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Abstract: The main aim of this research is to assess different fly ashes as raw materials for the
manufacturing of geopolymers. Three different fly ashes have been investigated. First, a conventional
fly ash from the Skawina coal power plant (Poland), obtained at a temperature of 900–1100 ◦C. Second,
ultra-fine fly ash from a power plant in China; the side product received at 1300 ◦C. The third fly
ash was waste was obtained after combustion in incineration plants. To predict the properties and
suitability of materials in the geopolymerization process, methods based on X-ray analysis were used.
The applied precursors were tested for elemental and chemical compounds. The investigations of
geopolymer materials based on these three fly ashes are also presented. The materials produced
on the basis of applied precursors were subjected to strength evaluation. The following research
methods were applied for this study: density, X-ray fluorescence (XRF), X-ray diffraction analysis
(XRD), Scanning Electron Microscopy (SEM), flexural and compressive strength. The obtained results
show that materials based on fly ashes had a similar compressive strength (about 60 MPa), while
significant differences were observed during the bending test from 0.1 to 5.3 MPa. Ultra-fine fly ash
had a lower flexural strength compared to conventional fly ash. This study revealed the need for
process optimization for materials based on a precursor from a waste incineration plant.

Keywords: fly ashes; waste incineration product; geopolymers; X-ray fluorescence; X-ray diffraction;
mechanical strength

1. Introduction

Annual cement production in 2020 was predicted to reach nearly 6 billion tonnes,
resulting in a production of approximately 4.8 billion tons of CO2. Portland cement
productions emits about 7% of global CO2. Because of that, alternatives to Portland
cement are increasingly being sought [1–4]. Examples of such alternatives are alkali-
activated binders or geopolymers. These materials are formed by the polycondensation of
aluminosilicates (containing silicates with alkalis) and are characterized by an amorphous
or semicrystalline structure [5,6]. The structural network of geopolymers is based on
aluminosilicates, which form a combination of [SiO4]4− and [AlO4]5− tetrahedra [7–9].
These are interconversively linked by oxygen atoms. Bonding usually occurs in a strongly
alkaline aqueous solute, but reactivity is also possible in acids, in which the reactive
alumino-silicates are dissolved, and then in the polycondensation process the tetrahedrons
[SiO4]4−, [AlO4]5− connect at the corners [10–12].

Currently, the raw materials most widely applied in geopolymers are metakaolin [13–15],
fly ash [16–18], and slag [19–23]. However, other waste materials can also be used (Figure 1).
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Research on geopolymers based on various wastes showed that the geopolymer mate-
rial exhibits superior strength, corrosion resistance, flame retardancy, and durability [24–27].
These features give geopolymer a great potential as an environmentally friendly application
in construction, but also as a neutralizing material [28–33].

All raw materials have their advantages and disadvantages. For example, metakaolin
is widely accessible and well known as a precursor for geopolymers. It has repetitive
properties (if comes from one source) and is easy to pigment, but its production requires the
calcination process of kaolin in high temperature. So, it is energy consuming. Investigations
on metakaolin-based geopolymers were carried out using various experimental techniques.
The research confirmed that the mechanical strength of metakaolin-based geopolymers
was related to the chemical composition, but the porosity of the material also played an
extremely important role in the resistance to degradation mechanisms, which is correlated
with long-term mechanical properties. Additionally, the microstructure depends on the
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content of silica, and it affects the mechanical properties of the material. It was found that
the greater the compactness of the silica, the higher the strength of the material, and the
nature of the structure is uniform and less rough [15,34–36].

Fly ashes and slags have an advantage as ready waste from energy processes. These
raw materials do not require an additional process to be reactive during geopolymerization,
but at the same time these materials are not repetitive, because their composition and
properties are connected with used technology of burning, used feed-stock, and other
variables. The favorable properties of these materials are connected with the use of energy
industry byproduct as well as the fact that these materials do not require additional
pretreatment.

