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Abstract

:

Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization   Δ  H  vap     of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting   Δ  H  vap     of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of   Δ  H  vap     of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database.
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1. Introduction


Computer-aided predictions of polymer solubility and miscibility with small molecules and drugs are of fundamental importance in a number of industrial applications, including the use of polymers as drug carriers in the growing field of nanomedicine [1]. Among various approaches, solubility and miscibility predictions based on Hildebrand solubility parameters are often used for polymer blends, polymer solutions and polymer–drug mixtures [2]. The Hildebrand model uses a solubility parameter (SP),  δ , defined as the square root of the cohesive energy density:


  δ =      E  coh      V m       



(1)




where    E  coh     is the cohesive energy, and    V m    is the molar volume. The miscibility of two substances can be estimated by comparing the absolute value of the difference in their SPs. If it is more than 2 MPa1/2, the two substances are deemed immiscible, and with a difference of less than 2 MPa1/2, they are considered miscible [3]. The factor 2 MPa1/2 was determined on the basis of empirical considerations [3]. The Hildebrand SP can also be used to roughly estimate the Flory–Huggins interaction parameter [4], which is another useful tool for predicting the miscibility of polymer blends [5].



For low-molecular-weight compounds,    E  coh     and  δ  can be estimated from the heat of vaporization:


   E  coh   ≈ Δ  H  vap   − R T  



(2)




where   Δ  H  vap     is the heat of vaporization [2]. However, for polymers, SP is difficult to obtain from experiments [6]. Various experimental methods can be used to indirectly derive SP, such as hot-stage microscopy, differential scanning calorimetry (DSC) and ultraviolet spectroscopy [7,8], but these methods provide limited accuracy and can only be used for a small range of polymer species.



In addition to experimental methods, SP can also be calculated by empirical approaches and computer simulations. A group-contribution method (GC) is an empirical approach, which uses the sum of the contributions of structural and functional groups to estimate polymer properties [9]. GC is easy to apply but has limited accuracy due to the use of empirical assumptions. Although new GC approaches are being developed, a general model that can cover a wide range of polymer species and polymer properties is not available [10]. Atomistic simulations employing force fields and interatomic potential functions are another tool for predicting polymer properties [5,11]. However, accurate SP predictions using atomistic simulations are computationally demanding, especially for polymers and compounds with complex structures [12].



In this regard, data-driven approaches based on machine learning (ML) models have become an appealing alternative to simple empirical approaches and atomistic simulations. ML models have been developed to predict the physical or chemical properties of materials with good accuracy, including solubility parameters [11]. However, the predictive power of ML models depends heavily on the availability of accurate and consistent target data covering a wide structural and compositional range, as well as unbiased descriptors, i.e., readily available observables that can be linked to the target property [13]. Such observables can be derived, e.g., from experimental data or from quantum chemical or atomistic calculations [13,14]. It is difficult to obtain relevant experimental data on target properties and descriptors for predicting the SP of polymers. In the case of descriptors, one approach is to use the features derived for monomer molecules [13]. However, polymer properties may be fundamentally different from those of the monomer. Therefore, small organic molecules that are structurally similar to the repeating element (RE) of the polymer may be a better choice. For a given polymer, different molecules can be identified that represent REs, as shown in Figure 1 for polyethylene glycol (PEG). Both ethylene glycol and ethanol, as polar molecules forming strong hydrogen bonds, are poor choices for deriving molecular descriptors for ML models for PEG.



In this work, descriptors derived from the atomic structure and quantum chemical calculations of small molecules as potential polymer REs are evaluated for ML models of the polymer SP. Since reliable cohesive energy density and SP data for polymers are difficult to obtain in experiments and simulations, a surrogate target property is used to evaluate the descriptors, namely, the experimental heat of vaporization   Δ  H  vap     of the small molecules. For low-molecular-weight compounds,   Δ  H  vap     can usually be determined with good accuracy [15]. Subsequently, the relationship between   Δ  H  vap     of the polymer RE and the available SP of the polymers is investigated.




