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Abstract: Combining organic and inorganic components at a nanoscale is an effective way to obtain
high performance coating materials with excellent chemical and physical properties. This review fo-
cuses on recent approaches to prepare hybrid nanostructured waterborne coating materials combining
the mechanical properties and versatility of silica as the inorganic filler, with the flexural properties
and ease of processing of the polymer matrix. We cover silica-polymer coupling agents used to
link the organic and inorganic components, the formation of hybrid films from these silica-polymer
nanostructures, and their different applications. These hybrid nanostructures can be used to prepare
high performance functional coatings with different properties from optical transparency, to resistance
to temperature, hydrophobicity, anti-corrosion, resistance to scratch, and antimicrobial activity.

Keywords: silica-polymer nanostructures; high performance hybrid films; functional waterborne coatings

1. Introduction

The field of polymer coatings has a huge societal impact [1]. Polymer coatings are used
all around us, for the decoration and protection of surfaces, but more importantly to give
them different functionalities. Waterborne polymer coatings assume special importance
because of their lower environmental impact, due to the use of much lower amounts of
volatile organic compounds (VOCs). VOCs are used to facilitate polymer interdiffusion
during film formation so as to produce a stronger film upon evaporation. Although the
coatings industry have been reducing the use of VOCs [2–4], waterborne coatings based on
dispersions of polymer nanoparticles (PNPs), also known as latex, do not easily reach the
high performance of their solventborne counterparts [5].

1.1. Film Formation in Waterborne Coatings

Waterborne polymer coatings are formed in three steps: Evaporation of the solvent
(water), deformation of the PNPs, and coalescence by interdiffusion of the polymer chains
(Figure 1). Water evaporation leads to a close-packed layer of PNPs and the deformation of
the particles from their spherical shape (by a combination of capillary, osmotic, and surface
forces), above the “minimum film formation temperature” (Tmff, which is close to the glass
transition temperature, Tg, of the polymer in water) [5–8], to produce a continuous but still
mechanically weak film. Coalescence of the nanoparticles by polymer chain interdiffusion
across the particle boundaries (above the polymer Tg) produce the final mechanically
resistant film [9–11]. The mechanical performance of the material depends on the degree of
entanglement between polymer chains from across particle boundaries.

Diffusion of polymer chains across nanoparticle boundaries is of paramount impor-
tance in the formation of a film with good mechanical properties. The most common
techniques to follow diffusion of the polymer chains across the interface between polymer
nanoparticles (PNPs) in waterborne films are small angle neutron scattering (SANS) and
Förster resonance energy transfer (FRET). SANS experiments can be used to measure the
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relation between the extent of diffusion and the film tensile strength [12,13], however they
require the cumbersome preparation of deuterated and nondeuterated PNPs to obtain the
necessary contrast. Measurement of polymer interdiffusion by FRET, on the other hand,
requires the labeling of PNPs with appropriate dyes: A fluorescent energy donor and an
energy acceptor [14]. FRET can give information on the mixing of polymers labeled with
donor and acceptor dyes in a wide range geometries [15–18], allowing the experimental de-
termination of dye concentration profiles in complex nanostructured materials [19]. FRET
has been used to study the effects of different factors on the formation of waterborne coat-
ings, such as curing temperature [20], plasticizers [21], blending [22], crosslinkers [23–25],
and the presence of filler particles [26–29].
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Figure 1. Film formation from water dispersions of polymer nanoparticles (PNPs). Water evaporation
leads to a PNP packing, which deform above a minimum film formation temperature (Tmff), as a
result of surface tension and capillary forces. Complete particle deformation and chain interdiffusion
at T > Tg leads to a continuous non-porous film. Reprinted with permission from ref. [8]. Copyright
2007 American Institute of Chemical Engineers (AIChE).

For these experiments, the films are prepared from a blend of FRET donor- and
acceptor-labeled PNPs, for which the fluorescence spectra of the donor overlaps the absorp-
tion spectra of the acceptor. Since the molar fraction of the dyes is very low, it is assumed
that the donor and acceptor dyes serve only as tracers for the location of the polymer. Since
donor and acceptor dyes are located in different particles, FRET measurements can be used
to evaluate the extent of mixing during the formation of the polymer film [30,31].