Olivia and Nikraz [37] tested a geopolymer based on mixtures of fly ash with the
Taguchi method and performed strength tests taking into account the influence of aggregate
content, the ratio of alkaline solution to fly ash, the ratio of sodium silicate to sodium
hydroxide, and the hardening method [37]. The test results were compared with Portland
cement. A recent study showed that fly ash geopolymers had a compressive strength
of approximately 55 MPa, which is comparable to cement, and also had a higher tensile
and bending strength, but with a lower modulus of elasticity. Research indicated that
geopolymers can be an alternative to Portland cement, and at the same time limit the
pollution of the environment [37,38].

Geopolymers obtained from fly ash and ground bottom ash were compared. Among
others, sodium hydroxide (NaOH) solutions were used as activators. The results indicated
that either fly ash or furnace ash could be used as source material to produce geopolymers.
The qualities of the geopolymers depended on the precursors used and the concentration
of NaOH. Fly ash had more reactivity and resulted in a higher degree of geopolymerization
compared to bottom ash. The study also determined the optimal concentration of NaOH
activator at the level of 10 M. The strength results showed the advantage of fly ash over
bottom ash, achieving a compressive strength of 35 MPa [39].

Kong et al. [39] examined geopolymers made based on fly ash and metakaolin. Both
types of geopolymers were produced using sodium silicate and potassium hydroxide
solutions. The study of morphology revealed that fly ash-based geopolymers were char-
acterized by smaller porous structures, resulting in lower internal stress, and provided
higher-strength properties [39].

In recent years, studies have been conducted on the neutralization of toxic and un-
friendly waste as a precursor for the production of geopolymers.

Lo et al. [40] conducted a study to investigate the effect of the partial substitution of
traditional Portland cement with municipal waste incineration ash and rice husk ash. The
results showed that despite their lower reactivity, the waste materials can be successfully
used in building materials [40]. A few studies have examined the use of waste from coal
incineration plants, municipal waste, oil-contaminated sand, or the burning of agricultural
products in building materials. These studies were conducted to relieve the burden on the
environment. Another advantage is the reduction of the amount of base material because
these materials can be used as fillers as long as they do not have negative effects on the
properties of the base material [41–45].

Lach et al. [46] investigated the possibility of immobilizing waste from municipal waste
incinerators in geopolymer materials. The results of geopolymerization presented high
immobilization levels of compounds and elements, such as chlorides, sulfates, fluorides,
barium, and zinc, and the produced materials had good listing properties [46].

The authors present a comparison of geopolymers made on various fly ashes. Research
on conventional fly ash has shown great potential for the use of this material as a precursor
in geopolymers not only in the traditional casting method, but also in 3D printing methods,
which only confirms the need for more research on geopolymeric materials [47], while the
use of fly ash with a larger surface spread, such as ultra-fine reactive fly ash, is becoming
more and more popular. The comparison of three different raw materials allowed us to
indicate the advantages and disadvantages of the selection for the production of fly ash-
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based geopolymer materials and their influence on the final product. This research included
the analysis of the chemical and phase composition, strength tests, and the analysis of the
morphology of the manufactured materials. The article also presents efforts to adapt waste
ash after the incineration of municipal waste, which is of increasing interest because of the
benefits resulting from immobilization and waste that threaten the natural environment.
This kind of investigation is important to provide new knowledge about the possibility
to use local resources for manufacturing construction materials by geopolymerization,
including information about the most important investigation of raw materials before
classification as a possible material for the geopolymerization process. A comparative
analysis for these particular fly ashes has not been provided before in the literature.

