polyurethane foam filler are widely used in
construction as roofing and wall panels. The purpose of this work is to develop a method for
calculating the bending of three-layer plates with a polyurethane foam filler, taking into account
the nonlinear creep of the middle layer. The non-linear Maxwell–Gurevich equation is used as
the polyurethane foam creep law. Methods: In the article, the system of resolving the equations is
obtained, and the solution is carried out numerically by the finite difference method in combination
with the Euler method in a MATLAB environment. An analytical solution is also obtained for a plate
hinged along the contour. Results: The developed model and calculation algorithms are verified by
comparison with the calculation in the ANSYS software package. A comparison with the calculation
according to the linear theory is also carried out, and the effects caused by the non-linear creep of
polyurethane foam are revealed. Conclusion: It has been established that when nonlinear creep is
taken into account, in contrast to the linear law, the stresses in the plate are not constant in time. In
the faces, at the initial stage, the stresses increase with a subsequent return to the initial values, and in
the filler, on the contrary, the stresses at the initial stage decrease. These results indicate the need to
take into account the nonlinear creep of polyurethane foam in the calculation of sandwich panels.

Keywords: polyurethane foam; sandwich panels; three-layer plate; creep; Maxwell–Gurevich
equation; numerical simulation; nonlinearity

1. Introduction

Three-layer plates in which the outer layers are made of materials with high physical
and mechanical characteristics (steel, aluminum, and fiberglass) and the middle layer
consists of light aggregate are widely used in construction in the form of roofing and
wall panels [1]. Such structures are much lighter than single-layer ones with the same
strength and rigidity. Mineral wool and foamed polymers are usually used as the core
of three-layer plates. Polyurethane foam is one of the most common polymer fillers for
sandwich panels. A significant advantage of this material is the one-stage fabrication of
structures by spraying or pouring.

At the same time, polyurethane foam, like all polymers, has rheological properties
that lead to an increase in sandwich panel deformations over time [2]. Due to the low
deformation characteristics of polyurethane foam compared to the materials used in the
outer layers of sandwich panels, the classical theory of plates is not applicable to such
structures [3].

One of the first publications on the creep of three-layer panels with a polyurethane
foam core belongs to J.S. Huang and L.G. Gibson [4]. In this paper, sandwich panels with
aluminum faces were considered. To describe the creep of polyurethane foam, the linear
theory of viscoelasticity was used. In the work of C. Chen et al. [5], the steady creep of
sandwich panels with a middle layer of aluminum foam was considered at various levels of
stress and temperature using the Timoshenko beam model [6]. Subsequently, Timoshenko’s
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theory of beams was used in the works of M. Garrido et al. to predict the creep of three-layer
beams with a middle layer of polyurethane foam [7] and PET foam [8].

Y. Frostig et al. [9] proposed a refined high-order theory for the calculation of multi-
layer beams. The development of this theory for calculations, taking into account creep,
was carried out in the article by M. Ramezani and E. Hamed [10]. In the work of E. Hamed
and Y. Frostig [11], in addition to creep, geometric nonlinearity was also taken into ac-
count. Various formulations of the three-layer beams theories and finite elements for their
calculation are also presented in [12–17].

Most of the work on the calculation of three-layer structures with a polyurethane
foam filler, taking into account creep, refer to three-layer beams. However, three-layer
plates that are subjected to bending in two planes are of no less interest. In addition, many
experimental studies, including [18–20], describe the creep of polyurethane foam using a
power law in which time is present in an explicit form. The disadvantage of this law is the
impossibility of its application for complex loading conditions when the load is a function
of time.

For many polymers, creep curves are well described by the generalized non-linear
Maxwell–Gurevich equation [21], which has the form:

∂εcr
ij

∂t
=

f ∗ij
η∗

, i = x, y, z, and j = x, y, z, (1)

where f ∗ij is the stress function and η∗ is the relaxation viscosity; and

f ∗ij =
3
2
(
σij − pδij

)
− E∞εcr

ij ,

η∗ = η∗0 exp
(
− | f

∗
max |
m∗

)
, and f ∗max =

∣∣ 3
2 (σrr − p )− E∞εcr

rr
∣∣
max,

(2)

where δij is the Kronecker symbol, p =
(
σx + σy + σz

)
/3 is the mean stress, m∗ is the

velocity module, η∗0 is the initial relaxation viscosity, and E∞ is the high elasticity modulus,
and the rr indexes correspond to the directions of principal stresses.

