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Abstract: This paper is focused on mode I delimitation of a unidirectional glass fibre reinforced
polymer (GFRP) composite. The aim is to propose an accurate and simple characterisation of three
cohesive zone models (CZM)—bilinear, trilinear, and potential—from the measurement of the load-
displacement curve during a double cantilever beam experimental test. For that, a framework based
on the equivalent linear elastic fracture mechanics (LEFM) R-curve is here proposed, which has
never before been developed for a bilinear and a potential CZM. Besides, in order to validate this
strategy, an optimisation algorithm for solving an inverse problem is also implemented. It is shown
that the parameters’ identification using the equivalent LEFM R-curve enables the same accuracy
but reduces 72% the numerical efforts respect to a “blind fitting” (i.e., the optimisation algorithm).
Therefore, even if optimisation techniques become popular at present due to their easy numerical
implementation, strategies founded on physical models are still better solutions especially when
evaluating the objective function is expensive as in mechanical problems.

Keywords: delamination; cohesive zone models; optimisation; linear elastic fracture mechanics

1. Introduction

The use of structural composites in high performance applications, such as those
present in the automotive or aerospace industry, has been steadily growing in during the
last 50 years [1]. Despite the progress made on areas related to design, manufacturing and
analysis of composites, one of the challenges that still remains is the accurate prediction
of the progressive failure of the composite due to delamination [2]. These failure mech-
anisms are intrinsically related to the hierarchical nature of the laminates. Micro (ply),
meso (laminate), and macro (structural) length scales should be considered to correctly
predict the mechanical response of the composite. In this context, multi-scale modelling
approaches that inherently incorporate the different scales present in composites, are a nat-
ural and frequently used alternative to study their mechanical response [3,4]. Furthermore,
the increase in the use of numerical techniques, such as multi-scale modelling strategies,
observed in the recent years, has led to a boost on the use of virtual testing techniques in
the design and optimisation process of new laminate materials [5,6]. Additional benefits of
virtual testing techniques are the cost and time reductions in the design process compared
to experimental testing [6].

Failure mechanisms in composite laminates can be categorised as intraply (e.g., fibre
fracture or matrix cracking) and interply (i.e., delamination) and, of course, complex
interactions between them also can take place [7,8]. Moreover, it has been shown that the
type of failure that is observed depends on the specimen size [9]. Delamination, defined
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as the crack propagation between adjacent plies, is one of the most relevant damage
scenarios because it drastically reduces the mechanical strength and may lead to structural
collapse [10–13]. The delamination fracture toughness is well established through the strain
energy release rate Gi, according respectively to the three fracture modes (GI , GI I and GI I I)
and their combinations. The experimental procedures used to determine the delamination
fracture toughness for each fracture mode are established in several standards [14–17].
Here, details on the specimens dimensions, loading protocol and data reduction are clearly
outlined. The delamination occurs when the energy dissipated during fracture per unit of
newly created surface is greater or equal than a critical strain energy release rate Gic (i.e.,
the resistance to crack growth), which can be viewed as a material property. Taking into
account a general body with constant thickness B and an initial crack length a0, under a
loading P (N)ormal to the crack plane, the linear elastic fracture mechanics (LEFM) theory
enables evaluating the fracture energy as follows [18]:

G =
P2

2B
dC(a)

da
(1)

where C(a) = δ/P is the compliance or displacement δ to applied load P ratio.
The double cantilever beam (DCB) test shown in Figure 1a and used in this work is the

most widely used procedure for the measurement of mode I delamination fracture tough-
ness. For the load-displacement curve (see Figure 1b) and considering a rigid foundation
at the crack ending, the compliance can be given by the beam theory as C(a0) = 2a3

0/3EI,
where I = Bh3/12 and E is the Young’s module. A corrected compliance taking into
account an elastic foundation is presented in [19]. Finally, the relation linking P and δ
during the propagation phase can be obtained from Equation (1). Further details can be
found in [20].
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Figure 1. Double cantilever beam test.

The R-curve shown in Figure 1c illustrates the variation of the material crack resistance
with respect to the crack propagation length ∆a = a − a0. Ideal brittle materials present
a flat R-curve, as shown by the blue line in Figure 1c. In this case, and when the crack
propagates, the energy release rate GI remains constant and equal to GIc (for the sake
of simplicity subindex (.)I is omitted in the following). This behaviour is also observed
when the crack propagation process of a material is studied by means of the LEFM method.
Quasibrittle materials have a rising R-curve with an initiation phase where the resistance
to the crack growth increases. Then the critical strain energy release rate reaches a steady-
state plateau for a critical crack extension denoted as ∆ac, i.e., crack propagates in a
self-similar steady way [21]. Rising R-curves require nonlinear fracture theories to describe
the existence of a fracture process zone (FPZ) of length l f pz ahead of the crack tip (see
Figure 2). The FPZ is where inelastic crack propagation mechanisms, such as fibre bridging
and microcracks, take place. In fact, materials presenting large scale bridging have R-curves
strongly dependent on the specimen’s geometry and therefore their constitutive damage
model cannot be regarded as a material property [22,23]. More recently, the transition from
1D standard tests to 2D delamination scenarios has shown higher value of the fracture
toughness for plates—due to stretching mechanisms affecting their stiffness—compared to
the DCB specimens [24]. For all these quasibrittle behaviours, the R-curves need complex
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experimental setups for measuring the crack length, e.g., traveling microscope, crack gauge
or video cameras. Another less expensive option is to use the equivalent LEFM [25], where
the increase of the compliance can be related to the propagation of an equivalent LEFM
crack. For any point of the experimental load-displacement curve in Figure 1b, a secant
compliance is associated with each load; the corresponding equivalent crack extension
is determined by solving the equation for C(a) and the crack growth resistance is then
determined from Equation (1) [26].