2. Materials and Methods
2.1. Materials and Samples Preparation

In this work, attempts were made to produce geopolymers based on three types of fly
ashes: two types of fly ash from power plants and one waste obtained after the incineration
of municipal waste. Conventional class F fly ash was obtained from Skawina Heat and
Power Plant (Skawina, Poland). The size distribution and spherical shape of the fly ash
particles in conventional fly ash as well as the crystalline internal structure result in a
material with good workability. Another precursor used to make the geopolymer was
Ultra-Fine Reactive Fly Ash (Rufa), from a power plant in China (TRIAXIS Corporation,
Hong-Kong, China). Conventional fly ash is a product of a thermal power plant heated to
900–1100 ◦C, and RUFA is a product of a thermal power plant heated to 1300 ◦C. The high
temperature causes the cracking of the ash microspheres at about 1100 ◦C and completely
collapses at about 1300 ◦C in the particle separation process. The resulting particles have
a much larger specific surface. Although the chemical composition is comparable to that
of conventional fly ash, RUFA can compete successfully with conventional fly ash in
terms of pozzolanic activity [48]. The last type of precursor was waste obtained from
municipal waste incineration (Białystok, Poland). The tested fly ashes were not subjected
to any pretreatment.

Figure 2 and Table 1 show the histogram of the particle size distribution and the
cumulative particle size distribution curves according to the percentage of particles for
applied fly ashes. The research was carried out using a Particle Size Analyzer (AntonPaar
GmbH, Graz, Austria).
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Table 1. Particle size distribution in different materials.

Index D10 [µm] D50 [µm] D90 [µm] Mean Size [µm]

F 2.040 10.235 23.167 12.167
R 0.7922 1.8683 4.266 2.418
B 1.9866 11.924 28.063 14.513
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The particle size distribution in all types has the Gaussian plot character. This is most
visible for the R fly ash. The characteristics for fly ash F and Fly ash B form waste obtained
after incineration of municipal waste are similar. The mean size of the particles is lower for
fly ash (ultra-fine) and it is about 2.5 µm, whereas for fly ash F it is approximately 12 µm
and for B it is approximately 14.5 µm, respectively.

The alkaline activator was a 10 M sodium hydroxide solution (PCC Rokita SA, Brzeg
Dolny, Poland), and sodium water glass R-145 (STANLAB, Gliwice, Poland) with a molar
module of 2.5 and a density of about 1.45 g/cm3; Na/Al ratio was 1:2. To prepare the
mass, the precursors were mixed with the activator for about 10 min and poured into the
molds. The molds were placed on a vibrating table to remove air bubbles. After preparing
the masses, the samples tightly covered with foil were placed in a laboratory drier (SLW
750 STD, Pol-Eko-Aparatura, Wodzisław Śląski, Poland) for 24 h at a temperature of
75 ◦C. Loss of material mass after 24 h of heating in the furnace was less than 0.1%. The
samples were unmolded and cured in laboratory conditions (temperature ca. 20 ◦C, relative
humidity ca. 50%) for 28 days. As a next step, the strength tests were performed. Table 2.
lists the names of the samples for better systematization and mixing proportion.

Table 2. List of manufactured geopolymers.

Index Description Mix Proportion

B
Geopolymer based on the precursor of the
municipal waste incineration plant
(Białystok, Poland)

4 kg of precursor + 10 M
sodium hydroxide solution +
water glass (1200 mL in total)

F Geopolymer based on the precursor of the
Power Plant in Skawina (Skawina, Poland)

R
Geopolymer based on precursor from the
Power Plant in China (TRIAXIS
Corporation).

2.2. Research Methods
2.2.1. Density

The actual density of the applied precursors and the density of the manufactured
geopolymer were determined. The actual density was determined with a Pycnomatic ATC
(Thermo Fisher Scientific, Massachusetts, USA) with the PN-EN ISO 18753: 2006 standard
(“High-quality ceramics (advanced ceramics, technical advanced ceramics)—Determination
of the actual density of ceramic powders using the pycnometric method”). Pycnometers use
a gas displacement technique to determine the actual density. Helium was used as the gas
because helium atoms have very small diameters and can penetrate even extremely small
pores in solids. As the outer surface of the samples did not show significant roughness, the
density of the samples was determined using the geometric method for solid materials.
The density was determined as the mean of the measurements for the four samples. The
samples were measured with a laboratory caliper with a measurement accuracy of 0.01 mm,
and the mass of the samples was determined with a laboratory precision analytical balance
RADWAG PS 200/2000.R2 (maximum load: 200/2000 g; reading accuracy: 0.001/0.01 g).