The possibility of using this equation to describe the creep of polyurethane foam was
shown in [22].

The purpose of this work is to obtain resolving equations for the calculation of three-
layer plates with a polyurethane foam core for arbitrary creep laws, including nonlinear
ones, as well as to develop algorithms for their solution.

2. Materials and Methods
2.1. Derivation of the Resolving Equations

A three-layer plate with a total thickness h (mm) and thickness of the outer layers δ
(mm) is considered. We assume that δ is small compared to h, and the distance between
the median planes of the outer layers can be approximately taken as equal to h. Since the
modulus of elasticity of light filler, as a rule, is significantly lower than the modulus of
elasticity of the faces, it can be assumed that bending and torsional moments are completely
perceived by the faces, and the middle layer works only on transverse shear, perceiving
the transverse force. An infinitesimal plate element with stresses acting in it is shown in
Figure 1. The indices “l” correspond to the lower face, “up” to the upper face, and “m” to
the middle layer.

The displacements of the points of the upper face will be denoted by uup, vup, and wup,
and the displacements of the lower face will be denoted by ul , vl , and wl . The middle
layer will be assumed to be incompressible in the vertical direction (wl = wup = w).
The deformations of the upper and lower faces are calculated as follows:

ε
up(l)
x =

∂uup(l)

∂x
; ε

up(l)
y =

∂vup(l)

∂y
; γ

up(l)
xy =

∂uup(l)

∂y
+

∂vup(l)

∂x
. (3)
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Elastic work is accepted for the faces. The deformations in them are related to stresses
as follows:

ε
up(l)
x = 1

E

(
σ

up(l)
x − νσ

up(l)
y

)
;

ε
up(l)
y = 1

E

(
σ

up(l)
y − νσ

up(l)
x

)
; and

γ
up(l)
xy =

2(1+ν)τ
up(l)
xy

E ;

(4)

or, in inverse form:
σ

up(l)
x = E

1−ν2

(
ε

up(l)
x + νε

up(l)
y

)
;

σ
up(l)
y = E

1−ν2

(
ε

up(l)
y + νε

up(l)
x

)
;

τ
up(l)
xy = E

2(1+ν)
γ

up(l)
xy .

and (5)

For the displacements of the middle layer, we will assume a linear distribution over
the thickness:

um = uup+ul

2 + ul−uup

h z = u + αz, and

vm = vup+vl

2 + vl−vup

h z = v + βz,
(6)

where u and v are the midplane displacements.
The total shear strains of the middle layer are determined from the Cauchy relations:

γm
zx = ∂um

∂z + ∂w
∂x = α + ∂w

∂x , and

γm
zy = ∂vm

∂z + ∂w
∂y = β + ∂w

∂y . (7)

On the other hand, they represent the sum of elastic and creep deformations:

γm
zx =

τm
zx

Gm
+ γcr

zx; γm
zy =

τm
zy

Gm
+ γcr

zy, (8)

where Gm is the middle layer shear modulus (MPa).
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Taking into account (7) and (8), the shear stresses in the middle layer can be written as:

τm
zx = Gm(γm

zx − γcr
zx) = Gm

(
α + ∂w

∂x − γcr
zx

)
, and

τm
zy = Gm

(
γm

zy − γcr
zy

)
= Gm

(
β + ∂w

∂y − γcr
zy

)
.

(9)

For the shear stresses along the thickness of the middle layer, a uniform distribution is
assumed. In this case, the shear forces will be written in the form:

Qx = τm
zxh = Gmh

(
α + ∂w

∂x − γcr
zx

)
, and

Qy = τm
zyh = Gmh

(
β + ∂w

∂y − γcr
zy

)
.

(10)

Bending and torsional moments are related to the stresses in the faces in the following way:

Mx =
(

σl
x − σ

up
x

)
· δ · h

2 ,

My =
(

σl
y − σ

up
y

)
· δ · h

2 , and

Mxy =
(

τl
xy − τ

up
xy

)
· δ · h

2 .

(11)

Substituting (3) into (5), and then (5) into (11), we get:

Mx = D
(

∂α
∂x + ν

∂β
∂y

)
,

My = D
(

ν ∂α
∂x + ∂β

∂y

)
, and

Mxy = D(1−ν)
2

(
∂α
∂y + ∂β

∂x

)
,

(12)

where D = Eδh2

2(1−ν2)
is the cylindrical stiffness of a three-layer plate (kN·m).

