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Abstract: Geopolymer concrete (GC) has been gaining attention in research and engineering circles;
however, it is a brittle material with poor tensile performance and crack resistance. To address
these problems, we introduced fibers into GC. In this study, axial compression and scanning electron
microscope (SEM) tests were carried out on polyvinyl alcohol (PVA) short fiber reinforced low-calcium
fly ash-slag-based geopolymer concrete (PFRGC). The ratio of PVA short fibers and low-calcium fly
ash on the compression behavior of fiber reinforced geopolymer concrete (FRGC) were investigated
and discussed. The test results show that PVA fibers play a bridging role in the cracks of the
specimen and bear the load together with the matrix, so the addition of PVA fibers delayed the crack
propagation of GC under axial compression. However, with the increase of low-calcium fly ash/PVA
fibers, the number of unreacted fly ash particles in PFRGCs increases. Too many unreacted fly ash
particles make GC more prone to micro-cracks during loading, adversely affecting compressive
properties. Therefore, the axial compressive strength, elastic modulus, and Poisson’s ratio of GC
decrease with the increasing low-calcium fly ash/PVA fibers.

Keywords: polyvinyl alcohol (PVA) fiber; low-calcium fly ash; slag; scanning electron microscope
(SEM); fiber reinforced geopolymer concrete (FRGC)

1. Introduction

Global warming and climate change are mainly caused by carbon dioxide (CO2)
emissions, which have become the focus of international attention [1,2]. Construction
industry emissions are one of the top three sources of greenhouse gases in the world [3,4],
which emits 36% of greenhouse gases [5]. In particular, construction activities in developing
countries are booming, and their greenhouse gas emissions account for more than half of
the global construction industry emissions [6]. According to the report, the production
of 1 kg of ordinary Portland cement produces 0.66–0.82 kg of carbon emission [7]. The
emission of CO2 in the manufacturing process of ordinary Portland cement is mainly
due to the calcination of calcium carbonate (CaCO3). Compared with ordinary Portland
cement, the production of geopolymer can not only fully utilize industrial solid waste as
raw materials, but also directly react at room temperature, so the use of geopolymer can
reduce 73% of greenhouse-gas emission and 43% of energy consumption [8]. Many scholars
try to improve the environment by studying geopolymer concrete (GC) instead of ordinary
concrete [9–11].

Using GC instead of cement concrete can reduce the problems caused by limestone
mining, ground granulated blast furnace slag and fly ash [12]. GC materials can be natural
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sources, such as metakaolin, or industrial by-products, such as fly ash, GGBS, rice husk ash,
and high calcium wood ash [13–15]. The synthetic cost of GC is lower than that of ordinary
Portland cement concrete (PCC), and its economic index is also lower. According to the
research report conducted by Singh [16], the production cost of GC is only about 75% of that
of PCC. At high temperatures, the strength loss of PCC is severe, while the residual strength
retention rate of fly ash-based GC is higher [17], and the splitting tensile property [18] and
spalling resistance are superior to PCC. The chloride ion erosion resistance of GC with
well-designed composition is equal to or better than that of PCC. The high alkalinity of the
matrix is beneficial to the corrosion resistance of steel bars in concrete [19,20]. However,
the properties of GC prepared from different materials are significantly different.

Many studies on GC show that GC has the advantages of acid resistance, low creep,
and high compressive strength, but its weakness lies in its brittleness [21,22]. Sarker
et al. [23] compared the brittleness of GC and PPC, and found that GC has more suf-
focating fracture surfaces than PPC. Pan et al. [24] reported that the change of binder
material morphology affected the microstructure of the matrix, resulting in the reduction
of fracture load. Must reduce this brittleness to achieve high-performance and sustainable
building materials.