Fracture process zone

Figure 2. Fracture process zone and equivalent LEFM: l f pz is defined as the distance between the tip
of the stress-free crack as f and the point along the potential crack path where damage begins (schema
inspired from [26]).

From a numerical point of view, there are a few techniques that can be used within a
finite element (FE) method framework to address the delamination process in composites.
Among the most frequently used strategies, there are adaptive remeshing procedures such
as the virtual crack closure technique (VCCT) [27–29]; the use of enrichment functions near
the crack tip such as the extended finite element method (X-FEM) [30–33]; or zero thickness
interfaces with a continuum damage mechanics model such as the cohesive zone models
(CZM) [34–36]. Advantages, limitations, and challenges of these three families of methods
are discussed in [37]. If the crack path is known a priori, as in delamination of composite
laminates, the CZM is the simplest and most accurate method. It has been widely used
by researchers in recent decades for predicting both crack nucleation and propagation
in composites [13,25,26,36,38–51]. The CZM method is defined by a constitutive law
or softening function f (w) that relates the cohesive interface transfer traction f to the
displacement jump w. The softening function is written in terms of un damage variable d,
and characterised by a positive high initial stiffness K0 and a maximum critical traction
level ft. Upon reaching ft, the softening function is described by a negative tangent stiffness
until a critical displacement jump wc is achieved. At this point, the system presents no
more load-bearing capacity, i.e., f (wc) = 0. As depicted in Figure 3, different forms
of softening laws have been introduced such as linear, bilinear, trilinear, trapezoidal or
exponential [52]. The area under the entire traction-displacement jump curve is the fracture
energy Gc, i.e., the total energy required to completely separate the interface per unit area.
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These models are chosen according to a compromise between simple identification of
its parameters and an accurate prediction of the crack propagation. In fact, due to the
incapability to directly measure the f (w) curve, especially for materials with non-negligible
FPZ, the model characterisation usually combines experimental data, theory (LEFM or
J-Integral) or FE simulations. For example, it is possible to embed a fibre Bragg grating
(FBG) sensor close to the crack tip and to measure the distributed strains [53–55], then an
inverse method relates strains to the traction-separation curve. Digital image correlation
(DIC) has also allowed inverse procedures combining full field cinematic data and FE
simulations [56,57]. The approaches based on J-integral need experimental data such as
the crack length, applied load or crack tip opening displacement (CTOD) [58–61]. In [62] a
J-integral procedure is compared to an inverse optimisation scheme that minimises the
difference between the experimental and simulated strains along the specimen. Although
these techniques require very high resolution equipment to capture the CTOD or FPZ,
which can cost a lot of money and be difficult to implement in specimens tested in a
controlled environmental. Another option is to use inverse methods for minimising the
residual between experimental and numerical P − δ curves [44,63–66]. However, despite
their simplicity, they are very time-consuming because it is necessary several virtual tests
to evaluate different values of each parameter of the softening function f (w). Moreover, FE
simulations can be very expensive if models are more accurate, such as 6–8 CPU hours for
only one 3D DCB [67]. In order to be more efficient, an inverse method combined with a
model based on a Dugdale’s condition [68] or closed-form analytical solutions [69] has been
developed for identifying multilinear, piecewise constant or bilinear CZM. Nevertheless,
for more sophisticated shapes of CZM, optimisation algorithms seem to be the only possible
way to identify the parameters. In this work, another alternative for reducing numerical
and experimental efforts is exploited, which is based on the equivalent LEFM R-curve and
has been initially proposed for a trilinear CZM [26]. To the best of the authors’ knowledge,
this methodology has never before been developed for identifying a bilinear and a potential
CZM or compared to “blind fitting” (i.e., an optimisation algorithm).

f
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(a) trilinear

f
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Figure 3. Traction-separation laws: (a) trilinear; (b) bilinear; and (c) potential CZM.

2. Experimental Test

DCB specimens were manufactured through a vacuum infusion process, considering a
fibre/resin weight ratio of 0.47 and embedding a thin film at the mid-plane of the specimen
for the pre-crack. Geometry (see Figure 1a) is specified in Table 1; an Epoxi 713 resin
matrix with an E1174 hardener from the Chilean company Fibratec (Santiago, Chile) was
employed, while the reinforcement is a unidirectional glass fibre from the German company
P-D Interglas Technologies GmbH (now acquired by Porcher Industries, Eclose Badinieres,
France), currently named as UD 220 g/m2 (i.e., with 207 g/m2 in the warp direction and
13 g/m2 in the fill direction). Then, the composite, previously characterised in [70], has
the following elastic properties: E1 = 32.1 GPa, E2 = 12.6 GPa, ν12 = 0.1 (-), ν23 = 0.24 (-)
and Gexp

12 = 3 GPa, where 1−direction is in the fibre direction and aligned through the
specimen’s length.
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Table 1. DCB specimen geometry according to [17].

Thickness h (mm) Width B (mm) Length D (mm) Pre-Crack a0 (mm)

2.72 ± 0.07 20.4 ± 0.08 124.68 ± 0.52 47

The DCB test was carried out taking into account the ISO 15024 standard [17], un-
der quasi-static conditions using a testing machine ZwickRoell (Ulm, Germany) pro-
vided with a 5 [kN] load cell and the testXpert testing software (see Figure 4). The load-
displacement and resistance curves obtained from five experiments are drawn in Figure 5,
whereas Table 2 summaries the critical energy release rate and the maximal applied load
together with their standard deviations.

Figure 4. Experimental DCB tests: layout according to [17].
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Figure 5. Experimental DCB tests: (a) load-displacement curve; (b) resistance curve.

