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Abstract: This paper presents a computational analysis on the mechanical and damage behavior
of novel hybrid polymer composites with graphene and MXene nano-reinforcements targeted for
flexible electronics and advanced high-strength structural applications with additional functions,
such as real-time monitoring of structural integrity. Geometrical models of three-dimensional
representative volume elements of various configurations were generated, and a computational
model based on the micromechanical finite element method was developed and solved using an
explicit dynamic solver. The influence of the geometrical orientation, aspect ratio, and volume
fractions of the inclusions, as well as the interface properties between the nano-reinforcements and
the matrix on the mechanical behavior, was determined. The results of the presented research give
initial insights about the mechanical and damage behavior of the proposed composites and provide
insight for future design iterations of similar multifunctional materials.

Keywords: hybrid composites; MXene; graphene; modelling; damage

1. Introduction

After the discovery of graphene, focus shifted to two-dimensional (2D) nanomate-
rials. These nanofillers drew attention due to their flexible properties, allowing us to
create multi-functional composite materials that can be used for a range of applications
such as aerospace, energy storage, and electromagnetic interference shielding [1–3]. Two-
dimensional nanomaterials such as graphene, due to their high aspect ratio (AR), offer
increased fatigue resistance and fracture toughness through deflection of crack propagation
and bridging mechanics [4–6]. However, such fillers are hydrophobic and do not form
bonds with polymers. Such a pursuit led to the discovery of a new class of 2D mate-
rials in 2011. MXenes are ternary layered compounds, produced by selectively etching
A-group layers from the MAX phases. They exhibit unique properties such as hydrophilic
nature combined with high electrical and thermal conductivity, capability to intercalate
ions, high electrical capacity, excellent electrochemical activity, and great mechanical pro-
perties [7–15]. These properties make them of great interest for many applications, and
they can be utilized in developments of composite materials with polymer matrixes for
flexible electronics and advanced high-strength structural applications with additional
functions such as real-time monitoring of structural integrity. There are more than 30 dif-
ferent types reported, and hundreds computationally studied in silico [7,16]. Titanium
carbide Ti3C2Tz is the most widely researched MXene exhibiting hydrophilic properties,
which makes it dispersible in a range of polar solvents [17,18]. Ti3C2Tz of high aspect
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ratios obtained by using several different methods showed increased conductivity [19–21],
as well as improved thermal [22] and mechanical properties [23] of polymer composites.
Moreover, these materials showed great promise for developing materials with long-term
thermo-oxidative resistance [24]. Furthermore, recent studies demonstrate high adhesion
between MXene and epoxy resin [25].

The mechanical properties of the hierarchical composite greatly depend on 2D nanofiller
geometry (shape, length, and thickness). Depending on the synthesis method of the MXene,
varying thickness and number of layers can be obtained [19,26]. The average thickness of a
single Ti3C2Tz flake is 0.8 nm, while a thickness of 1 nm is characteristic for the flake with
surface functional groups, and the mean lateral size is usually around 500 nm [26,27]. As
multi-layered MXenes are more common, their thickness can range from 5 to 30 nm with
AR 17-100 [28–31].

Recently, the electrical properties of polymer composites have gained great interest.
The conductivity properties of hybrid composites with carbon nanotubes and carbon black
can by utilized for energy storage [32]. Carbon nanotubes and carbon fiber were studied to
implement electro-activated polymeric shape-memory nanocomposites [33–35]. Moreover,
nano-reinforcements in polymer-based composites can be utilized for strain sensing [36–39].
All this shows a huge potential to expand the scope of applications of polymer composites.
With this in mind, MXenes electrical properties can be utilized in polymer composites with
additional functions such as real-time monitoring of structural integrity.