Internal forces in the plate are related by the differential equilibrium equations:

∂Qx
∂x +

∂Qy
∂y = −q,

∂Mx
∂x +

∂Mxy
∂y = Qx, and

∂Mxy
∂x +

∂My
∂y = Qy.

(13)

Equation (13) can be reduced to one equation for the bending and torque moments:

∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2My

∂y2 = −q. (14)

Substituting (12) into (14), we get:

D∇2F = −q, (15)

where F = ∂α
∂x + ∂β

∂y is the displacement function.
Equation (15) shows that the displacement function under a constant load does not

depend on time.
Next, we substitute (10) into the first Equation (13). As a result, we obtain the following

differential equation:

∇2w = − q
Gmh

− F +
∂γcr

zx
∂x

+
∂γcr

zy

∂y
. (16)
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To calculate internal forces and stresses, it is also necessary to determine the functions
α and β. To obtain resolving equations for α and β, we substitute (12) into the second and
third Equation (13):

Qx = ∂Mx
∂x +

∂Mxy
∂y = D

(
∂2α
∂x2 +

1+ν
2

∂2β
∂x∂y + 1−ν

2
∂2α
∂y2

)
, and

Qy =
∂My
∂y +

∂Mxy
∂x = D

(
∂2β

∂y2 + 1+ν
2

∂2α
∂x∂y + 1−ν

2
∂2β

∂x2

)
.

(17)

Using the displacement function, we eliminate the function β from the first equality in
(17), and the function α from the second:

Qx = D
2

(
(1− ν)∇2α + (1 + ν) ∂F

∂x

)
, and

Qy = D
2

(
(1− ν)∇2β + (1 + ν) ∂F

∂y

)
.

(18)

Equating the right sides of (18) and (10), we obtain the resolving equations for α and β,
respectively, as follows:

∇2α− 2Gmh
D(1−ν)

α = 2Gmh
D(1−ν)

(
∂w
∂x − γcr

zx

)
− 1+ν

1−ν
∂F
∂x , and

∇2β− 2Gmh
D(1−ν)

β = 2Gmh
D(1−ν)

(
∂w
∂y − γcr

zy

)
− 1+ν

1−ν
∂F
∂y .

(19)

Thus, the differential Equations (15), (16), and (19) completely determine the stress–
strain state of a three-layer plate during bending. One can solve them sequentially.

Let us consider the boundary conditions for a plate hinged along the contour (Figure 2).
On each boundary, for the functions w, F, α, and β, one boundary condition is specified.
With hinged support, the deflection and bending moments on the contour are equal to zero.
On the edges x = 0 and x = a, we set β = 0, then the derivative ∂β

∂y automatically vanishes
on these edges. Then, to ensure that the bending moments are equal to zero, it is necessary
that the derivative ∂α

∂x also vanishes. Similarly, on the edges y = 0 and y = b, we set α = 0.

Then, on these edges, ∂α
∂x = 0 and ∂β

∂y = 0. Finally, the boundary conditions can be written
in the form:

at x = 0, x = a : w = 0, F = 0, ∂α
∂x = 0, β = 0, and

at y = 0, y = b : w = 0, F = 0, α = 0, ∂β
∂y = 0.
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2.2. Calculation Algorithm

Equations (15), (16), and (19) can be solved numerically by the finite difference method.
A grid is introduced in time t and coordinates x and y. With a load constant in time, the
displacement function F does not depend on time, and the solution of Equation (15) is
performed once. The remaining equations are solved at each time step.
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At the first step, when t = 0, γcr
zx = 0 and γcr

zy = 0. Further, after solving Equations (16)
and (19), we can find the stresses in the middle layer. If the creep law is given in differential
form, the creep strains at time t plus ∆t can be found from the strains and stresses at time
t using the Euler method. It is possible to use schemes of a higher order of accuracy, for
example, the fourth order Runge–Kutta method.

The described algorithm was implemented by us in a MATLAB environment.