Table 2. Experimental DCB tests: critical energy release rate and maximal applied load.

Specimen Gexp
c (N/m) Pexp

max (N)

1 981.65 31.08
2 926.60 32.16
3 1062.80 29.72
4 964.90 27.98
5 974.8 30.70

average value 982.15 30.33
standard deviation 49.85 1.58

3. Cohesive Zone Models

Traction-separation laws f (w) can be written in terms of a damage variable d, ranging
from 0 to 1, for a healthy to a completely damaged interface point, respectively. It is
important to notice that in the tridimensional case f (w) is a vector-valued function, while
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the initial stiffness K0 is a second order tensor. However, because this paper is only related
to the mode I delamination, variables are all scalars. Therefore, the initial stiffness K0 is
progressively weaken according to:

f (w) = (1 − d(〈w〉+))K0 〈w〉+ + K0 〈w〉− (2)

where the symbols 〈 〉 distinguish between the positive and negative part of the normal
displacement in order to take into account the difference between tensile and compression.
Considering the irreversibility of damage, d depends on the whole load history, i.e., d|t =
maxτ≤t(d|τ ).

In this work, a bilinear [71,72], a trilinear [38,73] and a potential model [40] are
studied, which are schematized in Figure 3. In all these laws, the fracture energy Gc
corresponds to the area under the curve. However, the energy is decomposed into two
parts (Gc = G f µ + G f b) for the trilinear CZM, which has been attributed to micro-cracking
(G f µ) and fiber-bridging (G f b) [73]. For each model, damage d is written in terms of the
displacement jump w and the parameters to be identified, as summarized in Table 3.

Table 3. Damage functions d(w) and parameters of the bilinear, trilinear and potential CZM.

CZM Trilinear [26] Bilinear [72] Potential [40]

d = 0, w < w0 d = 0, w ≤ w0 d = min
((

n
n+1

Y
Gc

)n
, 1
)

d = wb(w−wo)(1−γ)
w(wb−wo)

, wo ≤
w ≤ wb

d = wc
wc−w0

(w−w0
w
)
,

w0 < w ≤ wc
where Y = 1

2 K0w2

damage law d = 1 − γwb(wc−w)
w(wc−wb)

, wb ≤
w ≤ wc

d = 1, w > wc

where γ =
fbwo
ftwb

, w0 =
ft

K0
, where w0 =

ft
K0

, ft =
2Gc
wc

wb =
2G f µ

f t , fb =
2G f b
wc

parameters wc, G f µ/Gc , ft wc, K0 K0, nto be identified

4. CZM Characterization Using the Equivalent LEFM R-Curve

As explained in Section 1, the equivalent LEFM R-curve enables representing the
influence of the FPZ development on the specimen compliance, through an elastically
equivalent crack a (see Figure 2) located at some distance ahead of the initial crack a0
(or the current stress-free crack as f ). In [26], a new procedure to identify the parameters
of the trilinear cohesive model has been proposed. It is based on the equivalent LEFM
R-curve and on a dimensional analysis in order to relate the parameters’ dependency
on the geometry and material of the specimen. The main idea is to relate each model
parameter with the load-displacement curve and the corresponding equivalent LEFM
R-curve through numerical simulations. Among the advantages, this methodology avoids
an experimental measure of the critical opening wc and determines the CZM parameters
more efficiently than blind fitting or optimization methods such as genetic algorithms,
because less numerical evaluations are needed.

In this work, FE simulations of DCB tests are performed using 1D Euler-Bernoulli
beam elements, coded through an OCTAVE routine, where only one half of the specimen—
due to symmetry—is modelled and discretised into 310 finite elements. Geometry and
elastic properties of the specimen are according to Section 2 (due to the 1D model, only
E1 = 32.1 GPa is taken into account), whereas the critical energy release rate is given by
the experimental test (Gexp

c = 982.2 N/m). In the following, the procedure defined for the
trilinear CZM in [26] is applied to the fracture test of Section 3, then the methodology is
extended to the bilinear and potential laws.
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4.1. Trilinear CZM

The impact on the equivalent LEFM R-curve of each cohesive parameter is first
analysed: the critical opening wc, the distribution of the critical energy release rate G f µ/Gc
and the tensile strength ft. The critical crack extension ∆ac will be then associated with
these parameters and the specimen size through a dimensional analysis. In this analysis
w0 = 10−7 mm and Gc = 982.2 N/m are kept constant.

• Influence of the critical opening: numerical simulations are carried out affecting the
critical opening wc ∈ {1, 2, 4, 5, 7} mm but fixing the values G f µ/Gc = 0.5 (-) and
ft = 1.15 · 107 Pa. From Figure 6, it is observed that wc does not have an influence
before reaching the 50% of Gc. After that, the critical crack extension ∆ac and the
critical displacement jump wc have a positive correlation, which means that the length
of the fracture process zone l f pz increases when wc increases.

• Influence of the fracture energy distribution: keeping constant ft = 1.15 · 107 Pa
and wc = 2.72 mm, Figure 7 shows that at varying the critical energy release rate
G f µ/Gc ∈ {0.5, 0.65, 0.75} (-), the load-displacement plot and the equivalent LEFM R-
curve are invariable if the dissipated energies G f µ/Gc are lower than {0.5, 0.65, 0.75},
respectively. If the ratio G f µ/Gc tends to one, the R-curve look like a one of a brittle
material and the maximal load on the load-displacement curve increases. The critical
crack extension ∆ac always remains the same.