2. Method


2.1. Molecular Datasets


ML models for predicting   Δ  H  vap     were trained and tested on a dataset of small organic molecules including hydrocarbons, alcohols, acids, amines, ketones, aldehydes, nitriles, organic chlorides and benzene derivatives. A summary of the dataset is shown in Table 1. Figure 2 shows examples of the largest molecules used. The ML models were then applied to another dataset of organic molecules with structural similarity to REs of popular polymers to predict   Δ  H  vap     and correlate it with the polymer SP. This dataset is summarized in Table 2.



The organic molecules in both datasets cover a wide range of   Δ  H  vap     values, from 8.19 kJ/mol (methane) to 69.00 kJ/mol (heptanoic acid), and represent different chemical structures. The experimental values of   Δ  H  vap     for all molecules, measured around a normal boiling point, were collected from the literature (see Supplementary Materials).




2.2. Computational Details


All density functional theory calculations were performed as a gas phase using the Turbomole program package [16]. The Becke 3-parameter Lee–Yang–Parr (B3-LYP) [17] exchange–correlation functional was employed, along with triple zeta valence plus polarization (def2-TZVP) [18] basis sets and Grimme dispersion correction (DFT-D3) [19]. The geometry convergence criteria for DFT calculations were     10   − 6     hartree for the energy change and     10   − 3     hartree/bohr for the gradient norm. Count descriptors and topological descriptors were calculated with the PaDEL-Descriptor program [20]. Python 3 with the Scikit-learn package was used for building all machine learning models [21].




2.3. Molecular Descriptors


In the current work, four quantum chemical descriptors were obtained using DFT calculations: atomization energy (AE), quadrupole moment (QM), chemical hardness  η  and electronegativity  χ . There are different definitions for the quadrupole moment [22,23]. In the present work, the quadrupole moment was defined as the second moment of charge [23], and QM was taken as


  QM =  1 3     Q  xx   +  Q  yy   +  Q  zz      



(3)




where    Q  xx    ,    Q  yy     and    Q  zz     are diagonal elements of the second moment of the charge tensor.



Chemical hardness  η  and electronegativity  χ  are chemical reactivity descriptors that were applied in an artificial neural network for predicting solvation energies [24]. They are defined as


  η ≃  E  LUMO   −  E  HOMO    



(4)




and


  χ = −  1 2     E  LUMO   +  E  HOMO      



(5)




where    E  HOMO     and    E  LUMO     denote the energies of the highest occupied (HOMO) and lowest unoccupied molecular orbitals (LUMO), respectively.



The remaining descriptors, such as number of aromatic bonds (nAromBond) and number of heavy atoms (nHeavyAtom), were generated using the PaDEL-Descriptor [20] program based on the atomic structures of molecules. The descriptors were obtained using exactly the same method for both datasets (Table 1 and Table 2). The full specification of the descriptors is given in the Supplementary Materials.




2.4. Machine Learning Models


Two supervised machine learning models were used: multilinear regression (MLR) and kernel ridge regression (KRR) [25]. MLR is the simplest ML model using the least square method and has been widely applied in data analysis. The MLR model can be represented as a linear combination of all descriptors


   y  prediction   =  θ 1   x 1  +  θ 2   x 2  + ⋯ +  θ i   x i  +  θ 0     



(6)




where    θ i    is the coefficient of each descriptor    x i   , and    θ 0    is the intercept. The training of the MLR model involves the determination of the best      θ 1  ,  θ 2  , … ,  θ i      and    θ 0   . All hyperparameters used for MLR training used the default values implemented in the Scikit-learn package.