To improve the ductility and toughness of GC and limit crack growth, many scholars
have introduced fibers into GC [25–27]. High modulus fibers improve the mechanical
properties, while low modulus fibers improve the behavior after cracking. The addition
of fibers improves the mechanical properties, structural integrity, ductility, and impact
strength of concrete [28–30]. PVA fibers have a high elastic modulus of 29–42 GPa and
tensile strength of 0.8–2.5 GPa. PVA fiber has been widely used in the industry. PVA fiber
has practical applications, such as in clothing and porous materials [31,32]. In addition,
due to hydroxyl groups in the molecular chains, PVA fibers have a strong chemical binding
with cementing adhesive. Almashhadani et al. [33] confirmed the strong bond formation
between PVA and geopolymer. Zhang et al. [34] proved that PVA fibers positively effect
geopolymers under freeze–thaw conditions. Li et al. [35] indicated that the flexural strength,
ductility, and toughness of geopolymer concrete containing PVA fibers improved. Moreover,
PVA fibers reinforced geopolymer concrete has higher impact resistance [36,37]. Although
PVA-fiber reinforced geopolymer concrete has been studied, the research on PVA-fiber
reinforced geopolymer concrete with different content of aggregate and different amounts
of PVA short fibers is limited.

This study used PVA short fibers and low-calcium fly ash to fabricate the FRGC. For
convenience, PVA short fibers and low-calcium fly ash were called PVA fibers and fly ash,
respectively. Axial compression test and scanning electron microscope (SEM) test were
used to study the axial compression performance of PVA fibers reinforced fly ash-slag-
based geopolymer concrete (PFRGC) specimens. A total of 30 columns were designed
according to the two variables (mass ratio of fly ash and volume ratio of PVA fiber), of
which three were identical. The effect of the ratio of fly ash and PVA fibers on the failure
mode, compressive strength, the stress–strain behavior, elastic modulus, and Poisson’s
ratio were investigated and discussed.

2. Experiment Program
2.1. Materials

The PFRGCs are composed of slag, fly ash, sodium hydroxide, sodium silicate powder,
river sand, PVA fibers, and water, as shown in Figure 1. The primary raw materials were
slag and fly ash to prepare the geopolymer binder. Slag is a highly active raw material,
which can significantly improve the early strength and compactness of GC when mixed
into silicon-rich aluminum raw materials such as fly ash or volcanic ash. Because of the
high content of Ca in slag, a certain amount of calcium aluminosilicate gel (C-(A)-S-H) can
be formed when it is mixed into the silicon-rich aluminum raw material system. When the
slag content is low, it can coexist with the main alkali-activated product aluminosilicate gel
(N-A-S-(H)). However, when the content of Ca is increased to a certain extent (for example,
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the Ca/Si ratio of cementitious materials is above 0.2 [38]), the product is mainly C-(A)-S-H,
and N-A-S-(H) is difficult to coexist. In addition, from the composition of cementitious
materials, the higher the Si/Al ratio, the higher the strength [39]. Different sources will
also lead to the difference in GC performance for the same kind of raw materials, which is
also a difficult point in the standardization of GC mix design. The slag was blast-furnace
slag powder with a specific surface area of 430 m2/kg produced by Henan Borun Casting
Materials Co., Ltd., which belongs to Grade S95 slag. The fly ash produced by Hebei
Huihao Environmental Protection Technology Co., Ltd. has a density of 2.4 g/cm3 and
a specific surface area of 460 m2/kg. The detailed chemical composition of the fly ash is
shown in Table 1. The sodium hydroxide (NaOH) with a density of 2130 kg/m3 used in
this experiment is industrial grade flake NaOH produced by the Junzheng Group. The
instant sodium silicate powder produced by Gongyi Changlong Paohua Alkali Factory
has a fineness modulus of 2.84, a SiO2 volume ratio of 58.4%, and a Na2O volume ratio
of 21.2%. The water used in the preparation of the alkali activator is distilled water. The
fine aggregate used in this study is river sand, with a grain size of 0.11–0.25 mm, a density
of 2.61 g/cm3 and a water content of 0.16%. Granite gravel is used as coarse aggregate,
with a particle size of 4–10 mm, a density of 2.83 g/cm3 and a water content of 0.22%. The
grain size distribution of fine aggregate and coarse aggregate according to the standard of
Sand for Construction (GB/T 14684–2011) [40] and the Specification for Aggregates from
Natural Sources for Concrete (BS 882:1992) [41]. The PVA fibers used in the experiment
are the high-strength and high-modulus PVA short fibers produced by Kuraray Co., Ltd.,
(Tokyo, Japan), with a diameter of 40 µm, a length of 12 mm, a tensile strength of 1800 MPa,
a dry elongation of 17%, and an alkalinity resistance of 99%.