The finite element-based approach was proven to be a very valuable tool for studying
the mechanical and damage behavior of various composite materials. In the field of finite
element-based analysis on nanocomposites, the majority of published works are focused on
graphene for improving the mechanical characteristics of nanocomposites [40–52]. Recently,
the finite element-based methods gained attention in studying the damage behavior of vari-
ous composites. The finite element method along with the molecular dynamics model were
used for modelling the fracture and strength of single layer graphene platelets reinforced
reacted epoxy [53]. The mechanical properties of epoxy and interfaces between graphene
and epoxy were obtained by modelling crosslinking reactions with the molecular dynamics
model. These properties were used in the finite element model to investigate the effects of
graphene morphology on the composites. Computational micromechanics in conjunction
with the augmented finite element method were applied for an investigation on damage
mechanisms in thin-ply composite laminates [54]. The finite element method was applied
for analyzing the progressive failure of open-hole composite laminates for aeronautical
applications and demonstrated a good agreement with the experiments [55]. A numerical
model of tensile response and damage evolution in flax/epoxy and carbon/epoxy com-
posites was developed within a thermodynamics framework, and the predictions made
by this model corelated well in terms of mechanical response, stiffness degradation, and
inelasticity [56]. The damage and fracture mechanisms of graphene/epoxy composites
were researched in another work [57]. The influence of the shape, aspect ratio, orienta-
tion, clustering, and volume fraction of graphene reinforcements was demonstrated by
computational experiments based on the finite element method. The finite element-based
micromechanics study of epoxy composite reinforced with pristine graphene and reduced
graphene oxide nanoplatelets [58] demonstrated that the rivalry between the brittle matrix
cracking and interface debonding damage mechanisms is influenced by the orientation
of nanoplatelets, volume fractions, nanoplatelets/matrix modulus-mismatch, and inter-
face strength. The same approach was used for an analysis on the damage behavior of
a nacre-inspired graphene oxide/polyvinylidene fluoride nanocomposite [59]. Crack de-
flection and excessive plastic deformation was observed when fractions of graphene were
lower, while brittle fracture was observed when fractions of graphene were higher due
to the coalescence of cracks. Finite element-based micromechanical models were applied
to study the influence of functionally graded voids and graphene nanoplatelets on the
damage behavior of polyurethane foam core [60]. The study revealed that the air pores
significantly increased the ductility of brittle thermoplastic polyurethane resin when the
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pores were distributed non-linearly in a functionally graded circular shape, and graphene
nano-reinforcements compensated the decrease in the Young’s modulus occurring due to
linearly distributed air-voids.

The tensile response and the damage mechanism of MXene/epoxy composites MX-
ene/polyvinyl alcohol composites were investigated [61] by developing a micromechanical
finite element model, which was calibrated taking into account experimental results. The
predictions based on this model demonstrated that MXene shows great promise for poly-
mer matrix-based composites by significantly improving their mechanical properties, as
well as high-strength multifunctional MXene-polymer film materials with high mechanical
properties, which can be applied for real time monitoring of structural integrity by utiliz-
ing the electrical conductivity of MXene. Bioinspired MXene/polymer nanocomposites
with nacre mimetic brick and mortar structures were modelled using classical analytical
methods and numerical methods based on the finite element approach [62]. It was demon-
strated that such structures result in an interlocking mechanism between MXene inclusions,
leading to a significant increase in stiffness and strength. Orthotropic elastic properties of
epoxy composites with MXene and graphene 2D nano-reinforcements were studied [63] by
applying numerical methods. Recent works demonstrated that the mechanical and damage
behavior of composites can be significantly improved by proper selection of reinforcements.

The aim of this research is to study the mechanical and damage behavior of hybrid
polymer composites with MXene and graphene nano-reinforcements by developing a
computational model based on the micromechanical finite element method, which would
allow initial insights on the mechanical and damage behavior of such hybrid composites to
be presented and estimations to be made about the influence of the geometrical orientation,
aspect ratio and volume fractions of the inclusions as well as the interface properties
between the nano-reinforcements and the matrix.

2. Materials and Methods

The investigated composite materials are composed of an epoxy matrix and 2D
nanosheets of graphene and MXenes. The mechanical properties of the materials are
presented in Table 1. The graphene-matrix interphase properties used in the presented
computational analysis were based on the previous research [25,57], which studied these
properties using an inverse modelling approach.

Table 1. The mechanical properties of the materials.