2.3. Analytical Solution for the Moment of the Beginning and End of the Creep Process

Equations (15), (16), and (19) with the boundary conditions (20) at t = 0 can also be
solved analytically using double trigonometric series. The functions F, w, α, and β will be
sought in the form:

F(x, y) =
∞
∑

m=1

∞
∑

n=1
Fmn sin mπx

a sin nπy
b ;

w(x, y) =
∞
∑

m=1

∞
∑

n=1
wmn sin mπx

a sin nπy
b ;

α(x, y) = ∑∞
m=1 ∑∞

n=1 αmn cos mπx
a sin nπy

b ; and

β(x, y) = ∑∞
m=1 ∑∞

n=1 βmn sin mπx
a cos nπy

b .

(21)

The given functions satisfy the boundary conditions (20). The load function q(x, y) is
expanded into a double series:

q(x, y) =
∞

∑
m=1

∞

∑
n=1

qmn sin
mπx

a
sin

nπy
b

. (22)

The expansion coefficients are determined by the formula:

qmn =
4
ab

a∫
0

b∫
0

q(x, y) sin
mπx

a
sin

nπy
b

dxdy. (23)

In the case of a load uniformly distributed over the area (q = const):

qmn =

{
16q

mnπ2 , if m and n are odd
0, if m or n is even

(24)

Substituting (21) and (22) into (15), (16), and (19), after transformations, we obtain
formulas for the coefficients Fmn, wmn, αmn, and βmn:

Fmn =
qmn

π2D
(

m2

a2 + n2

b2

) ; (25)

wmn =
qmn

π2Gmh
(

m2

a2 + n2

b2

) +
qmn

π4D
(

m2

a2 + n2

b2

)2 ; (26)

αmn = − a3b4m·qmn

π3D(a2n2+b2m2)
2 ; and

βmn = − a4b3n·qmn

π3D(a2n2+b2m2)
2 .

(27)

In formula (26), the first term represents the contribution of the shear deformations of
the middle layer to the deflection of the plate, and the second term is the contribution of
the faces’ deformations.
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It is shown in [23] that if the material of the structure obeys the Maxwell–Gurevich
equation, then to obtain a solution at t→∞, it is sufficient to replace the instantaneous
elastic constants with long-term ones in the solution at t = 0. The long-term shear modulus
of the filler Glong can be calculated by the formula:

Glong =
G · G∞

G + G∞
, (28)

where G is the instant shear modulus, G∞ = E∞/3.
It can be seen from formula (27) that the coefficients αmn and βmn, and hence the

functions α and β, do not depend on the shear modulus of the middle layer. This means
that at t→∞, the bending and torque values determined by formula (12) will be the same
as at t = 0. The same applies to shear forces, as can be seen from formula (17).

3. Results

The first step to test the developed technique was to solve a test problem for a square
plate with steel faces, followed by comparison with the ANSYS software package. The cal-
culation was carried out with the following initial data: a plate thickness of h = 80 mm,
a modulus of elasticity of faces of E = 2 × 105 MPa, a Poisson’s ratio of faces of ν = 0.3, their
thickness δ = 1.5 mm, slab dimensions of a = b = 3000 mm, a middle layer shear modulus
of Gm = 12.6 MPa, and a uniformly distributed load on the plate of q = 6 kPa. The rhe-
ological parameters of the polyurethane foam are: E∞ = 27.38 MPa, m∗ = 0.0218 MPa,
and η∗0 = 5.15× 107 MPa·s.

In ANSYS, the middle layer was modeled with SOLID186 3D finite elements, and the
faces were modeled with Surface Coating (SURF154) elements. To specify a custom creep
law, the User Programmable Features extension was used. The Maxwell–Gurevich law was
implemented as the usercreep.f subroutine in the FORTRAN language.

Figure 3 shows the graphs of the deflection growth in the center of the plate, obtained
by the author’s method and in the ANSYS program.
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Figure 3. Comparison of the author’s solution with the results in the ANSYS software package.

Table 1 shows the values of the deflection in the center of the plate at time t = 0 and
t = 800 h when solving Equations (15), (16), and (19) by the finite difference method for a
different number of intervals, n = nx = ny, in x and y.

The analytical value of the deflection at t = 0, obtained using four terms of the series
(m = 1, 3 and n = 1, 3), was 11.9 mm, which differs from the solution in ANSYS by 2.6%.
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The maximum discrepancy between the results at t = 800 h is 3.9%. The displacement
isofields obtained in ANSYS at t = 800 h are shown in Figure 4.