In the process of film formation from waterborne polymer coatings, there is an inher-
ent trade-off between the kinetics of diffusion and the mechanical resistance of the final
film. Using polymers with lower molecular weight and/or lower Tg leads to faster polymer
interdiffusion, but a final film with lower mechanical resistance. However, using poly-
mers with higher molecular weight and/or higher Tg does not necessarily produce better
films because interdiffusion of the polymer chains can be strongly hindered, ultimately
producing brittle films.

The traditional approach to this conundrum was to add VOCs as plasticizers to
promote faster diffusion by decreasing the Tg of polymer only during film formation. Since
the VOCs evaporate from the final film, this allows the use of polymers with a larger
molecular weight and higher Tg that result in films with better mechanical resistance. The
complete elimination of VOCs from waterborne polymer coating compositions requires
new strategies to improve film mechanical resistance. The most promising approaches
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rely in balancing polymer diffusion with chain crosslinking and incorporating inorganic
components in the film, notably silica nanoparticles (SNPs).

1.2. Diffusion and Crosslinking

Crosslinking of the diffusing polymer chains during film formation can be used to
anchor the chains and thus increase mechanical resistance. Covalent bonding between
chains diffusing out of the PNPs in the film form a polymer network that can increase the
temperature, solvent, and mechanical resistance of the final films. This three-dimensional
network not only reinforces the polymer matrix but also strengthens the interface with
other components of the film. However, network formation is only effective if the polymer
chains are able to diffuse before the crosslinking reaction takes place, so that film formation
depends on the kinetics of both processes [23]. The balance between the diffusion and
crosslinking kinetics has been theoretically modeled by De Gennes [6] to explain the role of
diffusion and crosslinking on the development of the films and their final properties. The
ratio of the diffusion time (Tdiff, time for a chain to diffuse out of its initial conformation)
and the reaction time (Treac, time for one cross-link to form in each chain), α = Tdi f f /Treac,
increases when the mobility of the chains is reduced upon crosslinking (α >> 1), inhibiting
the healing of the interfaces, which results in poor mechanical properties. If crosslinking
happens after the significant diffusion of the polymer (α << 1), the resulting material
will not present mechanical properties better than the bulk material. Careful balancing
of crosslinking and interdiffusion (α ≈ 1) is necessary to optimize the film’s mechanical
properties [5,6,32].

Crosslinking strategies usually consist in incorporating different reactive groups in
different polymer nanoparticles, so that the reaction occurs only upon chain diffusion
during film formation, thus preserving the dispersion stability. Different approaches
have been used to implement this strategy. For example, dispersions containing N-
methyloacrylamide or N-ethylacrylamide have been studied (Figure 2A), but were found
to produce byproducts that are either toxic (formaldehyde) or result in the formation of
low molecular weight polymers with weak mechanical properties [7,33–35]. On the other
hand, the use of the reversible keto-hydrazide crosslinking reaction (Figure 2B) resulted
in a small improvement of the mechanical properties of the film because of its low re-
action rate, and in addition, hydrazide has toxic effects [36–38]. Crosslinking between
isocyanate-containing polymers (Figure 2C) resulted in insufficient interfacial crosslinking
and thus, lack of mechanical strength [3]. The use of the Michael addition with diamines
(Figure 2D) [39] was found to hinder chain diffusion, also yielding polymer films with poor
mechanical properties.

1.3. Inorganic Nanofillers

A more promising approach to improve the performance of waterborne coatings with-
out compromising the flexural properties of the polymer is the incorporation of nanosized
inorganic components (or nanofillers). Although different fillers have been used in coating
applications (Table 1) [40,41], silica nanoparticles (SNPs) have received special attention
due to their high surface area, cost-effective production, and easy surface functionaliza-
tion [42]. SNPs can be prepared by simple, scalable, and low-cost techniques and offer
tunable and very well-defined size, morphology, and porosity. Hybrid-silica materials
combine the rigidity and high thermal stability of the inorganic components with the
flexibility, ductility, and processability of the polymer matrix [9]. When used in polymer
coating formulations, SNPs can also add new functionalities to the films, providing protec-
tion from moisture, temperature, scratching, radiation, and corrosion, while preserving
optical transparency and providing specific electrical or mechanical behavior, regulation of
microbial adhesion, etc.
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Figure 2. Crosslinking reactions used in waterborne polymer coatings, based on (A) N-methyloacrylamide;
(B) diacetone acrylamide (DAAM) and adipic acid dihydrazide; (C) dimethyl meta-isopropenylbenzyl
isocyanate (TMI); and (D) acetoacetoxy ethyl methacrylate (AAEMA) with a diamine.
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Table 1. Inorganic fillers other than silica nanoparticles (SNPs) used in hybrid materials for coating applications.