Table 1. Chemical composition of low-calcium fly ash.

Composition SiO2 Al2O3 Fe2O3 CaO MgO Na2O SO3 K2O

Proportion (%) 50.8 28.1 6.2 3.7 1.2 1.2 0.8 0.6
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Figure 1. Material composition of PFRGCs.

2.2. Specimens and Mix Proportions

Four groups of axial compression test specimens and the corresponding 10 mixed
proportions are shown in Table 2, based on the properties of materials and some try–tests.
The specimens are numbered according to the fly ash mass ratio and PVA fibers volume
ratios as experimental research parameters. For convenience, in this paper, the fly ash
mass ratio is indicated by mt.%, while the volume ratio of PVA fibers is indicated by
vol.%. For example, F40-P0.6 represents a sample with 40 mt.% fly ash and 0.6 vol.% PVA
fiber. The static axial compression specimen, as shown in Figure 1 is with a diameter of
100 mm and a height of 200 mm according to ASTM C469 [42]. The process of preparing
the specimen is as follows: (1) the weighed dry granite gravel, river sand, fly ash and slag
were poured into the mixing pot, mixed for 8 min; (2) put PVA fibers into the mixing pot
and added activator solution and water. Mixing was continued for 12 min to ensure the
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uniform dispersion of fibers. Note that when adding the fibers, kept the machine mixed.
(3) Poured the concrete into the 100 × 200 mm molds, gently vibrated them several times,
and then removed bubbles in the cement mortar vibration table; (4) demold after curing
24 h, and then covered with plastic wrap to continue curing to the target age in the room
environment.

Table 2. Mixing proportions.

Specimen
Mix Proportions by Weight (kg/m3) Ratio (%)

Coarse
Aggregate

Fine Ag-
gregate Slag Fly Ash Na2SiO3 NaOH Water PVA

Fibers
Fly Ash
(MR, %)

PVA Fibers
(VR, %)

F40-P0
1294 554 220.80 147.20 131 53 43.20

0
40

0
F40-P0.6 14.66 0.6
F40-P1.2 29.32 1.2

F60-P0
1294 554 147.20 220.80 131 53 43.20

0
60

0

F60-P0.6 14.66 0.6

F60-P1.2 29.32 1.2

F80-P0
1294 554 73.60 294.40 131 53 43.20

0
80

0

F80-P0.6 14.66 0.6

F80-P1.2 29.32 1.2

F100-P0 1294 554 - 368.00 131 53 43.20 0 100 0

Notation: MR—Mass ratio; VR—Volume ratio.

2.3. Test Setup
2.3.1. Axial Compression Test

Axial compression tests were carried out to verify the effect of ratios of PVA fibers and
fly ash on the compression performance of the PFRGCs. The axial compression test setup is
shown in Figure 2. Displacement loading mode with a rate of 0.18 mm/min is adopted
on the axial compression specimens by a MATEST-5000 kN voltage servo testing machine
referred to the Standard Test Methods for Fiber Reinforced Concrete (CECS 13–2009) [43]
and Standard Test Mothed for Compressive Strength of Cylindrical Concrete Specimens
(ASTM C39) [44]. The specimens were levelled with high-strength gypsum to ensure the
axial compression load [45–47]. Axial strains and hoop strains of the middle height of
the samples, as shown in Figure 2, were collected at a frequency of 1 Hz by the TDS-530
static acquisition instrument and measured axial deformations with two linear variable
differential transformers (LVDTs) to ensure effective axial deformation measurements with
the failures of strain gauges during the loading [48–50].
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2.3.2. SEM Test