Table 1. Mesh sensitivity analysis when using the finite difference method.

n 4 6 10 20 40 80

w0, mm 11.64 11.90 12.04 12.10 12.12 12.12
w800, mm 16.90 17.12 17.15 17.12 17.10 17.10
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To analyze the effect of nonlinear creep on the stress–strain state of three-layer plates,
we performed a calculation for the above initial data with different values of load q from
2 to 10 kPa. The resulting deflection growth curves are shown in Figure 5. For comparison,
a calculation was performed using a linearized equation (η∗ = η∗0 = const) which coincides
in structure with the linear Maxwell–Thompson equation. The corresponding plots are
shown with dashed lines.
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Figure 5 shows that with increasing load, the discrepancy between the results obtained
using the nonlinear and linearized creep equations increases. According to the nonlinear
theory, the increase in deformations and the attenuation of the rate of the deflection growth
occur faster.

Another effect due to non-linear creep is the time variability of stresses in the faces and
core under high loads. Figures 6 and 7 show graphs of the change in time of the maximum
tangential stresses in the lower skin and the middle layer at q = 10 kPa. In the middle layer,
the stresses decrease at the initial stage, and they increase in the faces. At t→∞, as shown
earlier in Section 2, there is a return to the elastic solution. According to the linear theory, in
contrast to the nonlinear one, the stresses in all layers under a constant load do not change
over time.
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4. Discussion

The established differences in the nature of the change in deflections with time when
using the linear and nonlinear creep equations are consistent with the results obtained
in [22] for three-layer beams with a polyurethane foam filler. The time variability of stresses
in the faces and core can be explained by the presence of unsteady creep at the initial stage,
when the creep strains of the polymer lag behind the stresses in phase. Similar effects were
previously revealed using the nonlinear Maxwell–Gurevich equation for other polymers
in [24–28]. In the considered example, the increase in shear stresses in the faces turned
out to be not so significant and amounted to only 7%. Under other conditions, the growth
may be more noticeable and pose a danger in terms of the bearing capacity loss of the
plate. Therefore, when calculating three-layer plates with a polyurethane foam filler, it is
preferable to use a nonlinear equation of the relationship between stresses and creep strains.

It should be noted that for three-layer shells, in comparison with plates, a different
character of the change in the stress–strain state is observed. For the plates considered
in this article, the increase in displacements during creep was about 45%. For the shells,
even with a slight curvature, the creep of the core does not have a noticeable effect on
the deflection [29]. This can be explained by the fact that three-layer shells, unlike plates,
mainly work in tension and compression, and the contribution of shear forces to their
stress–strain state is small.

In the present work, a one-term version of the Maxwell–Gurevich equation is used. We
note that most polymers are characterized by a discrete spectrum of relaxation times, and it
is necessary to take into account at least two terms of the spectrum [30]. The resolving
equations we obtained make it possible to take this circumstance into account, but for
this, it is necessary to know the rheological parameters for each spectrum of the polymer.
Further, the equations presented in this article make it possible to use not only the Maxwell–
Gurevich equation, but also any other creep law.

This article does not touch upon the strength of the adhesive bond between skins and
filler. To solve this problem, the contact layer method [31] can be applied. Some solutions
for three-layer beams and plates can be found in [32,33]. However, these publications
do not take into account the deformations of the transverse shear of the layers, which,
for three-layer plates with a light filler, can make a more significant contribution to the
deflection than to the deformations of the faces. Our further research will be aimed at
modeling the adhesion between the polyurethane foam core and faces in three-layer panels,
taking into account the nonlinear rheological properties of the core.

5. Conclusions

A system of resolving differential equations has been obtained for calculating three-
layer plates with polyurethane foam filler, taking into account the nonlinear creep of the
middle layer. A numerical algorithm for solving this system is proposed. An analytical so-
lution is also obtained for a plate hinged along the contour at t = 0 and t→ ∞ . It is shown
that when using the Maxwell–Gurevich equation, the stresses in all layers at t = 0 and
t→ ∞ coincide. The developed algorithm was tested by comparison with the calculation
using the finite element method in the ANSYS software package. The discrepancy does not
exceed 5%. Significant differences between the results when using linear and non-linear
theory are revealed. When nonlinear creep is taken into account, the stresses in the skins
and core are not constant in time. In the skins, at the initial stage, an increase in stresses is
observed, followed by a return to the original values.
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