KRR is a combination of the kernel function and ridge regression, which is an improvement on the ordinary linear regression method [26,27]. There are several kernel functions available for different tasks, and in the present work, the polynomial kernel function was applied


  k   x ,  x ′    =     x ·  x ′  + c    d  ,  



(7)




where   x     and    x   ’        are descriptors, and hyperparameters c and d are the soft margin constant and degree of the polynomial kernel, respectively. The accuracy and performance of the model usually depend on the choice of hyperparameters. Since the dataset was relatively small, changes in parameters other than c and d had little effect on the model accuracy and were therefore set to constant values (alpha (regularization strength) = 0.001 and gamma = none). In the current work, c and d in Equation (7) were determined using the grid search function of Scikit-learn. Based on the grid search results, the value of c had little effect on the model and was finally set to 1. The models with d = 1 and d = 2 showed similar performance, and both models were retained for further study. Changes in parameters other than c and d had little effect on the model accuracy and were therefore left at the default values implemented in the Scikit-learn package.



Due to the limited size of the dataset (61 molecules in total), the leave-one-out cross-validation (LOOCV) method was used in the current work, aiming to make optimal use of each sample and to obtain a more justified model. LOOCV is an extreme case of cross-validation, in which only one sample is selected for testing in each cycle, and the other samples are used to train the model until all samples have been selected once. The final model is optimized by averaging the LOOCV results. MLR and KRR models were trained with the same dataset, and LOOCV was applied for all models. After training and LOOCV, all models were used to predict   Δ  H  vap     of polymer REs (16 molecules in Table 2), and the performance of all models was analyzed [28] using root-mean-square error (RMSE)


  RMSE =    1 n    ∑   i = 1  n       y i  −   y ^  i     2     



(8)




mean absolute error (MAE)


  MAE =  1 n    ∑   i = 1  n     y i  −   y ^  i     



(9)




and the average of relative error (ARE)


  ARE =  1 n    ∑   i = 1  n    1 −     y ^  i     y i         



(10)




where    y i    and     y ^  i    are the reference and predicted values, respectively. In addition, the coefficient of determination (R2) was used to describe the proportion of variability in a dataset that can be explained by the model [29].





3. Discussion


3.1. Selection of Molecular Descriptors


Molecular descriptors were manually selected and filtered by analyzing multicollinearity based on correlation coefficients. For this, descriptors were selected in addition to the quantum chemical descriptors that showed low multicollinearity (correlation coefficient within ±0.75) and a high degree of correlation with   Δ  H  vap    . The 15 descriptors finally selected are shown in Figure 3.



Figure 3 shows that there is only weak correlation among most descriptors, which can reduce the risk of collinearity problems [30]. Reducing redundant and irrelevant descriptors also lowers the cost of training and reduces the possibility of an overfitting problem [14,31].




3.2. Predictions of   Δ  H  vap     for Small Organic Molecules


The final MLR model for predicting   Δ  H  vap     (in kJ/mol) is given as


      Δ  H  vap   = − 23.723 AE + 0.234 QM − 3.303 nAromBond + 3.601 SsOH − 0.33 SssO + 0.477 SsCH 3 + 2.753 SsNH 2                − 0.65 SHBa + 1.301 SHdsCH − 5.580 nAcid − 0.618 SssCH 2 − 15.805 SHBd                + 15.53 nHeavyAtom + 10.667      



(11)







This model does not contain any unreasonably small or large factors for descriptors, which indicates that there are no irrelevant or redundant descriptors. Figure 4 shows that MLR performed well for the training set of small molecules and the LOOCV, according to the R2 score and other metrics. ARE for training (0.071) and LOOCV (0.105) showed the same trend as the other metrics. The MLR model showed good accuracy for predicting   Δ  H  vap     of molecules, with a maximum deviation of 12.43 kJ/mol for ethanoic acid. However, there are large disparities in the values of   Δ  H  vap       for ethanoic acid across the literature (from 23.7 (at 391.1 K) to 42 (at 305 K) kJ/mol) [32,33]. The overall deviation is within experimental accuracy. For the LOOCV, both the RMSE of 5.291 kJ/mol and MAE of 3.607 kJ/mol are within ranges indicative of good accuracy.



The performance comparison of the final KRR (d = 1) and KRR (d = 2) models is shown in Figure 5.