To analyze the microscopic mechanism of the effect of PVA fibers and fly ash on the
axial compression performance of the PFRGCs, Hitachi S-3400N were used to observe
and analyze the microstructure of the damaged samples, as shown in Figure 3, as shown
in Figure 3. The Hitachi S-3400N is a field emission-scanning electron microscope (FE-
SEM), which can carry out high-resolution imaging and specimen morphology research
from nanometer to millimeter. Specimens of the SEM test were chosen and cut from the
specimens after axial tests. The specimens of SEM tests were kept dry, and gold iron was
injected by an SBC-12 iron sputtering instrument before observation in the SEM cavity.
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3. Results and Discussions
3.1. Failure Modes

Failure modes of the PFRGCs with different ratios of PVA fibers and fly ash are
shown in Figure 4. The failure process of specimens without PVA fibers is divided into
the following stages: (1) micro-deformation stage, micro-deformation occurred in the axial
and hoop directions. Tiny micro-cracks appeared at the weak points in the concrete matrix.
(2) Cracks propagation stage, with the increasing load, the micro-cracks became longer
and wider, and the concrete on the surface began to collapse and peel off. (3) Specimen
failure stage, the micro-cracks in the concrete grew and connected, and the micro-cracks
grew into large cracks that run through the whole specimen, resulting in the overall failure
of the specimen. Finally, the specimens were crushed into 2~4 pieces (Figure 4a,d,g,j),
showing typical brittle failure of ordinary concrete. Unlike GCs, with adding PVA fibers,
visible protrusions can be seen in the middle of the PFRGCs, and the specimens showed a
multi-cracking characteristic and ductile behavior (Figure 4b,c,e,f,h,i). The loading time
of specimens with PVA fibers is longer, and the development speed of surface cracks
of specimens with PVA fibers is slower than that of GC. With the increase of axial load,
the number of cracks increased, and the fibers in the cracks were broken or pulled out.
Although the surface of the specimen is flabby, there is no peeling phenomenon, and the
integrity is good. The addition of PVA fibers changed the original brittle failure mode
of GCs.

It can be seen from Figure 4 that with the same fly ash mass ratio (PVA volume ratio),
the number of porosities in the specimens increases with the increasing PVA fibers volume
ratio (FA mass ratio). The main reasons may be as follows: (1) fluidity of cementitious
material and uniformity of internal materials were deteriorating with the exceeding PVA
fibers volume ratio, which decreased the axial compressive strength of the specimens; (2) the
geopolymer reaction is decreased with an excessive PVA fibers ratio as the hydrophilic
PVA fibers absorbed a large amount of free water during the geopolymer reaction process,
which led to more porosities and cracks and lower compressive strength of the specimens.
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3.2. Stress–Strain Curves

Figure 5 shows the typical axial stress–hoop strain curves and axial stress–axial strain
curves of PFRGCs under different mixed proportions. The axial strains in Figure 5 were
based on the average readings of two LVDTs. The specimens experienced considerable
deformation in the later loading stage, which made the axial deformation monitored by
SGs unreliable. For convenience, axial stress–hoop strain curves and axial stress–axial
strain curves are called stress–strain curves in this paper. The axial stress–axial strain
curves were terminated at around 20% of the peak load, and axial stress–hoop strain curves
terminated at the peak load. As shown in Figure 5, the axial stress–axial strain of PFRGCs
can be divided into four stages: (1) Linear elastic state. From the beginning of loading to
about 30% of the peak stress, the micro-cracks of the specimens hardly initiate. (2) Strain
softening state. The micro-cracks of the specimens begin to expand and increase, which
leads to a stiffness decrease of the PFRGCs with the increasing loading. (3) Rapid decrease
stage. The compressive strength of the PFRGCs rapidly decreases as the cracks expand
more quickly and the crack width increase. (4) Convergence state. In this stage, due to
the bridging effect of the fiber, the PFRGCs can still bear a certain compression load with
large deformation. According to the stress–strain curves of the test specimens, test results
including compressive strength, ultimate strain, elasticity modulus and Poisson’s ratios are
shown in Table 3.
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Figure 5. Effect of fly ash mass ratio on stress–strain relationship of PFRGCs. (a) 0 vol.% PVA fibers;
(b) 0.6 vol.% PVA fibers; (c) 1.2 vol.% PVA fibers.