Materials

Material Property MXene (Ti3C2) [64,65] Graphene [66] Graphene/Epoxy Effective Interface [25,57] Epoxy [67]

Young’s modulus (GPa) 330 1000 3.74 2.74
Poisson’s ratio 0.23 0.165 0.35 0.35
Strength (MPa) 22,000 130,000 120 80.3
Elongation at break (%) 5.5 20 5.3

To investigate the mechanical behavior of such hybrid polymer composites reinforced
with graphene and MXene nanosheets, a computational model was developed on the basis
of the micromechanical finite element method. Geometrical models of three-dimensional
representative volume elements (RVEs) with various volume fractions (denoted as fG
and fMX, respectively) of graphene and MXene inclusions, various aspect ratios (ρG and
ρMX), and different alignment configurations were created using Digimat-FE (Extreme
Engineering, MSC.Software GmbH, Munich, Germany). In practice, the alignment of
nano-reinforcements can be achieved through electrical methods [68,69]. A volume fraction
for graphene inclusions was set to 0.1%. The MXene volume fractions were set in a range
from 0.8% to 1.6% for the RVEs with randomly placed inclusions and in a range from
0.8% to 6.4% for the RVEs with aligned inclusions. An aspect ratio value of 500 was used
for the graphene inclusions, while aspect ratio values of 200 and 400 were used for the
MXene inclusions.
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The RVEs with randomly placed inclusions were built as cubes with a size of 595 nm,
while the RVEs with aligned inclusions were built as rectangular cuboids with dimensions
of 595 × 290 × 595 nm, aligning the inclusions in the x–z plane. The graphene and
MXene inclusions were generated as discs with a thickness of 0.335 nm and 1 nm [1,70–72],
respectively. As inclusions/polymer matrix interfaces make a significant influence on the
mechanical behavior of composite materials reinforced with nanosheets, the approach of
effective interface models was adopted where the thin layer, surrounding the inclusions, is
generated with specific properties. Based on the experimental observations presented in
the article [73], the thickness of the effective interface layers was set to 1 nm. Typical RVEs
used in this research are presented in Figure 1.
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Figure 1. Typical representative volume elements (RVEs) with random placed inclusions (ρG = 500, ρMX = 125, fG = 0.1%,
and fMX = 1.6%) and aligned inclusions (ρG = 500, ρMX = 125, fG = 0.1%, and fMX = 6.4%): (1), graphene/matrix interface; (2),
graphene; (3), MXene/matrix interface; (4), MXene; (5), matrix.

The created RVEs were imported to the commercial finite element software Abaqus
FEA (Dassault Systemes, Vélizy-Villacoublay, France), which was used to develop compu-
tational model and carry out the simulation tasks. The periodic boundary conditions [74]
were opted in Digimat-FE (Extreme Engineering, MSC.Software GmbH, Munich, Germany)
and were imported along with the geometrical models to Abaqus FEA (Dassault Systemes,
Vélizy-Villacoublay, France). The RVEs were subjected to uniaxial tensile loading along
the x-axis direction [61,63] The RVEs were meshed using the three-dimensional 4-node
linear tetrahedron element (C3D4) type. A minimum size of 8 nm was applied for the
mesh, resulting in a total number of 1–2 million, depending on the RVE’s configuration.
The experimental stress–strain curve of epoxy [67] was inserted in the program and the
multilinear hardening plasticity model was considered to define the response to the me-
chanical loading. To investigate the influence of the MXene/epoxy interface properties on
the strength of the proposed composite, several values of the Young modulus EMX and
strength of the interface was used (multiplying by 0.5, 0.75 and 1.5 to those of the matrix Em).
These values were in the range determined in the previous research [61]. The maximum
principal stress criterion was applied for the simulation of matrix and interfaces cracking
using the values provided in Table 1 as it was demonstrated that these are reasonable value
for the maximum principal strength [75,76]. The MXene and graphene inclusions were not
damaged during the simulation as the obtained maximum principal stress did not exceed
the strength limit of these materials. The developed computational model was solved using
Abaqus explicit and converged, delivering reliable and stable results.