Compared to the MLR model, the KRR model (d = 1) did not perform better in training, but all metrics had a small lead in cross-validation, which showed slightly better stability. KRR (d = 2) performed best during training but was the worst in LOOCV, and this case was most likely due to the overfitting. Considering the size of the datasets used in the current work, high-scoring ML models trained with small datasets can often suffer from overfitting.




3.3. Predictions of   Δ  H  v a p     for Polymer Repeating Elements


All three models were applied to predict   Δ  H  vap     of molecules representing polymer REs. Table 3 and Figure 6 show that the MLR and KRR (d = 1) models provided the best accuracy. The KRR (d = 2) model failed to predict   Δ  H  vap     of polymer RE, and the much larger error of the KRR (d = 2) suggests that the model was overfitted. As mentioned, KRR algorithms do not offer advantages on small datasets.



Figure 4, Figure 5 and Figure 6 demonstrate that the MLR model showed slightly worse performance than the two KRR models during training and cross-validation, but the MAE of MLR for polymer RE was better than that of KRR (d = 1). Therefore, the MLR model and the KRR model (d = 1) in the current work have better extrapolation ability than the KRR (d = 2) models. However, the KRR algorithm with higher d could still yield better results for a larger dataset with more complex structures and chemical compositions.




3.4. Hildebrand Solubility Parameter of Polymers


Our results show that the heat of vaporization of small molecules and polymeric REs, and thus their SPs, can be predicted with good accuracy using the MLR and KRR (d = 1) models. The question now is how well the Hildebrand SP of RE correlates with the SP of the corresponding polymers. For this, Hildebrand SPs of polymers were collected from the CROW polymer database [34] with recommended values, and SPs of REs were calculated from MLR-predicted   Δ  H  vap     (see Supplementary Materials). Figure 7 shows the correlation of Hildebrand SPs between polymers and REs. The linear model yields an R2 value of 0.855.



There are several factors that can affect the accuracy of Hildebrand SP predictions for polymers. First, the experimental values of SPs for polymers can only be determined indirectly, and the accuracy of such values is essentially indeterminate. Second, the SPs are determined not only by the internal structure of the polymer chains, reflected here in the descriptors derived from the polymer RE, but also by factors such as the degree of polymerization, polydispersity, and the nature of the end groups. Such factors cannot be determined from the properties of REs alone and must be derived from experimental data. How well the two descriptors, chemical hardness and electronegativity, actually help in the prediction of solubility parameters needs to be further investigated, as intuitively, the association between the two and polymer solubility is not strong. In addition, larger chemical structures, such as oligomers with several repeating units, may provide more information about inter- and intramolecular interactions and can improve the accuracy of machine learning models. Simulations of such structures are obviously less computationally expensive than simulations of polymers, but finding suitable descriptors may still be a challenge. This is also one of the pathways for future research studies.





4. Conclusions


In this work, descriptors derived from atomic structure and quantum chemical calculations for small molecules as potential polymer repeating elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization   Δ  H  vap     of small molecules was used as a proxy property to evaluate the descriptors. The multilinear and kernel ridge regression model (with polynomial kernel degree = 1) showed good and very similar performance in training, cross-validation and the prediction of molecules representing polymer repeating elements. The kernel ridge regression model (degree = 2) was strongly overfitted, which was revealed by its poor performance in cross-validation and prediction. The Hildebrand solubility parameters derived from the multilinear regression model for the   Δ  H  vap     of polymer repeating elements showed good correlation with the solubility parameters of the corresponding polymers collected from the CROW polymer database. However, atomistic descriptors derived from polymer repeating elements only reflect the internal structure of the polymer chains. More accurate models for predicting the Hildebrand solubility parameters of polymers must take into account additional relevant factors, such as the degree of polymerization, polydispersity and the nature of the polymer end groups. Such factors cannot be determined from the properties of the repeating elements of the polymer alone and must be derived from experimental data.
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Figure 1. Polyethylene glycol (PEG) and different choices of small molecules with a structural motif of the repeating element of PEG. 
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Figure 2. The largest molecule of each type used in the training dataset: decane (C10H22), nonanoic acid (C8H17COOH), nonanol (C9H19OH), 2-heptanone (C7H14O), hexylamine (C6H13NH2), hexanal (C5H11CHO), hexanenitrile (C5H11CN), chloropentane (C5H11Cl) and butylbenzene (C6H5C4H9). 
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Figure 3. Correlation coefficients among 15 descriptors. AE: atomization energy, QM: quadrupole moment, nAromBond: number of aromatic bonds; nHeavyAtom: number of heavy atoms (all but hydrogen); SsOH: sum of (-OH) E-States; SssO: sum of (-O-) E-States; nAcid: number of acidic groups; SHdsCH: sum of (=CH-) E-States; SsNH2: sum of (-NH2) E-States; SsCH3: sum of (-CH3) E-States; SHBa: sum of E-States for hydrogen bond acceptors; SHBd: sum of E-States for hydrogen bond donors; SssCH2: sum of (-CH2) E-States (see Supplementary Materials);  η : chemical hardness;  χ : electronegativity. 