2.2.2. Chemical Composition of Precursors

The chemical and mineral composition was analyzed with the use of spectroscopy
(X-ray diffraction and X-ray fluorescence). X-ray fluorescence (XRF) was conducted on a
WDXRF AxiosmAX Spectrometer equipped with an Rh 4 kW source (PANalytical, Malvern,
UK). X-ray diffraction (XRD) was evaluated with an X’Pert Pro MPD diffractometer (PANa-
lytical, Malvern, UK) with CuKα radiation at 30 mA and 40 kV. The 2θ angle was varied
from 20 ◦ to 53 ◦ with a step of 0.04 ◦ and an accumulation time of 7 s for each step. XRD
was conducted to assess the mineral composition of materials from various waste streams
used in the research. The calculated values of the distance between the planes were used to
identify the phases contained in the tested materials. X-ray analysis was performed using
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HighScore Plus software. To analyze the presence of phases, the PDF4 + crystallographic
database was used.

2.2.3. Strength Tests

Compressive strength tests were performed following the EN 12390-3 standard (“Tests for
hardened concrete. Compressive strength of samples”), on cubic samples (50 mm× 50 mm× 50 mm),
using the Matest 3000 kN universal testing machine (Matest, Treviolo, Italy). The bending strength
tests were executed following the EN 12390-5 standard (“Tests of hardened concrete. Bending strength
of test specimens”) using the same Matest 3000 kN testing machine. Sample dimensions were 50 mm
× 50 mm × 200 mm. The distance between the support bars was 150 mm. The test speed was set
up to 0.05 MPa/s. The strength tests were performed after 28 days of sample conditioning. The
minimum number of samples was five, and the values reported in the results are average values.

2.2.4. Microstructure

The geopolymers produced were subjected to microscopic observations to define
the formed structure. Microscopic observation was performed using a JEOL JSN5510LV
Scanning Electron Microscope (JEOL Ltd., Tokyo, Japan). The samples after mechanical
properties research were used for this test. Before testing, the surface of the sample was
covered with a conductive gold layer on the JOEL JEE-4X vacuum evaporator (JEOL Ltd.,
Tokyo, Japan).

3. Results and Discussion
3.1. Density Results

The first stage of the studies was to determine the density of the precursor used and the
density of the produced geopolymers. Figure 3 shows a comparison of the actual density
with the density determined after the geopolymerization process by a specific geometric
method. The actual density of fly ashes was at a similar level and reached 2.315 g/cm3

for conventional fly ash (F) and 2.610 g/cm3 for ultra-fine reactive fly ash (R). The actual
density of the material obtained after the municipal waste utilization (B) was equal to
2.107 g/cm3. These values are in line with the properties given for bulk geopolymeric solid
materials in the literature [4,46].
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An important element of the density tests is the comparison of the density of the
precursor with the results obtained after the geopolymerization process. That gives an
initial view of the porosity of the manufactured samples. The largest differences were
noticed for sample B. However, large differences also occurred in the case of geopolymers
made using fly ashes, which suggests the relatively high porosity of the tested materials. It
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is also worth noting that standard deviation given for these samples is relatively small, as
the samples are repetitive.