Inorganic Filler Organic Matrix Properties References

Clay Polyimide Adhesive strength, abrasion resistance, impact strength,
water absorption resistance [43,44]

Epoxy Abrasion resistance, water vapor barrier, corrosion resistance [45,46]
Carbon Nanotubes Epoxy Tensile strength, electric insulation [47,48]

Graphene Oxide Poly(vinyl butyral) Corrosion resistance, superhydrophobicity [49]
Epoxy Corrosion resistance, superhydrophobicity [50–53]

Zeolite Epoxy Corrosion resistance [54]

TiO2
Metal-quinoline derivatives;
poly(methyl methacrylate) Corrosion resistance, low friction [55,56]

In this review, we discuss recent progress in the preparation of high-performance
coatings using silica-polymer hybrid nanomaterials, presenting the different silica nanos-
tructures and their functionalization for incorporation into waterborne polymer coating
materials. We summarize some of the strategies reported for the incorporation of silica
nanostructures in polymeric matrixes in coating applications, and present recent results on
functional coating applications based in hybrid waterborne polymer dispersions.

2. Preparation and Functionalization of Silica Nanostructures for
Coating Applications

Silica nanoparticles (SNP) used in hybrid silica-polymer coatings are usually prepared
by flame hydrolysis (fumed silica) or by the Stöber method (colloidal silica). Although
fumed silica have a lower cost when compared to colloidal silica, it has a tendency to
irreversibly aggregate [9]. Colloidal silica is obtained by the Stöber method, a sol-gel
process based on the hydrolysis and condensation of silica precursors, such as tetraethyl
orthosilicate (TEOS), in an aqueous medium at a basic pH [57]. High porosity mesoporous
silica nanoparticles (MSNs) can be obtained by adding a template to the sol-gel (for example,
cetyltrimethylammonium chloride—CTAC, cetyltrimethylammonium bromide—CTAB,
or Pluronic F127). MSNs feature tunable diameter and pore size [58,59], and huge surface
area and pore volume values that allow extensive and selective surface functionalization,
as well as the loading of different cargo [60–63].

The use of MSNs in hybrid polymer coatings is mostly unexplored, but holds great
promise [64–68]. For example, Shi et al. [67] prepared epoxy coatings loaded with MSNs as
reservoirs for the corrosion inhibitor 8-hydroxyquinoline. Another study on wear resistance
of epoxy coatings, showed that incorporation of MSNs loaded with 2-mercaptobenzothiazole
(MBT) in the epoxy coatings improved the micro-hardness and decreased the friction coef-
ficient of the coating, increasing its wear resistance [64]. Liu et al. [66] further showed the
preparation of a mesoporous silica coating on graphene oxide nanosheets and its incorpo-
ration in styrene-butadiene rubber composites to improve their thermal conductivity.

2.1. Compatibilization of Silica Nanostructures with the Polymer Matrix

The incorporation of ca. 10 wt% of silica nanoparticles in polymer coating materials
has been described to have the best impact in film properties [9,69–72]. However, this
amount is sufficiently large to often produce significant aggregation of the polar silica
nanostructures in the usually hydrophobic polymer matrix, leading to the aggregation of
the particles, phase separation, and the formation of a mechanically weak composite.

Since homogeneous films with relatively high solids content are required for high
performance waterborne coatings, SNP aggregation must be reduced in order to increase
the silica content in the mixture. One strategy to achieve this is by functionalizing the
silica surface (Figure 3) to increase the silica-polymer affinity (by promoting van der Waals
forces, hydrogen bonds, or ionic interactions), or to covalently link the two components,
maximizing the interfacial stability between the silica and polymeric matrix. This can be
achieved by functionalizing the silica nanoparticles with a coupling agent that provides
grafting of polymer chains onto the SNPs surface. Coupling agents should form siloxane
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bonds with the SNPs via the hydrolysis and condensation of alkoxy groups, and bear
functional groups to connect to the polymer matrix [9,69,70,73].
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Figure 3. Optimization of hybrid coatings often involve the incorporation of up to ca. 10 wt%
of SPNs in polymer material. At such solids content bare SNPs tend to aggregate, resulting in a
weak composite (left). By appropriately functionalizing the SNPs (right), it is possible to obtain
homogeneous distributions of the SNPs in the dispersion and polymer matrix, leading to better
composite performance.