Figure 3. Correlation coefficients among 15 descriptors. AE: atomization energy, QM: quadrupole moment, nAromBond: number of aromatic bonds; nHeavyAtom: number of heavy atoms (all but hydrogen); SsOH: sum of (-OH) E-States; SssO: sum of (-O-) E-States; nAcid: number of acidic groups; SHdsCH: sum of (=CH-) E-States; SsNH2: sum of (-NH2) E-States; SsCH3: sum of (-CH3) E-States; SHBa: sum of E-States for hydrogen bond acceptors; SHBd: sum of E-States for hydrogen bond donors; SssCH2: sum of (-CH2) E-States (see Supplementary Materials);  η : chemical hardness;  χ : electronegativity.
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Figure 4. Performance of the MLR model for   Δ  H  vap     predictions of small molecules (ARE for the training set: 0.072 and for LOOCV: 0.105).   Δ  H  vap    , MAE and RMSE in kJ/mol. 
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Figure 5. Performance of the KRR models for   Δ  H  vap     predictions of small molecules: (a) d = 1 (ARE for the training set: 0.072 and for LOOCV: 0.106), (b) d = 2 (ARE for the training set: 0.026 and for LOOCV: 0.184).   Δ  H  vap    , MAE and RMSE in kJ/mol. 
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Figure 6.   Δ  H  vap     predictions of polymer RE by MLR and KRR (d = 1), ARE for MLR: 0.118 and for KRR (d = 1): 0.118.   Δ  H  vap    , MAE and RMSE in kJ/mol. 
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Figure 7. Correlation of Hildebrandt SP between polymers and REs. All values in MPa1/2. Linear fit model:    δ  polymer   = 0.602  δ  RE   + 5.915  . 
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Table 1. Summary of the molecules included in the training dataset with experimental   Δ  H  vap     (see Supplementary Materials, Tables S1 and S6).
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	Type
	Formula
	Size n
	Number of

Molecules





	hydrocarbons
	CnH2n+2
	1–10
	10



	acids
	CnH2n+1COOH
	0–8
	9



	alcohols
	CnH2n+1OH
	1–9
	9



	ketones
	CnH2nO/C6H5COCH3
	3–7
	6



	amines
	CnH2n+1NH2
	1–6
	5



	aldehydes
	Cn−1H2n−1CHO/C6H5CHO
	3–6
	5



	nitriles
	CnH2n+1CN
	1, 3–6
	5



	organic chlorides
	CnH2n+1Cl
	1, 3–6
	5



	benzene derivatives
	C6H6/C6H5OCH3/C6H5OCH2CH3/C6H5CH2OCH3

/C6H5CnH2n+1
	1, 2, 4
	7
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Table 2. Summary of polymer repeating elements (REs) included in the validation set with experimental   Δ  H  vap     (see Supplementary Materials, Tables S2 and S7).
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	Polymer
	Formula
	RE
	Formula of RE