The presence of porosity in geopolymer concrete is related to inaccurate compaction
of the material. It has been proven that a porous structure can have a negative effect
on strength properties [49,50]. The research provided by Mindess [51] shows that the
presence of pores, pore size, and pore distribution significantly affected compressive
strength by causing a decrease in compressive properties as the proportion of large pores
in the material structure increased. While another reason was the phase composition
of the samples [51]. Luna-Galiano et al. [52] indicated that sodium hydroxide-activated
geopolymers had higher porosity compared to potassium hydroxide-activated geopolymer
materials. In addition, they also indicated that there were differences between the activation
of sodium hydroxides and silicates, where the materials containing the sodium activator
were represented by a higher proportion of porosity and the pores had a larger diameter.
In addition, the activator used and the curing temperature greatly affect the properties
of geopolymers [52]. They revealed that the structure of geopolymers activated with
potassium hydroxides or potassium and sodium hydroxides contained a higher proportion
of porosity compared to material activated with sodium hydroxide. However, the authors
did not indicate an explanation for this phenomenon [53]. Kong et al. [39] investigated
the effect of elevated temperature on geopolymer materials. According to their results,
the porosity of geopolymers depends on thermal activation during curing. Elevated
temperature causes a decrease in pore size. However, the volume proportion of the
volume of pores increases compared to the material cured at room temperature [39]. Other
researchers confirmed this effect, finding that high-temperature curing produced porosities
within 0.01 µm, while geopolymers cured at room temperature contained pores with
diameters in the range of 0.1–1 µm [54].

3.2. Chemical Compositions Results

The chemical composition of the tested precursors was determined by the XRF method.
The results are presented in Table 3. Fly ash mainly contains oxygen, silicon, calcium,
aluminum, iron, potassium, sodium, magnesium, titanium, and phosphorus. Conventional
fly ash (F) contained a higher aluminum content and ultra-fine reactive fly ash (R) exhibited
a higher calcium content. Analysis of the chemical composition of the ash obtained from the
municipal waste incineration plants (B) showed that the ash consisted mainly of calcium,
chlorine, oxygen, sulfur, potassium, sodium, and zinc. According the ASTM-C618-2, based
on oxygen composition, the fly ashes that came from combustion process can be classified
as a class F and fly ash form the municipal waste incineration plants is in class C. Note that
for the formation of bonds of geopolymers, the oxygen composition of the base material
is important. A large amount of calcium could cause too rapid a reaction of the materials,
which would not allow to form the 3D structure that is characteristic for geopolymers [55].

Table 3 shows the oxide composition of the materials tested. Fly ash (F) was char-
acterized by the highest content of aluminum and silicon oxides, which are necessary
components for the geopolymerization process to take place. Additionally, for all these
fly ashes, the concentrations of potentially hazardous elements, such as Ce, Y, and Sr, are
relatively low and do not cross the standards for non-hazardous wastes. Because of this,
using these fly ashes as a raw material for building products is possible from a legal point
of view [46,55].

Previous research showed that high calcium fly ash is suitable as a source material
for making good quality geopolymer materials [56,57]. Calcium in fly ash results in the
formation of a calcium silicate hydrate (C-S-H) phase. The coexistence of this phase with the
geopolymer gel has a positive effect on the strength properties of the obtained geopolymer
materials. Moreover, high calcium content results in the fact that calcium atoms bond in
the geopolymer network and act as charge-balancing cations [58].
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Table 3. The analyzed chemical formula of tested fly ashes.

Precursor F R B

Compound
Formula Conc, % Compound

Formula Conc, % Compound
Formula Conc, %

1 Na2O 1.714 Na2O 1.950 Na2O 3.277
2 MgO 1.636 MgO 1.214 MgO 0.438
3 Al2O3 25.499 Al2O3 16.639 Al2O3 1.273
4 SiO2 50.897 SiO2 50.914 SiO2 3.994
5 P2O5 0.469 P2O5 2.013 P2O5 0.387
6 SO3 1.276 SO3 0.238 SO3 10.672
7 K2O 3.007 K2O 3.532 K2O 4.350
8 CaO 5.306 CaO 15.435 CaO 43.323
9 TiO2 1.456 TiO2 1.602 TiO2 0.719