2.2. Silica-Polymer Coupling Agents

Coupling agents not only enhance the compatibility between the organic and in-
organic components to obtain homogeneous dispersions and films, but can also avoid
cavitation in the films due to the low interaction between the matrix and filler. Coupling
agents should thus be chosen according to the polymeric matrix and the material’s desired
application. The main criteria for this choice are the ability to bind to the polymer of
the matrix (for example, through a polymerizable group), while attaching to the silica
network by alkoxysilane groups. Table 2 describes the most common coupling agents
used in the preparation of silica-polymer nanostructures. For example, 3-aminopropyl tri-
ethoxysilane (APTES) is widely used to bind to epoxy resins [74–76] and polyurethane [77],
increasing their performance, or even as grafting sites for RAFT agents [78] and ATRP
initiators [79]. On the other hand, functionalizing SNPs with γ-(2,3-epoxypropoxy)propyl-
trimethoxysilane (GPTMS) can increase the compatibility of the inorganic component
within epoxy resins [80–84]. GPTMS can be further modified into carbonate function-
alized silanes (4-((3-(trimethoxysilyl)propoxy)methyl)-1,3-dioxolan-2-one, CPS) increas-
ing polyurethane-based coatings performance [85]. ATRP initiators are commercially
available as silica precursors, for example 3-(2-Bromoisobutyryl)propyl triethoxysilane
(BPTS) [86,87], for directly growing polymer chains in the silica surface.

Another strategy widely used to grow polymer chains from the silica surface is the
functionalization with 3-Methacryloxypropyl trimethoxysilane (MPS), which provides
anchoring to acrylic monomers, such as butyl methacrylate (BMA) [88,89], butyl acrylate
(BA) [72,79,90], methyl methacrylate (MMA) [72,89,90], dodecafluoroheptyl methacrylate
(DFMA) [72], bisphenol A-glycidyl methacrylate (Bis-GMA) [91], hexanedioldiacrylate
(HDDA) [92], methacrylic acid (MAA) [93], benzyl methacrylate (BnMA), 2-hydroxyethyl
methacrylate (HEMA) [94], glycidyl methacrylate (GMA) [95], and vinyl-bearing monomers
like styrene (St) [79,96,97]. Increasing the compatibility between silica and styrene has also
been performed using vinyltrimethoxysilane (VTMS) [96] or N-(3-(trimethoxysilyl)propyl)-
aniline (PATMS) [98]. Although not used on coating materials yet, triethoxysilylbutyralde-
hyde (TEBA) can open a new route for covalently bonded hybrid materials [99].
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Table 2. Most common coupling agents used in the preparation of hybrid silica-polymer materials.

Name Chemical Structure Ref.

APTES 3-Aminopropyl triethoxysilane
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The effect of the coupling agent on the surface of SNPs is critical for specific prop-
erties of the polymer-silica nanostructure, such as its hydrophilicity, hydrophobicity, or
chemical binding ability [5,73]. Zhi et al. [84] have functionalized the surface of the SNPs
with GPTMS for better compatibility with epoxy resin. They were able to achieve strong
bonds between the silica and polymer matrix, obtaining a nanometer-scale surface rough-
ness that resulted in a superhydrophobic material. Jouyandeh et al. [100] worked on the
functionalization of nanoparticles with nitrogen-rich macromolecules that would drive
crosslinking reactions with pyromellitic acid dianhydride. In this case GPTMS was used
to firstly bind the super reactive hyperbranched polyethylenimine (PEI) that would later
be grafted on the silica surface, significantly improving the performance of the material.
Xu et al. [101] functionalized SNPs with pentafluorophenyltriethoxysilane (PFPS), enabling
its dispersion within hyperbranched fluoropolymer (HBFP). The chemically modified silica
nanoparticles presented reactive functionalities that were later covalently integrated into
the complex networks.