• Influence of the tensile strength: Figure 8 shows the impact at varying ft ∈ {3, 5, 7, 10, 15}
[107 Pa] whereas G f µ/Gc = 0.5 (-) and wc = 2.72 mm are unchanged. It can be con-
cluded that the tensile strength impacts the response at the beginning of both curves: if
ft increases, the behaviour becomes a brittle one. When the dissipated energy reaches
the value G f µ, the fracture response starts to be the same for any value of ft and the
critical crack extension ∆ac becomes identical.
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Figure 6. Trilinear cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence of
the critical opening wc with ft = 1.15 · 107 Pa and G f µ/Gc = 0.5 (-) as constants.
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Figure 7. Trilinear cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence of
the fracture energy distribution G f µ/Gc with wc = 2.72 mm and ft = 1.15·107 Pa as constants.
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Figure 8. Trilinear cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence of
the tensile strength ft with wc = 2.72 mm and G f µ/Gc = 0.5 (-) as constants.

From the studies carried out in Figures 6–8, the influence of each cohesive parameter
when other variables are constant has been known. Now, from a dimensional analysis
it can be supposed that ∆ac depends on the specimen size and the cohesive parameters,
as proposed in [26,74]:

∆ac

lch
= φ1

(
D
lch

,
wc

wch
,

G f µ

Gc

)
(3)

where D is a characteristic dimension of the specimen, lch and wch are the Hillerborg’s
characteristic length and a characteristic crack opening, respectively:

lch =
EGc

f 2
t

, wch =
Gc

ft
(4)

Because it was observed that the ratio G f µ/Gc does not have influence on the critical
crack extension ∆ac (see Figure 7b), the third argument of Equation (3) is able to be directly
vanished. According to Figure 8b, ∆ac neither depends on ft, therefore if Equation (3) is

homogeneous in f 2
t —i.e., depends on w2

c —it can be cancelled when factoring by w2
c

w2
ch

[26]:

∆ac

lch
=

w2
c

w2
ch

φ2

(
Dw2

ch
w2

c lch
, 1

)
or

∆ac

D
=

w2
c E

GcD
φ

(
w2

c E
GcD

)
(5)
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where φ(·) = φ2(1/·, 1), furthermore the right equation has been multiplied by 1/D.
On the other hand, a lower bound of the critical crack extension has been previously
studied in [74] for D → ∞, given by:

lim
D→∞

∆ac ≈
π

32
w2

c E
Gc

(6)

Then, it is expected that φ(0) ≈ π/32.
The nonlinear expression relating ∆ac and wc, Equation (5), has the ability to be solved

for wc through the equivalent LEFM R-curve and FE computations, according to:

wc =

√
32∆acGc

πE
ψ

(
∆ac

D

)
(7)

where ψ(0) ≈ 1 when D → ∞.
The critical opening wc can be now found employing Equation (7), while the other

cohesive parameter—the tensile strength ft—can also be studied through a dimensional
analysis. Therefore, the crack length ∆a, for a given energy release rate G < Gc, is allowed
to be obtained from the following general expression:

∆a
lch

= ζ1

(
G
Gc

,
D
lch

,
wc

wch
,

G f µ

Gc

)
(8)

From virtual tests previously carried out for different values of wc and G f µ/Gc,
but keeping ft constant, it is observed that the equivalent R-curve remains almost the
same when G < 0.5Gc (see Figures 6b and 7b). In fact, ft only has an influence at the
beginning of the R-curve if wc and G f µ/Gc are both fixed (see Figure 8b). Therefore,
function ζ1(·) is able to be considered independent of wc/wch and G f µ/Gc if G < 0.5Gc.
For instance, calculations are here proposed with G/Gc = 0.2 -:

∆a0.2

lch
= ζ2

(
0.2,

D
lch

)
= ζ3

(
D
lch

)
(9)

As proposed in [26], an expression relating ∆a0.2/D and D/lch is permitted to be
obtained at multiplying Equation (9) by lch/D, then:

ft =

√
EGc

D
χ

(
D

∆a0.2

)
(10)

where χ(·) can be determined from Figure 8b, considering the horizontal line for G = 0.2Gc
and it verifies χ(0) ≈ 0. Finally, the dimensionless functions ψ(·) and χ(·) plotted in
Figure 9 are obtained through a Hermite spline cubic interpolation.
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Figure 9. Trilinear cohesive model. The dimensionless functions for model parameters as a function
of the crack length: (a) wc function; (b) ft function.

4.2. Bilinear CZM

The previous methodology is here developed for a bilinear model. In this case, it has
been studied the influence of the critical opening wc and the initial stiffness K0, while Gc is
always kept constant and equals to Gexp

c .

• Influence of the critical opening: wc has an inverse correlation with the maximal
applied load P when considering wc ∈ {0.1, 0.2, 0.4, 1, 4} mm and keeping unchanged
K0 = 1013 N/m3, as observed in Figure 10a. Moreover, Figure 10b shows that the
critical crack extension ∆ac is inversely proportional to the tensile strength ft, i.e., the
interface becomes more brittle for higher values of ft.

• Influence of the initial stiffness K0: from Figure 11b it is observed that K0 ∈
{5, 10, 22, 102, 104} · 1011 N/m3 does not have any influence on the critical crack
extension ∆ac if ft is kept constant. K0 only has an effect on the beginning of the
equivalent R-curve, which is not significant on the load-displacement curve (see
Figure 11a).
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Figure 10. Bilinear cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence of
the critical opening wc with K0 = 1013 N/m3 as constant.
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Figure 11. Bilinear cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence of
the initial stiffness K0 with wc = 0.13 mm as constant.