10 Cr2O3 0.030 Cr2O3 0.025 Cr2O3 0.037
11 MnO 0.111 MnO 0.078 MnO 0.065
12 Fe2O3 8.001 Fe2O3 5.509 Fe2O3 1.060
13 NiO 0.017 Co3O4 0.015 CuO 0.082
14 CuO 0.024 NiO 0.024 ZnO 2.872
15 ZnO 0.036 CuO 0.054 SrO 0.051
16 Rb2O 0.023 ZnO 0.112 ZrO2 0.023
17 SrO 0.078 Ga2O3 0.039 CdO 0.029
18 ZrO2 0.043 SeO2 0.015 SnO2 0.085
19 BaO 0.091 Rb2O 0.024 SbO2 0.064
20 CeO2 0.032 SrO 0.236 BaO 0.073
21 PbO 0.024 Y2O3 0.015 PbO 0.420
22 Cl 0.230 ZrO2 0.096 Cl 26.477
23 BaO 0.048 Br 0.215
24 PbO 0.083 I 0.014
25 Cl 0.088

Table 4 presents a summary of the identified phases for the diffractogram recorded for
sample B.

Table 4. Identified phases and their percentage share in the B -sample.

Sample ID Identified Phases Chemical Formula Amount of Phase

B

Calcite (Calcium
Carbonate) CaCO3 43.0

Chlorocalcite CaCl3K 35.0

Anhydrite CaSO4 14.4

Quartz SiO2 7.5

Kaolinite Al2Si2O5(OH)4 0.1

Sample B was characterized by a high content of calcite and chlorocalcite. Additionally,
anhydrite, quartz, and kaolinite were also identified.

Table 5 presents a summary of the identified phases for the diffractogram recorded for
sample F.

Table 5. Identified phases and their percentage share in conventional fly ash F.

Sample ID Identified Phases Chemical Formula Amount of Phase

F

Quartz SiO2 47.8

Mullite Al6Si2O13 48.4

Hematite Fe2O3 1.6

Alite Ca3SiO5 2.2
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In terms of the investigation of the diffraction patterns, the conventional fly ash was
characterized by a high quartz content, mullite, hematite, and alite. Figure 4 shows the
diffractogram recorded for ultra-fine fly ash (R) obtained from China. The material was
almost completely amorphous. The raised background at angles of 20–30 2θ angles is the
so-called amorphous halo.
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The results of the X-ray studies revealed that the presence of characteristic crystalline
phases, such as quartz, mullite, anhydrite, or hematite, could be detected in the ashes
analyzed. They do not participate directly in the polymerization process. In the recorded
spectrum for ultrafine fly ash, a large hump can be observed, which indicates the presence
of an amorphous phase. The amorphous phases play an important role in the geopolymer-
ization process, and this phase participates in the polymerization reaction [59–62].