3.3. Compressive Strength

The effects of ratios of PVA fibers/fly ash on the axial compressive strength of PFRGCs
with the same ratios of fly ash/PVA fibers are shown in Figure 6. The effect of PVA fibers
volume ratio on the axial compressive strength of PFRGCs is shown in Figure 6a. It can
be seen in Figure 6a, with the same fly ash mass ratio, the compressive strength of the
specimens decreases with the increasing PVA fibers volume ratio. The compressive strength
of PFRGCs with 0.6 vol.% PVA fibers is 16.5–19.8% lower than that of PFRGCs without
PVA fibers (Figure 6a). With the same PVA fibers volume ratio, the influence of different fly
ash mass ratios on the compressive strength of PFRGCs is shown in Figure 6b. Under the
condition of three volume ratio of PVA fibers (0 vol.%, 0.6 vol.%, 1.2 vol.%), the compressive
strength of PFRGCs decreases with the increasing fly ash. When the volume ratio of PVA
fibers is 0 vol.% and 0.6 vol.%, the compressive strength of the specimens decreases nearly
linearly with the increasing fly ash.

The influence of fly ash mass ratio on the strength of the PFRGCs is as follows: (1) the
mass ratio of slag decreases with the increasing fly ash mass ratio, which increases the
setting time of the concrete is prolonged; (2) smooth spherical fly ash will be dissolved
by alkali solution to form C-S-H and C (N)-A-S-H. The alkali content of the solution in
this test is fixed, and the number of intact fly ash particles in the concrete increases with
the increasing fly ash. More crack initiation between the interface of the matrix and the
undissolved fly ash particles led to the decreasing compression strength of the specimens.
The influence of the PVA fiber volume ratio on the strength of PFRGCs was described above.
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Table 3. Test results of specimens under quasi-static compression loadings.

Specimens
Compressive Strength

(MPa) Ultimate Strain Elasticity Modulus
(GPa) Poisson’s Ratios

Test Average Test Average Test Average Test Average

F40-P0
1 60.23

59.49
0.0047

0.0046
16.88

17.29
0.292

0.2852 58.25 0.0042 17.47 0.297
3 60.00 0.0048 17.53 0.265

F40-P0.6
1 49.05

48.18
0.0062

0.0056
13.07

13.09
0.320

0.3192 47.52 0.0058 13.11 0.313
3 47.96 0.0046 13.08 0.324

F40-P1.2
1 30.55

30.22
0.0038

0.0039
12.61

12.57
0.180

0.1892 29.88 0.0040 11.82 0.179
3 25.52 0.0038 13.29 0.208

F60-P0
1 45.99

46.86
0.0047

0.0047
13.78

13.37
0.373

0.3462 47.52 0.0046 13.21 0.327
3 47.08 0.0047 13.11 0.338

F60-P0.6
1 40.07

39.15
0.0050

0.0058
10.71

10.62
0.343

0.3522 38.76 0.0070 10.37 0.359
3 38.61 0.0051 10.79 0.355

F60-P1.2
1 7.38

7.61
0.0042

0.0043
7.78

7.83
0.307

0.2852 7.72 0.0045 7.89 0.264
3 7.72 0.0040 7.82 0.283

F80-P0
1 32.19

32.70
0.0047

0.0045
13.17

13.11
0.227

0.2262 33.06 0.0044 13.26 0.212
3 32.85 0.0041 12.90 0.238

F80-P0.6
1 26.49

26.42
0.0058

0.0057
10.63

9.82
0.221

0.2052 24.30 0.0058 8.85 0.196
3 28.47 0.0054 9.97 0.198

F80-P1.2
1 3.35

3.46
0.0036

0.0039
1.87

1.84
0.366

0.3552 3.69 0.0040 1.81 0.340
3 3.35 0.0040 1.84 0.358

F100-P0
1 9.19

8.90
0.0035

0.0038
8.70

8.42
0.191

0.1682 9.19 0.0037 8.14 0.145
3 8.32 0.0041 8.42 0.168
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3.4. Elastic Modulus and Poisson’s Ratio