As previously introduced in Section 4.1, the critical crack extension ∆ac can be ex-
pressed as a function which depends on the specimen size and on the cohesive parame-
ters as:

∆ac

lch
= γ1

(
D
lch

,
wc

wch
,

K0

Kch

)
(11)

where Kch is a characteristic stiffness defined as follows:

Kch =
E4

Gc f 2
t

(12)

From Figure 11b it is assumed that K0 does not have influence on the critical crack
extension ∆ac, then the third argument disappears. Besides, the relation ft = 2Gc/wc
enables going without having the second variable wc/wch = 0.5, then multiplying by 1/D
and considering Equation (4) :

∆ac

Dlch
=

1
D

γ2

(
D
lch

)
or

∆ac

D
=

w2
c E

4GcD
γ2

(
4GcD
w2

c E

)
or

∆ac

D
=

w2
c E

GcD
γ

(
w2

c E
GcD

)
(13)

where it is expected, when D → ∞, i.e., γ(0) ≈ π/32 in concordance with Equation (6).
Finally, the critical opening is computed in the same way as for the trilinear law:

wc =

√
32∆acGc

πE
η

(
∆ac

D

)
(14)

where η(0) ≈ 1 when D → ∞.
To characterise the stiffness parameter K0, a dimensionless general expression for the

crack extension is able to be written as:

∆a
lch

= ν1

(
G
Gc

,
D
lch

,
wc

wch
,

K0

Kch

)
(15)

From Figure 10b it should be noticed that the effect of K0 on the R-curve depends
on the selection of wc. First, it is assumed that wc has been chosen using Equation (14);
secondly, the crack extension is searched for a given G where the impact of K0 is significative
(e.g., G/Gc = 0.01 -), subsequently last equation becomes:

∆a0.01

lch
= ν2

(
D
lch

,
K0

Kch

)
(16)
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The dependence on ft (i.e., on wc) has the chance to be vanished if factoring by E4

K0Gc f 2
t

,

as follows:
∆a0.01

lch
= ν2

(
D f 2

t
EGc

,
K0Gc f 2

t
E4

)
=

K0Gc f 2
t

E4 ν3

(
DE3

G2
c K0

, 1
)

(17)

Then, multiplying last this expression by 1/D:

∆a0.01

D
=

K0G2
c

DE3 ν3

(
DE3

G2
c K0

, 1
)
=

K0G2
c

DE3 ν4

(
DE3

G2
c K0

)
= ν

(
K0G2

c
DE3

)
(18)

Finally, the initial stiffness can be stablished employing the next expression:

K0 =
DE3

G2
c

ξ

(
D

∆a0.01

)
(19)

where it is verified that K0(∞) ≈ ∞. The dimensionless functions, η(·) and ξ(·), character-
izing both cohesive parameters are obtained through a Hermite spline cubic interpolation
and plotted in Figure 12.
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Figure 12. Bilinear cohesive model. The dimensionless functions for model parameters as a function
of the crack length: (a) wc function; (b) K0 function.

4.3. Potential CZM

The parameters enabling identify the potential CZM are the initial stiffness K0 and the
dimensionless variable n. However, it is not possible to separately relate them to the critical
crack extension ∆ac. Actually, for a fixed n, K0 influences the whole R-curve (including
∆ac), as shown in Figure 13. Same behaviour takes place for different values of n but a
fixed K0, as demonstrated in Figure 14. In both cases Gc is always kept constant and equals
to Gexp

c .
Despite this impossibility, it is feasible to find a connection between (n, K0) and ∆ac if

paying attention to the following relation from Table 3:

d(w) =

(
(n + 1)K0w2

2nGc

)n

(20)

More precisely, when considering d = 1, the critical displacement jump is able to be
written in terms of n and K0 as follows:

w2
c = 2Gc

n + 1
nK0

(21)
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Furthermore, it is possible to obtain an expression for ft through a stationary point of
Equation (2), then:

ft = 2−1/2n nK0

(n + 1
2 )

n+ 1
2

n

(
2Gc

n + 1
nK0

)1/2
(22)

When examining Equation (22) for several values of n and K0, as plotted in Figure 15
and detailed in Table A1 in Appendix A, it is noticed that ft is essentially unchanged if
the term (n + 1)/(nK0) (or wc) remains invariable (series A and D). Nevertheless, if one
parameter (n or K0) is kept constant and the other is varied, ft increases when K0 or n
increases, respectively (series B and C). In the following, the effect of (n + 1)/(nK0) on the
equivalent R-curve is studied, while Gc is equals to Gexp

c .
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Figure 13. Potential cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence
of the initial stiffness K0 with n = 0.7 (-) as constant.
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Figure 14. Potential cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence
of the parameter n with K0 = 1 · 1013 N/m3 as constant.
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Figure 15. Potential cohesive model. Influence of (a) n and (b) K0 on ft (more details in Table A1).

• Influence of wc: considering n = 0.7 (-) (respectively K0 = 1013 N/m3) unaltered, it is
possible to observe the influence of wc—or the influence of the term (n + 1)/(nK0)
according to Equation (21)—at varying K0 ∈ {1.12, 5.6, 11.2, 22.4, 33.6} · 1011 N/m3

(respectively n ∈ {10−5, 10−4, 10−3, 10−2, 100} -). Figures 13b and 14b show that the
critical crack extension ∆ac increases directly proportional to wc.

• Influence of K0 and n: when the critical opening is kept constant and equals to wc =

2.9 mm (or (n + 1)/(nK0) = 4.25 · 10−9 m3/N), but modifying K0 ∈ {2, 8, 10, 1120} ·
109 N/m3 and n ∈ {1.13, 0.3, 3.8, 0.24, 0.0021} · 10−1 (-), the critical extension crack
remains unchanged, as shown in Figure 16b. n and K0 only have an influence in the
beginning of the R-curve, while the load-displacement plot is almost the same.
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Figure 16. Potential cohesive model: (a) load-displacement curve; (b) equivalent R-curve. Influence
of the cohesive parameters with n+1

nK0
= 4.25 · 10−9 m3/N (wc = 2.9 mm) as constant.