	poly(acrylic acid)
	(C3H4O2)n
	propanoic acid
	CH3CH2COOH



	poly(allyl cyanide)
	(C4H5N)n
	butanenitrile
	CH3CH2CH2CN



	polyacrylonitrile
	(C3H3N)n
	propanenitrile
	CH3CH2CN



	polybutylene
	(C4H8)n
	butane
	CH3CH2CH2CH3



	polyethylene (HDPE)
	(C2H4)n
	ethane
	CH3CH3



	poly(ethylene glycol)
	(C2H4O)n
	dimethyl ether
	CH3OCH3



	cis-1,4-polyisoprene
	(C5H8)n
	2-methyl-2-butene
	CH3CHC(CH3)2



	polyisobutene
	(C4H8)n
	isobutane
	(CH3)2CHCH3



	polymethacrylonitrile
	(C4H5N)n
	isobutyronitrile
	(CH3)2CHCN



	poly(methyl methacrylate)
	(C5H8O2)n
	methyl butyrate
	CH3CH2CH2COOCH3



	polypropylene
	(C3H6)n
	propane
	CH3CH2CH3



	polystyrene
	(C8H8)n
	ethylbenzene
	C6H5C2H5



	poly(vinyl alcohol)
	(C2H4O)n
	ethanol
	CH3CH2OH



	poly(vinyl acetate)
	(C4H6O2)n
	ethyl acetate
	CH3COOCH2CH3



	poly(vinyl chloride)
	(C2H3Cl)n
	chloroethane
	CH3CH2Cl



	poly(vinyl ethyl ether)
	(C4H6O)n
	diethyl ether
	CH3CH2OCH2CH3
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Table 3. Performance comparison of MLR and KRR models (MAE and RMSE in kJ/mol).
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Training Set (LOOCV)

	

	
Polymer REs

	




	

	
R2

	
MAE

	
RMSE

	
ARE

	
R2

	
MAE

	
RMSE

	
ARE






	
MLR

	
0.805

	
3.607

	
5.291

	
0.105

	
0.819

	
3.533

	
4.348

	
0.118




	
  KRR   ( d = 1  )

	
0.806

	
3.597

	
5.276

	
0.106

	
0.821

	
3.540

	
4.348

	
0.118




	
  KRR   ( d = 2  )

	
0.328

	
2.520

	
15.661

	
0.184

	
0.311

	
23.472

	
36.536

	
0.820

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Repeat element §

24

22

20

18

16

14

12

R?: 0.855

12

14

16

18

20 22 24
Polymer &

26 28 30

32






media/file4.png
hydrocarbons
/\/\/\/\/
decane
acids
HO\"/\/\/\/\
o)
nonanoic acid

alcohols

HO
nonanol

nitriles

N/\/\/

hexanenitrile

benzene derivatives

butylbenzene

ketones

W

(0]
2-heptanone

amines
\/\/\/NH2

hexylamine

aldehydes
OW
hexanal
organic chlorides

CI\/\/\
chloropentane





nav.xhtml


  polymers-14-00026


  
    		
      polymers-14-00026
    


  




  





media/file2.png
/P\/{\ e N W O

Ethylene glycol Ethanol Dimethyl ether (RE)





media/file5.jpg
o7

050

025

o0

oo 03 412 01 30 a0 03 000

] W

‘shea -0077 a7 (S8 (R eaum .

o mm.m, o -
o

012000

" IIE-“- IWI“ =l

o o o 02 0o [ av oo 55 a2 65

i 'ffffff;;

v ps

g





media/file3.jpg
hydrocarbons
NN

decane

acids

Ho YSSN
o
nonanoic acid

alcohols

HO'
nonanol

nitriles

N%/\/\/

hexanenitrile

benzene derivatives

butylbenzene

ketones

W

2-heptanone

amines

NN A

hexylamine

aldehydes
O
hexanal
organic chiorides

I
chloropentane





media/file1.jpg
/l/\/\}\ S Ll SN

Ethylene glycol Ethanol  Dimethyl ether (RE)