3.3. Mechanical Properties and Structure Observations

The initial raw materials for geopolymers strongly influence the resulting microstruc-
ture, although structures may be found to be similar due to the presence of the same bond
between silicon and aluminum atoms and the presence of a gel phase binder [28]. Strength
tests, such as compressive strength, are the basis for evaluating the correctness of the
geopolymerization process, as well as for evaluating the suitability of the produced [63].
The compressive strength of geopolymer materials is dependent on several factors, such as
the structure, the presence of a crystalline phase, the content and strength of the gel phase,
the arrangement and toughness of the insoluble Al-Si particles, and the surface reaction be-
tween the gel phase and the insoluble Al-Si particles [64]. Furthermore, variables, such as %
CaO, % K2O, and alkali type, have a strong correlation with compressive strength. The sig-
nificance of the Si/Al molar ratio for the alkali dissolution of particular minerals indicates
that compressive strength is obtained through complex interactions between the mineral
surface, kaolinite, and concentrated sodium silicate solution. After the geopolymerization
process, the insoluble particles remain cemented into the matrix, so that the toughness of
the mineral is positively correlated with the residual compressive strength [65].
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Figure 5 presents a summary of the strength tests performed for each geopolymer
material. The highest value of flexural strength was obtained for the sample based on
conventional fly ash from (F), 5.3 MPa. The lowest value was obtained for the material
based on ash from the waste incineration plant in Białystok (0.1 MPa), B. A marginally
higher value was achieved for the geopolymer based on ultra-fine fly ash (R), but the
flexural strength was extremely low and reached about one-twentieth of the geopolymer
based on conventional fly ash (Figure 5a). The obtained results are correlated with the high
calcium content (more than 30%) and a marginal Al and Si content of about 1%, which,
as already mentioned, are extremely important in the geopolymerization process. Ban
et al. [66] studied geopolymer mortars based on fly ash, which was replaced by wood ash;
it was characterized by high calcium content. The flexural strength of geopolymer mortars,
in this case, decreased as the proportion of wood ash in the mix increased, regardless of the
choice of curing method [66].
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Figure 5. Results of mechanical properties tests: (a) Flexural strength; (b) Compressive strength.

The great difference in the compression test results can be seen in Figure 5b. The
fly ash-based geopolymers had comparable compressive strengths and oscillated around
60 MPa. The weakest compression test results were obtained for the material based on ash
from the incinerator plant, sample B, and were approximately 7 MPa, which is related to
the chemical composition and high porosity of this material.

Mechanical property tests revealed the strengths and weaknesses of the materials
studied. The geopolymers produced on the basis of conventional fly ash exhibit high
strength properties in both compression and flexural strengths. The material based on
ultra-fine fly ash displayed good compressive strength. However, in the case of point load
application, it is a material that requires reinforcement, e.g., long fibers, which could reduce
such rapid cracking of this material. In the case of ash obtained after the incineration of
municipal waste, it must be stated that despite the bonding between the components, this
material does not meet even the lowest strength requirements and is not suitable for use
in this way. The solution to this problem may be optimization of the activator content,
which in this case seems to be too large and causes some process of foaming, reducing
the strength properties or utilization of this type of waste by adding small fractions of the
waste to materials based on other fly ashes [66,67].

3.4. Microscopic Observations

Scanning electron microscopy (SEM) enables the visual examination of material in the
millimeter to micrometer range to obtain conclusive topographical information and allows
the evaluation of structures that cannot be revealed by other methods [68].

Figures 6–8 show the microstructure of the tested materials. In Figure 6, microscopic
photos of materials produced based on ash from a municipal waste disposal plant are
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presented. An inconsistent structure of the feathery material can be observed. At higher
magnifications, a highly porous structure was observed, and the pores were polygonal.
The structure of the material was brittle and segmented, resulting in very low strength
properties. Figure 7 presents photos of geopolymers made using conventional fly ash.
A compact structure of the material with visible pores with a maximum size of about
1.5 mm can be observed. However, the pore size was mostly 10–50 µm. The structure
was amorphous. Undiluted ash particles can also be seen. This is a typical structure for
geopolymers composed of traditional fly ash [69]. Alehyen et al. [70] investigated and
described the microstructure of fly ash-based geopolymer mortars. They characterized
it as a porous heterogeneous mixture, where some of the ash grains did not react or
partially reacted. Additionally, they noted the presence of residual alkaline deposits and
geopolymer gel [70].
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Observations of the microstructure of the material made from ultra-fine fly ash, RUFA
(Figure 8), showed an equally compact and amorphous structure of the material. Significantly
lower roughness was observed in comparison to the material based on conventional fly ash.
The pore size was a maximum of about 200 microns and the pores were mostly in the range of
10–20 microns. Cracks on the fracture surface with a length of about 300–600 µm were also
noticed. The smaller distribution and pore size in geopolymers based on ultrafine fly ash may
be related to the formation of colloids C-S-H. The formed colloids contribute to a reduction
in the number of capillary pores. Lin [48] studied ultrafine fly ash added to cementitious
materials. The microstructure showed that the fine particles contained silica dust and acted
partly as an inert material. This contributed to improving the packing density of the particles
in the microstructures of the material [48]. The cause of microcracking was shrinkage during
drying, which is a physical property of a gel. This is related to the removal of water during the
polycondensation process, which causes capillary tension in gel matrices [70].