With this previous analysis in mind, the general expression for the critical crack
extension can be written as:

∆ac

lch
= µ1

(
D
lch

, n,
K0

Kch

)
(23)

but it is allowed to be reformulated considering Equation (21) as follows:

∆ac

lch
= µ2

(
D
lch

,
w2

c

w2
ch

)
(24)
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Due to Figure 15b, let suppose that ft does not have an influence on ∆ac, then multi-
plying by 1/D Equation (24) turns into:

∆ac

lch
=

w2
c

w2
ch

µ3

(
Dw2

ch
w2

c lch
, 1

)
or

∆ac

D
=

w2
c E

GcD
µ

(
Ew2

c
GcD

)
(25)

which becomes identical to Equation (14) if solving for the critical crack opening:

wc =

√
32∆acGc

πE
ς

(
∆ac

D

)
(26)

where ς(0) ≈ 1 when D → ∞.
Furthermore, the general expression for the crack extension, in terms of the potential

CZM variables, is:
∆a
lch

= β

(
G
Gc

,
D
lch

, n,
K0

Kch

)
(27)

Seeing that it is not possible to isolate and to directly choose K0, it is then proposed to
select wc at first and to vanish n in Equation (27)—because n depends on K0 for a given
wc. Therefore, the impact of K0 can be separated as observed in Figure 16b, especially in
the first stage of the R-curve. Following that idea, the crack extension is then looked at a
specific G, for example G/Gc = 0.01 (-), by means:

∆a0.01

lch
= β1

(
D
lch

,
K0

Kch

)
(28)

Because ft is supposed to be invariant when wc is fixed, the last relation becomes
identical to Equation (16) and the initial stiffness is found in the same way as for the
bilinear CZM:

K0 =
DE3

G2
c
κ
(

D
∆a0.01

)
(29)

where it is verified that K0(∞) ≈ ∞. Finally, the dimensionless value n is established
employing Equation (21). Functions ς(·) and κ(·), which are approached within Hermite
spline cubic interpolations, are plotted in Figure 17.
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Figure 17. Potential cohesive model. The dimensionless functions for model parameters as a function
of the crack length: (a) wc function; (b) K0 function.

5. Comparison of the CZM Characterization

The previously proposed methodology based on the equivalent LEFM R-curve is
here applied to characterise the fibre-reinforced plastic tested in Section 2 under mode I
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fracture loading. The trilinear, bilinear and potential CZM are adjusted considering
Gexp

c = 982.2 N/m and ∆aexp
c = 15 mm. At the same time, in order to verify the ef-

fectiveness of this characterization procedure, the parameters of these three laws are also
looked for using an optimization algorithm. For this propose, an objective function Π is
built from DCB simulations considering different sets of cohesive parameters Γj. More
precisely, 36 sets of parameters Γj are examined for each CZM, where each set enables
finding one value of the objective function, considering the vertical difference between the
experimental and numerical force-displacement curves, as follows:

Π(Γj) = Πj =
N

∑
i=1

1
N
|Pj

n,i − Pe,i|2 (30)

where Pj
n,i is a point in the numerical force-displacement curve considering the set of

parameters Γj whereas Pe,i is the corresponding point in the experimental one. For each Πj,
the total number of points taken into consideration was N = 20. From the 36 evaluations
Πj, the objective function Π is then approached through a spline interpolation leading to
Πappr—in order to avoid the expensive evaluation of Π—and finally it is minimized using
a genetic algorithm, as detailed in Figure 18. For the latter, the Scilab optimization toolbox
with settings in Table 4 is employed.

for a given CZM

for j=1:36

choose Γj

FEA simulation

compute Πj

interpolate
Πappr

apply genetic
algorithm

fitted parameters Γfitt
CZM

Figure 18. Schema of the optimization procedure.

Table 4. Parameters for the genetic algorithm.

poblation size 5000
crossover probability 0.7
mutation probability 0.1
number of generation 300

number of couples 500
pressure 0.05

Table 5 summarizes the identified parameters Γfitt
CZM for the three CZM considering

both methodologies. To compare them, the value Π(Γfitt
CZM) from Equation (30) is also

computed. It is observed that the trilinear CZM achieves the best fitted parameters,
for which the equivalent LEFM R-curve (Π = 0.33) is 28.3% lower than the genetic algorithm.
In fact, the performance of the genetic algorithm is conditioned by the quality of Πappr

which in turn depends on the amount of interpolated points Πj, but these are expensive to
obtain and thus are avoided. Furthermore, when applying the equivalent LEFM R-curve
the bilinear and potential laws are not able to correctly emulate the experimental behaviour
(Π= 16.2 and Π = 32.2, respectively). However, these both CZM are better adjusted with
the genetic algorithm procedure (Π = 1.67 and Π = 2.22, respectively) but in any instance
they are not more favourable than the trilinear law.
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Table 5. Fitted parameters for each cohesive model using equivalent LEFM and genetic algorithm.