3. Results and Discussion

Stress distributions in RVEs subjected to tension along the x-axis direction are shown
in Figure 2 and damage evolution is shown in Figure 3.
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Figure 2. Stress distribution inside RVEs demonstrating crack formation and propagation (cut views): (a) RVE with ran-
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Figure 2. Stress distribution inside RVEs demonstrating crack formation and propagation (cut
views): (a) RVE with randomly placed inclusions at a strain of 0.026, ρG = 500, ρMX = 125, fG = 0.1%,
fMX = 1.6%, and EMX = 0.5Em (localized cracking is indicated by the black arrows); (b) at a strain of
0.029; (c) at a strain of 0.031; (d) completely fractured at a strain of 0.038; (e) the RVE with aligned
inclusions at a strain of 0.032, ρG = 500, ρMX = 250, fG = 0.1%, fMX = 3.2%, and EMX = 0.5Em (localized
cracking is indicated by the black arrows) at a strain of 0.036; (f) at a strain of 0.039; (g) at a strain of
0.041; (h) completely fractured at a strain of 0.045.
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MXenes are shown in green, while the graphene inclusions are shown in blue), ρG = 500, ρMX = 250, fG = 0.1% fMX = 3.2%,
and EMX = 0.5Em: (a) at a strain of 0.011; (b) at a strain of 0.036; (a) at a strain of 0.039; (a) at a strain of 0.045.

At the beginning, the MXene/epoxy interfaces start to fail (Figure 3e). High-stress
concentrations at the edges of the nano-reinforcements were observed (Figure 2a,e) re-
sulting in the formation of localized cracking at the edges of the nano-reinforcements in
both RVEs (Figure 3a,e). In the RVE with randomly placed inclusions, matrix damage was
observed at a strain value of 0.016 (Figure 3a). As the strain increases, the main crack starts
to form (Figures 2b and 3b) and propagate (Figures 2c and 3c). A complete fracture of the
RVE with randomly placed inclusions was observed at a strain of 0.038 (Figure 2d). In
contrast, in the case of the RVE with aligned inclusions, it was observed at a strain of 0.045
(Figure 2h). After a complete fracture (Figure 3d,h), the stress dropped, and crack pinning
and deflection of the epoxy matrix were observed in the fractured RVEs (Figure 2d,h).

The influence of geometrical orientation of the inclusions is shown in Figure 4a.
Both the effective Young’s modulus and the tensile strength were higher in the case of
aligned MXene and graphene inclusions. In the composites containing ρG = 500, ρMX = 125,
fG = 0.1%, fMX = 1.6%, and EMX = 0.5Em, the effective Young’s modulus was 3.4 GPa, and the
tensile strength was 40.1 MPa with randomly placed inclusions, while the effective Young’s
modulus along the alignment (x-axis) direction was 4.6 GPa and the tensile strength was
58.4 MPa with aligned inclusions. The influence of the aspect ratio of aligned inclusions is
shown in Figure 4b, at ρG = 500, fG = 0.1%, fMX = 3.2%, and EMX = 0.5Em. At MXene aspect
ratio values of 60, 125, and 250, the effective Young’s moduli were 4.7 GPa, 6.17 GPa, and
8.1 GPa, respectively. Additionally, higher values of elongation at break were observed at
higher values of aspect ratio.
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The MXene/epoxy interface did not have a significant influence on the effective
Young’s modulus of the composite; however, higher properties of the interface result in
significantly higher values of the tensile strength (Figure 5). In the RVEs with randomly
placed MXenes having ρG = 500, ρMX = 125, fG = 0.1%, and fMX = 1.6%, the tensile strength
was 40.1 MPa, 48.6 MPa, and 63.5 MPa, at EMX = 0.5Em, EMX = 0.75Em, and EMX = 1.5Em,
respectively (Figure 5a). In RVEs with ρG = 500, ρMX = 125, fG = 0.1%, and fMX = 6.4%,
where MXenes aligned, the tensile strength was 69.2 MPa, 82.6 MPa, and 116.1 MPa,
at EMX = 0.5Em, EMX = 0.75Em, and EMX = 1.5Em, respectively (Figure 5b). Moreover,
elongation at break was almost two times higher when EMX = 1.5Em compared to the case
when EMX = 0.5Em.
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These results confirm the previous findings [63] that the elastic properties of this
composite are not highly influenced by the MXene/epoxy interface properties. However,
this research shows that the interface has an influence on the fracture response.