The presented microstructure images show that the fly ash-based materials are charac-
terized by amorphous structures and contain undiluted fly ash particles. The variable pore
content in the microstructure of the materials was also noticed. When the microstructures
of geopolymers based on conventional fly ash and ultrafine reactive fly ash are examined,
better compaction of the material and thus better bonding for a material based on RUFA
ash can be seen.

Similar structures were concluded by Škvára et al. [54]. This research held that the
basic mass of the fly ash-based geopolymer was amorphous glass in which minority
needle configurations were rare. They also observed remnants of the original ash parts
in the geopolymer mass, where the influence of gradual decomposition was evident. The
materials produced by the authors showed relatively high porosity (up to 50%) regardless
of the nature of the preparation conditions [54].

4. Conclusions

This work included structural and strength studies conducted to analyze and select
potential precursors that could form the basis of advanced geopolymer materials. When
evaluating the suitability of raw materials for geopolymer materials characterized by their
ability to form a cementless bonding binder, many factors must be considered, e.g., the
content of active ingredients that transfer into solution under the action of an alkaline
activator, the ratio of SiO2 to Al2O3, amorphous phase composition and content, grain
size, particle density, and unburned carbon. Many studies have confirmed that fly ash can
become a source that can be used in the geopolymerization process, which is also presented
in this paper. However, it should be noted that, depending on the combustion temperature,
fly ash as waste material is not always a precursor that will provide adequate strength
properties. The provided test allows us to formulate following conclusions:

• Mechanical tests showed that materials made from fly ash obtained from the Skawina
Power Plant had better strength properties compared to other materials analyzed.

• The ultrafine fly ash, in which the bending strength was low, can be also useful
material for geopolymers preparation, but it requires some reinforcement. This kind
of reinforcement could be, for example, glass fiber, to improve the bending properties.

• Studies conducted with incineration waste indicate that this specific type of ash is not
suitable for the production of alkali-activated materials under the conditions presented.
There were not enough strong bonds in this type of material, resulting in an extremely
developed material structure that was very brittle and did not meet the minimum
strength requirements.

The next stage of the research will be the optimization of the geopolymerization
process in terms of activator selection as well as the pre-treatment of precursor from waste
incineration because in the presented research this material has not been subjected to such
treatment and the research results indicate the need for further research in this direction.
Waste immobilization is an extremely important area of research, which was also noted by
other scientists. A possible solution could also be to add a small fraction of this material to
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the geopolymeric material as a method of utilizing this type of waste, which seems possible
because of the observed microstructures.
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5. Ercoli, R.; Laskowska, D.; Nguyen, V.V.; Le, V.S.; Louda, P.; Łoś, P.; Ciemnicka, J.; Prałat, K.; Renzulli, A.; Paris, E.; et al. Mechanical

and Thermal Properties of Geopolymer Foams (GFs) Doped with By-Products of the Secondary Aluminum Industry. Polymers
2022, 14, 703. [CrossRef]

6. Petrus, H.T.B.M.; Olvianas, M.; Shafiyurrahman, M.F.; Pratama, I.G.A.A.N.; Jenie, S.N.A.; Astuti, W.; Nurpratama, M.I.; Ekaputri,
J.J.; Anggara, F. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study.
Gels 2022, 8, 233. [CrossRef]
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