CZM Characterization Number of DCB
Π(Γfitt

CZM) ∆ac (mm) Fitted Parameters Γfitt
CZMVirtual Tests

trilinear

eq. LEFM R-curve 10 0.33 15.0
ft = 11.51 MPa
wc = 2.71 mm

G f u/Gc = 0.83 (-)

genetic algorithm 36 0.46 14.5
ft = 10.08 MPa
wc = 2.27 mm

G f u/Gc = 0.85 (-)

bilinear

eq. LEFM R-curve 10 16.2 15.0 wc = 2.62 mm
K0 = 2.45 · 1012 N/m3

eq. LEFM R-curve 10 3.21 2.5 wc = 0.064 mm
K0 = 8.67 · 1012 N/m3

genetic algorithm 36 1.67 4.96 wc = 0.32 mm
K0 = 1.151 · 1012 N/m3

potential

eq. LEFM R-curve 10 32.2 15.0 n = 2.1 · 10−4 (-)
K0 = 1.12 · 1012 N/m3

eq. LEFM R-curve 10 2.98 2.5 n = 0.86 (-)
K0 = 1 · 1012 N/m3

genetic algorithm 36 2.22 4.3 n = 0.1 (-)
K0 = 4.71 · 1011 N/m3

Traction-separation laws, load-displacement and R-curves are exposed in Figures 19–21
for the trilinear, bilinear and potential models, respectively. It is confirmed the high-quality
agreement of the trilinear CZM using both fitting methodologies, allowing reaching the
critical crack extension ∆ac as well as the maximal applied load P closely to the experimental
values. The bilinear and potential laws are unable to follow the entire curves, indeed
parameters obtained with the equivalent LEFM R-curve comply with the experimental
critical crack extension but the initial response of the R-curve does not agree. On the other
hand, parameters fitted with the genetic algorithm are able to follow the beginning of the
load-displacement and R-curves; however, the critical crack extensions are lower than the
empirical ones—33% (bilinear) and 29% (potential) lower than ∆aexp

c . Finally, and keeping
in mind that the bilinear and potential laws are incapable of tuning behaviours with
∆ac >> 0 (i.e., a quasibrittle material), it is reasonable to apply the equivalent LEFM
R-curve method taking into account a flexible way to set ∆ac. For example, taking into
account ∆ac as the ∆a when the fracture zone process starts to grow significantly in the
R-curve. In Table 5 we include the model parameters considering ∆a0.56, subsequently a
significant enhancement in the adjustment is achieved. In fact, the objective function is
80% (bilinear) and 91% (potential) lower than considering ∆aexp

c . Additionally, in Table 5
are listed the number of DCB virtual tests needed for each characterization methodology,
a 72% of reduction is reached using the equivalent LEFM R-curve.
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Figure 19. Trilinear cohesive model. Numerical DCB test with the fitted parameters: (a) traction-
separation law; (b) load-displacement curve; (c) R-curve.
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Figure 20. Bilinear cohesive model. Numerical DCB test with the fitted parameters: (a) traction-
separation law; (b) load-displacement curve; (c) R-curve.
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Figure 21. Potential cohesive model. Numerical DCB test with the fitted parameters: (a) traction-
separation law; (b) load-displacement curve; (c) R-curve.

6. 3D Fracture Process Zone (FPZ)

This section is devoted to studying the crack front of the DCB test considering the
same geometry, material properties and boundary conditions which have been defined
in Section 2. The goal is to perform 3D FE simulations and to contrast them against
empirical observation, exploiting the fact that damage evolution can be directly observed
because specimens are made of GFRP. Actually, in the experimental setup, a camera was
placed perpendicularly to the crack plane for recording propagation from the top. FE
simulations are carried out using a C++ research code called “MULTI” which is based on
a parallel multiscale solver [75] and where the three CZM were implemented employing
the best fitted parameters found for each law in Section 5 (see Table 5). The DCB sample
is modelled using a 3D mesh with 365,552 linear tetrahedron elements and over two
million degrees of freedom, the CZM is treated trough interfaces elements placed on the
plane of delamination (78,744 2D triangular elements) between the upper and lower arms
of the double cantilever beam. The load-displacement and R-curves are schematised in
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Figure 22, where 1D beam simulations are also included in order to verify that neglecting
the orthotropic material properties (i.e., only E1 = 32.1 GPa was considered in Section 4)
was a proper assumption because the geometry and boundary conditions of the problem.
Two instants are chosen to compare the plane of delamination: point 1 is located near to
the maximum load carrying capacity and point 2 is placed faraway from the instant where
propagation begun, as marked in Figure 22.
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Figure 22. Experimental and numerical DCB tests (3D and 2D simulations): (a) load-displacement
curve; (b) R-curve.

Figure 23 presents a part of the delamination plane in order to show the crack tip
for both instants of interest (points 1 and 2 in Figure 22). In order to monitor the crack
growth, the experimental sample (see Figure 23a) is marked with 5 mm divisions along
the delamination plane beyond of the tip of the pre-crack (that is the yellow area), but the
first 5 mm are marked at 1 mm intervals. When the specimen is gradually loaded, it is
possible to observe from the top view that the neighbourhood of the crack tip consistently
turns a deep white. It is then supposed that this change in appearance is associated with
the evolution of the FPZ and not only includes the crack propagation itself. The trilinear
law has the thiner l f pz whereas the bilinear and potential have a very large l f pz, which
could be attributed to the initial stiffness K0 ≈ 1018 (trilinear), ≈ 1012 (bilinear) and ≈ 1011

(potential) N/m3, respectively for each law. Because the initial stiffness K0 is also employed
for the compression behaviour in simulations, low values can induce interpenetration and
to enlarge the l f pz. The damage distribution through the width is very similar in the four
cases. Finally, it can be concluded that even if the load-displacement and resistence curves
have a good agreement, the damage distribution over the length is not necessarily the
same, especially for tiny values of d.
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(a) experimental (b) trilinear (c) bilinear (d) potential

(e) experimental (f) trilinear (g) bilinear (h) potential

Figure 23. DCB delamination fronts for the experimental test and 3D simulations, according to points
1 (P1) and 2 (P2) from Figure 22: (a) experimental-P1; (b) trilinear-P1; (c) bilinear-P1; (d) potential-P1;
(e) experimental-P2; (f) trilinear-P2; (g) bilinear-P2; (h) potential-P2. The initial pre-crack is indicated
by a yellow area. The damage variable d ranges from 0 (blue) to 1 (red) in simulations.