The elastic modulus and Poisson’s ratio can be extracted from the stress–strain curves
according to the ATSM standard. The equations are as follows:

E =
σ2 − σ1

ε2 − 0.00005
(1)

µ =
εc2 − εc1

ε2 − 0.00005
(2)

where E is elastic modulus, σ1 is the stress corresponding to the axial strain of 0.00005, σ2
is 40% of the peak stress, ε2 is the axial strain corresponding to σ2, µ is Poisson’s ratio, εc2,
εc1 is the hoop strain corresponding to σ2 and σ1, respectively.

Figure 7 shows the elastic modulus of PFRGCs. It can be observed that the elastic
modulus of PFRGCs decreases with the increasing PVA fibers at a given mass ratio of fly
ash. Among them, PFRGCs with 40 mt.% fly ash and 0 vol.% PVA fiber shows the highest
elastic modulus of 17.3 GPa. The influence of PVA fibers on elastic modulus is mainly
manifested in two aspects: (1) the incorporation of PVA fibers reduces the strength of
PFRGCs, and the specific reasons have been analyzed above; (2) fibers inhibit the initiation
and development of cracks, and thus improve the ductility of PFRGCs. When the fly ash
mass ratio and PVA fibers volume ratios are 80% and 1.2%, respectively, the PFRGC has the
lowest elastic modulus of 1.84 Gpa. As shown in Figure 7, the elastic modulus of PFRGCs
decreases with the increasing fly ash at a given volume ratio of PVA fibers. The reason is
that the increase of fly ash reduces the strength of PFRGCs, and the specific reasons have
been analyzed above. The elastic modulus of PFRGCs with 80 mt.% fly ash is 51.4% lower
than that of PFRGCs with 40 mt.% fly ash content.
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Figure 7. Elastic modulus of PFRGCs with different ratios of PVA fibers/fly ash.

Figure 8 depicts Poisson’s ratio of PFRGCs under different variables. When the mass
ratio of fly ash is 40% and 60%, the Poisson’s ratio of PFRGCs first increases and then
decreases with the increasing PVA fibers. Many unreacted fly ash particles were doped in
PFRGCs when the mass ratio of fly ash was 80%, which leads to the weak regularity of
Poisson’s ratio of PFRGCs with the increasing PVA fibers. It can be observed from Figure 8
that the Poisson’s ratio of PFRGCs increases first and then decreases with the increasing fly
ash when the volume ratio of PVA fibers is constant, except that the volume ratio of PVA
fibers is 1.2%.
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3.5. Microstructural Analysis Results

Figure 9 reveals the SEM photos of slag and fly ash used in this test. Slag powder is
irregular flaky, or blocky (Figure 9a) while fly ash is spherical (Figure 9b). Calcium oxide
accounts for a large proportion of the chemical composition of slag, so PFRGCs prepared
from blast furnace slag as the primary raw material has high early strength. Because of
the spherical characteristics, fly ash can improve the fluidity of concrete materials when
preparing concrete, but the spherical structure has a negative impact on concrete materials.
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Figure 9. SEM photos of fly ash and slag. (a) Slag; (b) fly ash.

The microscopic images of GCs with different fly ash volume ratios (40 vol.%, 60 vol.%
and 80 vol.%) under SEM are shown in Figure 10. It can be seen from Figure 10 that the
matrix of GCs is relatively dense. Comparing the three graphs in Figure 10, the remaining
spherical fly ash particles in GC increase with the increasing fly ash. There are two main
failure modes of GCs: (1) the fly ash particles are well combined with the matrix, and the
fly ash particles and the matrix are destroyed together; (2) the fly ash particles are poorly
bonded with the matrix, and cracks propagate along with the interface between fly ash
particles and the matrix.