media/file7.jpg
Predicted AH,,,
3 8 8

o

M Training
ALOOCV

R%0891  R%:0.805
MAE: 2.630 MAE: 3.607
RMSE: 3.927 RMSE: 5.291

20

30 40 50 60 70
Experimental AH,,,





media/file10.png
Predicted AH,,,

60

50

40

30

20

"~ | Training
A LOOCV
L 4
| [ ] 1
L A
n
. A
- : l
i . R?: 0.891
[ MAE: 2.640
A RMSE: 3.928
L ] 3
N R<: 0.806
i MAE: 3.597
RMSE: 5.276
1 1 1 L L L L
0 10 20 30 40 50 60 70

Experimental AH,,,

(a)

Predicted AH,,,

~ (Il Training -
A LOOCV " .

" R?: 0.955
o MAE: 1.201
A A RMSE: 2.520
R?:0.328
MAE: 6.492
RMSE: 15.661

20 3 40 50 60 70
Experimental AHy,,

(b)






media/file12.png
Predicted AH,,,

60

50

40

30

20

10

B VLR
A KRR (d=1)
a -
an
a */ »
&
n
R?%:0.819 RZ: 0.821
MAE: 3.533 MAE: 3.540
RMSE: 4.348 RMSE: 4.348
1 1 1 | |
10 20 30 40 50

Experimental AH,,,

60





media/file9.jpg
W
/& Loocy

z Rose
. waE 2800
: Ruse 2628

% R0s06
B aE 3597
Ruse 5278

Predicted AH,,

7| Tnng]
o] 1006V .

u L]
| Rtosss
]

o N Ruse 2520
P R0z

ol & e 8352

R 1561

Experimental /.,

(@)

S e ® w % w6
Experimentl 4/,

(b)





media/file0.png





media/file14.png
Repeat element §

24 |

22 -

18

| | 1 |

R?: 0.855

1 1

14

16

18 20

22 24 26 28

Polymer &

30 32






media/file8.png
Predicted AH,,,

70

60

50

40

30

20

10

M Training
A LOOCV , @
2
ol |
A n
A
| |
- nl
|
n
A
2 2 2
A R<:0.891 R<:0.805
MAE: 2.630 MAE: 3.607
RMSE: 3.927 RMSE: 5.291
1 1 1 1 1 1 1
10 20 30 40 50 60 70

Experimental AH,,,






media/file11.jpg
Predicted AH,,,

60

50

40

30

20

10

W MLR

L |A KRR (d=1)

R%0819  R%0.821
MAE: 3.533 MAE: 3.540
RMSE: 4.348 RMSE: 4.348

0 10

20 30 40 50 60
Experimental AH,,,





media/file6.png
QM

nAromBond - 0.18
0.75
nHeavyAtom
SsOH - 0.11 -0.09 0.13 0.50
SssO - 0.12 -0.11 0.24 -0.15
-0.25
nAcid -0.046 -0.059 -0.17 0.15 -0.095

SHdsCH -0.035 -0.041 0.16 -0.14 -0.04 -0.00

SsNH2 --0.087 0.13 -0.12 -0.16 -0.19 -0.068 -0.12 -0.093

-0.25

-0.11 -0.22 -0.08

ﬂ-o oas 0.074 -0. 062. —0.50
. XN -0.17 TN -0.14 0.17 0.68

-0.75
.. 096 -0.2 -0.052 »o.zz 0.02 H -0.12-0.0092

X - 02 013 -0.026 -0.11 -0.11 -0.2 0.22 0.029

s 5 e

SHBa -0.077 -0.071 -0.16 0.2

SHBd --0.057 0.083

o D
n --019 024

-0.009. -0.12 0.26 .0.031 0.26
-0.14 0.045 . -0.21 0.26

ISEE ]

e 1

L L
W T (o . SR ~ B
< & S S F§FEFEEF S
g v & 7 J 5 5 3

g & 9 4

§ 3
§ &
§ F