The influence of the MXene volume fraction is shown in Figure 6. An increase in
the volume fracture resulted in a significant increase in the effective Young’s modulus of
the composite. With randomly placed inclusions as ρG = 500, ρMX = 125, fG = 0.1%, and
EMX = 0.5Em, the obtained effective Young’s moduli were 2.8 GPa and 3.4 GPa at fMX = 0.8%
and fMX = 1.6%, respectively. For the composites with aligned MXenes, containing ρG = 500,
ρMX = 125, fG = 0.1%, and EMX = 0.5Em, effective Young’s modulus values of 3.5 GPa,
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4.6 GPa, 6.1 GPa, and 10.1 GPa were obtained at fMX = 0.8%, fMX = 1.6%, fMX = 3.2%, and
fMX = 6.4%, respectively.
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Summarizing the results in Figures 5 and 6, it should be noted that a stronger interface
is able to improve both the maximum stress and the maximum strain, while the volume
fraction of MXene is able to improve the maximum stress but the maximum strain is then
decreased as the composite becomes more brittle. When developing compositions of new
hybrid polymer composites with graphene and MXene nano-reinforcements, it is important
to take these insights into account and control the manufacturing procedures in order to
ensure a proper interface as well as optimize the MXene volume fraction in such cases
where the degradation of structures occurs at small deformations.

Besides load carrying capabilities, the proposed composite can utilize the electrical
properties of MXene. For example, when a structure made of such composite loses its
structural integrity, the electrical conductivity is also deteriorated. This can be easily
measured in real-time and give a reference about the structural integrity state.

4. Conclusions

Novel hybrid polymer composites with graphene and MXene nano-reinforcements
were proposed, and a computational model based on the micromechanical finite element
method was developed for studying the mechanical and damage behavior of hybrid
polymer composites with MXene and graphene nano-reinforcements.

The influence of the geometrical orientation, aspect ratio and volume fractions of the
inclusions, as well as the interface properties between the nano-reinforcements and the
matrix, on the mechanical behavior was studied. The modelling demonstrated that both
the effective Young’s modulus and the tensile strength were higher in the composites with
aligned MXene and graphene inclusions in comparison to the composites with randomly
placed inclusions. An increase in the volume fracture of the nano-reinforcements results in
a significant increase in the effective Young’s modulus of the analyzed composites. The
effective Young’s modulus of the composite with aligned nano-reinforcements containing
0.1% and 6.4% volume fractions of graphene and MXene, respectively, was 3.65 times
higher compared to the Young’s modulus of the matrix. Moreover, the tensile strength
increased as the volume fraction of MXene increased in the composites with aligned nano-
reinforcements. However, in the composites with randomly placed nano-reinforcements,
an increase in the volume fraction resulted in only an increase in the effective Young’s
modulus. The MXene/epoxy interface did not have a significant influence on the effective
Young’s modulus of the composite; however, higher properties of the interface resulted in
significantly higher values of the tensile strength. Further, higher mechanical properties
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were observed at higher aspect ratios of nano-reinforcements. Crack pinning and deflection
of the epoxy matrix were observed in the fractured RVEs.

Graphene nano-reinforcements may be used for additional strengthening of mul-
tifunctional composites with MXenes and further expand the scope of application of
such materials by utilizing the great mechanical properties and electrical conductivity of
MXene. The proposed novel hybrid polymer composites with graphene and MXene nano-
reinforcements can be applied for flexible electronics and advanced high-strength structural
applications with additional functions as real-time monitoring of structural integrity.

The results of the computational analysis revealed that MXene and graphene nano-
reinforcements demonstrate considerable promise in the development of novel multifunc-
tional composites, exhibiting excellent mechanical properties.
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