A completely different approach to enhance the compatibility within the hybrid material
was developed by Kumar et al., who modified the SNPs surface with 60Co-gamma radiation
to induce the grafting of GMA and HEMA. This effectively increased the compatibility of the
SNP with the vinyl polymeric matrix, increasing the performance of the coating [102].

3. Incorporation of Silica in Polymer Materials

The more common methods to prepare hybrid organic/inorganic coating materials are
(Figure 4): (1) The combination of the polymer chains or polymer nanoparticles with the
inorganic nanoparticles; (2) the polymerization of the organic component in the presence
of inorganic nanoparticles; (3) the formation of the inorganic component in the presence of
the polymer chains or nanoparticles; and (4) the simultaneous formation of both polymer
and inorganic components [103].
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Figure 4. Different synthetic strategies for the formation of polymer-silica hybrid nanoparticles.

While (1) can lead to the aggregation of the inorganic component and phase sepa-
rations as discussed above, and (3) and (4) do not offer general processing advantages,
strategy (2) allows the preparation of very homogeneous hybrid polymer films. This
approach can involve emulsion polymerization in the presence of inorganic nanoparti-
cles [29,88] or the modification of surface functionalized inorganic particles with polymer
chains (see above) to promote their homogeneous dispersion in the matrix. In the last
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case, the polymer can be “grafted from” the surface of the inorganic nanoparticles [79,104]
or “grafted to” the nanoparticles [79] (Figure 5) among other less used possibilities [105].
In the “grafting from” approach, the polymer chains grow from reactive groups on the
surface of the inorganic nanoparticles. In the “grafting to” approach, the polymer chains
are previously formed in solution and covalently bonded to the surface of the inorganic
nanoparticles [103,106]. The “grafting from” method is generally believed to produce
higher polymer density, but “grafting to” allows a more uniform coverage of the surface.
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In “grafting from” it is possible to use conventional free radical polymerization (on
SNPs surface-modified with monomer units), or a controlled radical polymerization tech-
nique to control the composition, molecular weight, and molecular weight dispersity
of the chains [107,108]. Atom transfer radical polymerization (ATRP) and reversible
addition–fragmentation chain transfer (RAFT), are the most used techniques for a precise
design of the polymer chains. While in ATRP, the SNP surface is modified with the ini-
tiator [79,109], in RAFT the surface of the SNPs is modified with a chain transfer agent
(CTA) [61,97,110,111].

Another approach involves encapsulation of the SNP by emulsion polymerization.
In this case, the SNPs are usually surface-modified with monomer units so that these can
be used as seeding particles in the emulsion/miniemulsion polymerization, effectively
reducing SNP aggregation in the final coatings (Figure 6) [29,74,75].

The work of Désert et al. [112] reports the controlled morphology of the seeded emul-
sion polymerization of styrene on functionalized SNPs presenting a cluster morphology.
The silica concentration and the feeding process have a strong impact on the particle
morphology, yielding cluster-like [112], snowman-like [113], raspberry-like [95,114,115],
or encapsulated core-shell hybrid nanoparticles [103–105] (Figure 7). Among the differ-
ent morphologies, some have had no application in hybrid coatings (i.e., cluster-like and
snowman-like nanoparticles). However, the morphology of the nanoparticles can impact
the properties to the coating as described for the raspberry structures that lead to superhy-
drophobic properties [84]. Nanoparticles with a core-shell morphology, usually provide
the more homogeneous dispersion in the polymer matrix [116].
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of SNPs modified with ODTMS (N-octadecyltrimethoxysilane). Reprinted with permission from
ref. [89]. Copyright 2016 John Wiley and Sons.
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Figure 7. Hybrid particle morphology. (A) Dissymmetrical snowman- and dumbbell-like sil-
ica/polymer colloidal particles through emulsion polymerization of MMA or St using bicationic
initiator previously anchored on the silica surface. Reprinted with permission from ref. [113]. Copy-
right 2012 ACS. (B) Hexapods obtained by St emulsion polymerization. Reprinted with permission
from ref. [112]. Copyright 2012 The Royal Society of Chemistry. (C) Raspberry-like hybrids based on
1-µm silica particles. Reprinted with permission from ref. [114]. Copyright 2002 ACS. (D) Encapsu-
lated SNPs showing the effect of the SNPs size on the morphology of the hybrid particles (scale bar:
200 nm). Reprinted with permission from ref. [116]. Copyright 2016 ACS.