Figure 11 shows the SEM photos of PFRGCs with a different volume ratio of PVA
fibers under the same ratio fly ash. Comparing Figure 11a,b,d, it can be known that the
number of unreacted fly ash particles in PFRGCs increases with the increase of PVA fibers.
This phenomenon shows that the increase of PVA fibers content affects the alkali-activated
reaction. Although PVA fibers have been pulled out from the matrix of PFRGCs, the surface
of PVA fibers is still covered with a layer of cementitious material (Figure 11c). Comparing
the PVA fiber micrographs in Figure 11c,e, it can be found that the PVA fibers of F40-P0.6
are better combined with the matrix than of F40-P1.2. Figure 11f is a microscopic image of
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PVA fibers after breaking. It can be seen that the fracture of PVA fibers is in the shape of
sheet tear, which indicates that the PVA fibers bridging the surface of the cracks in PFRGCs
consume energy when it is pulled out and broken.
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4. Conclusions

This paper conducted quasi-static axial compression and SEM tests on PFRGCs. The
influence ratio of PVA fibers (0 vol.%, 0.6 vol.%, 1.2 vol.%) and low-calcium fly ash (40 mt.%,
60 mt.%, 80 mt.%, 100 mt.%) on compressive resistance of PFRGCs were investigated. Based
on the test results and discussions, the main conclusions are as follows:

1. PFRGCs without PVA fibers (GCs) show typical brittle failure. The addition of PVA
fibers improved the ductility of GCs. Different from the failure mode of GCs, visible
protrusions can be seen in the middle of the PFRGCs, and the specimens showed a
multi-cracking characteristic and ductile behavior.

2. The compressive strength of the specimens decreases with increasing PVA fibers at
a given mass ratio of fly ash. With the increase of low-calcium fly ash/PVA fibers,
the number of unreacted fly ash particles in PFRGCs increases. Too many unreacted
fly ash particles make GC more prone to micro-cracks during loading, adversely
affecting compressive properties. The compressive strength of PFRGCs with 0.6 vol.%
PVA fibers is 16.5–19.8% lower than that of PFRGCs without PVA fibers. Under
the condition of three volume ratio of PVA fibers (0 vol.%, 0.6 vol.%, 1.2 vol.%), the
compressive strength of PFRGCs decreases with the increasing fly ash.

3. Under the given volume ratio of PVA fibers, the increase of fly ash leads to a decrease
in compressive strength and an increase in ductility. The compressive strength of
PFRGCs with 40 mt.% fly ash and without PVA fibers is the highest, while that of
the PFRGCs with 80 vol.% fly ash and 1.2 mt.% PVA fibers are the weakest. With an
increase in the PVA fibers at a given mass ratio of fly ash, the compressive strength of
specimens decreases gradually, but the final strain has no obvious rule.

4. The elastic modulus of PFRGCs decreases with the increasing PVA fibers at a given
mass ratio of fly ash. With the increase of low-calcium fly ash/PVA fibers, the number
of unreacted fly ash particles in PFRGCs increases. PFRGCs with 40 mt.% fly ash and
0 vol.% PVA fibers have the highest elastic modulus of 17.3 GPa.

5. When the mass ratio of fly ash is 40% and 60%, the Poisson’s ratio of PFRGCs first
increases and then decreases with the increasing PVA fibers. The Poisson’s ratio
of PFRGCs increases first and then decreases with the increasing fly ash when the
volume ratio of PVA fibers is constant, except that the volume ratio of PVA fibers
is 1.2%.

In summary, the axial compression performance of PFRGCs was studied, which made
a step forward in better understanding the influence of PVA fibers and fly ash on various
physical and mechanical properties of GC materials. These properties are significant to
ensure the durability and safety of structures designed with PFRGCs. However, considering
the limitations of this study, further studies are needed to ensure the reliable application of
PFRGCs in structural applications.
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