7. Conclusions

In this work, a new identification methodology for bilinear and potential CZM in
mode I was developed, inspired by the strategy previously introduced by [26] for a trilinear
cohesive law. The main idea is to relate each model parameter with the load-displacement
curve and its corresponding equivalent LEFM R-curve through dimensional analyses
and numerical simulations. This is implemented mainly in two steps: (1) obtaining the
experimental load-displacement test on DCB specimens, computation of the equivalent
LEFM R-curve, the critical strain energy release rate Gc and the critical crack extension ∆ac;
(2) computation of the critical opening wc and the other corresponding model parameters
from dimensionless functions depending on geometry and material of the specimen. Please
note that the order of the data reduction for each parameter is crucial. Among the advan-
tages, the parameters’ identification based on the equivalent LEFM R-curve only needs the
experimental load-displacement curves, avoiding sophisticated experimental setups and
thus it drastically reduces the costs. For validating this strategy, an optimisation algorithm
for solving an inverse problem is also here implemented for comparing the identification
of bilinear, trilinear and potential laws. Then, the following conclusions are drawn as a
result of this research:

• it is possible to characterise a bilinear and a potential CZM using a framework based
on the equivalent LEFM R-curve;

• for the linear, bilinear and potential CZM, the parameters’ identification based on the
equivalent LEFM R-curve enables the same accuracy but reduces 72% the numerical
efforts respect to a “blind fitting” which minimise the residual between experimental
and numerical load-displacement curves;

• when applying the equivalent LEFM R-curve framework for characterising a qua-
sibrittle GFRP, the trilinear law achieves the best adjustment which is also proven
comparing 3D simulations of the fracture process zones. However, it is expected that
a trilinear CZM fits materials with large FPZ better than bilinear and potential models.
Latter will be fully exploited when characterising more brittle materials;
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• finally, even if optimisation techniques become popular at present due to their easy
numerical implementation, strategies founded on physical models are still better solu-
tions especially when evaluating the objective function is expensive as in mechanical
problems.
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Appendix A

Table A1 summaries the study carried out to understand the influence of the cohesive
parameters on the critical traction ft and on the critical displacement jump wc in the case of
the potential law.

Table A1. Potential cohesive model. Influence of model parameters on ft and wc.

K0 (N/m3) n (-) n+1
nK0

(m3/N) wc (m) ft (Pa)

1 ·1014 0.01 1 ·10−12 4.43 ·10−5 3.26 ·107

5 ·1013 0.02 1 ·10−12 4.43 ·10−5 3.26 ·107

1 ·1013 0.11 1 ·10−12 4.43 ·10−5 3.27 ·107

serie A 5 ·1012 0.25 1 ·10−12 4.43 ·10−5 3.28 ·107

3 ·1012 0.5 1 ·10−12 4.43 ·10−5 3.32 ·107

2 ·1012 1 1 ·10−12 4.43 ·10−5 3.41 ·107

1.5·1012 2 1 ·10−12 4.43 ·10−5 3.56 ·107

1.3·1012 3.3 1 ·10−12 4.43 ·10−5 3.69 ·107

1 ·1013 2 1.5·10−13 1.72 ·10−5 9.18 ·107

1 ·1013 1 2·10−13 1.98 ·10−5 7.63 ·107

1 ·1013 0.5 3·10−13 2.43 ·10−5 6.07 ·107

serie B 1 ·1013 0.1 1.1·10−12 4.65 ·10−5 3.11 ·107

1 ·1013 0.01 1·10−11 1.41 ·10−5 1.03 ·107

1 ·1013 0.001 1·10−10 4.43 ·10−4 3.26 ·106

1 ·1013 0.0001 1·10−9 1.4 ·10−3 1.03 ·106

1 ·1013 0.00001 1·10−8 4.43 ·10−3 3.26 ·105

1 ·1014 0.5 3 ·10−14 7.68 ·10−6 1.92 ·108

5 ·1013 0.5 6 ·10−14 1.09 ·10−5 1.36 ·108

1 ·1013 0.5 3 ·10−13 2.43 ·10−5 6.07 ·107

serie C 5 ·1012 0.5 6 ·10−13 3.43 ·10−5 4.29 ·107

3 ·1012 0.5 1 ·10−12 4.43 ·10−5 3.32 ·107

1 ·1012 0.5 3 ·10−12 7.68 ·10−5 1.92 ·107

5 ·1011 0.5 6 ·10−12 1.09 ·10−4 1.36 ·107

1 ·1011 0.5 3 ·10−11 2.43 ·10−4 6.07 ·106
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Table A1. Cont.

K0 (N/m3) n (-) n+1
nK0

(m3/N) wc (m) ft (Pa)

1 ·1014 0.001 1 ·10−11 1.40 ·10−4 1.03 ·107

5 ·1013 0.002 1 ·10−11 1.40 ·10−4 1.03 ·107

1 ·1013 0.0101 1 ·10−11 1.40 ·10−4 1.03 ·107

serie D 5 ·1012 0.0204 1 ·10−11 1.40 ·10−4 1.03 ·107

1 ·1012 0.111 1 ·10−11 1.40 ·10−4 1.03 ·107

5 ·1011 0.25 1 ·10−11 1.40 ·10−4 1.04 ·107

3 ·1011 0.5 1 ·10−11 1.40 ·10−4 1.05 ·107

2 ·1011 1 1 ·10−11 1.40 ·10−4 1.08 ·107
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