The surfactants used in emulsion polymerization can however have negative effects on
the final properties and appearance of the coatings. Examples of surfactant-free emulsion
polymerization for the encapsulation of SNPs include the combination of RAFT with
emulsion polymerization, using a macro-RAFT agent that adsorbs onto the surface of the
SNPs (Figure 8) [116] and the use of ionic comonomers (the sodium salt of styrene sulfonic
acid and potassium methacrylate) to stabilize SNPs functionalized with MPS, to which
poly(MMA-co-BA) was grafted [90].
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4. Applications of Hybrid Nanostructured Films 

Hybrid nanoparticles offer huge design flexibility for the design of coatings with a 

wide range of properties, improving not only the mechanical properties (e.g., impact, 

abrasion, or scratch) and chemical resistance (e.g., against oxidation and hydrolysis re-

sulting from exposure to sunlight, air, and water), but also providing new functionalities 

(Table 3) [4,9]. Desirable properties in waterborne coatings include flexibility [29,88,117], 

adhesion [81,118,119], wear resistance [92,102,120–122], and durability [120]. Among the 

possibilities for added coating functionality are, for example, flame retardancy [119], sol-
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treme robustness (for space-based applications) [125], antimicrobial activity [126–131], su-

perhydrophobicity [84,95,124,132–138], or photoactive fluorescent coatings [29] presented 

in Table 3. 
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4. Applications of Hybrid Nanostructured Films

Hybrid nanoparticles offer huge design flexibility for the design of coatings with
a wide range of properties, improving not only the mechanical properties (e.g., impact,
abrasion, or scratch) and chemical resistance (e.g., against oxidation and hydrolysis re-
sulting from exposure to sunlight, air, and water), but also providing new functionalities
(Table 3) [4,9]. Desirable properties in waterborne coatings include flexibility [29,88,117],
adhesion [81,118,119], wear resistance [92,102,120–122], and durability [120]. Among the
possibilities for added coating functionality are, for example, flame retardancy [119], solvent
and chemical resistance [123,124], stain resistance [102,124], anti-cavitation [81], extreme
robustness (for space-based applications) [125], antimicrobial activity [126–131], super-
hydrophobicity [84,95,124,132–138], or photoactive fluorescent coatings [29] presented in
Table 3.

Often, the use of SNPs can improve different coating properties and simultaneously
add new functionalities. For example, SNPs increase the Tg and hardness of polyurethane
composite films, containing ethylene glycol methacrylate phosphate (EGMP), with the re-
sulting material presenting also good adhesion to steel surfaces and flame retardancy [119].
In fact, silica-containing epoxy composites are already used in adhesives, paints, sol-
vent and chemical resistance, and marine coating technology [118,123,130]. The use of
3-glycidyloxypropyl trimethoxysilane (GPTMS) and TEOS on epoxy composites lead to
coating films with improved break resistance due to the hyperbranched structure of GPTMS,
but also increased thermal stability and erosion resistance, for anti-cavitation coating ap-
plications [81]. SNPs modified with toluene diisocyanate (TDI) groups were used in high
performance phenylene sulphide (PPS) nanocomposite coatings showing increased tensile
strength and hardness [121].

Although the introduction of SNPs can increase the mechanical properties of coating
materials, SNPs can also show negative effects on the final coatings. For example, they
can impact crosslinking reactions in the films and their curing kinetics. For example, the
addition of SNPs to water-based alkyd coatings changed their autoxidation curing kinetics,
depending on the morphology of the nanoparticles and their aggregation level [139].

Different functionalities can be imparted to hybrid nanocomposite coatings by using
SNPs. For example, even though SNP are non-toxic (they are usually considered biocom-
patible and are endogenous to most living organisms), they have been used to be used to
impart antibacterial properties to coatings by taking advantage of their ease of process-
ability and surface functionalization to carry antibacterial agents. Yamashita et al. [131]
described a silicone rubber coating with antimicrobial activity against S. aureus and E.
coli containing hybrid nanoparticles with a silica core and a poly(p-styrene tributyl-
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tetradecylphosphonium sulfate) shell. Silicone rubber containing SNPs grafted with
poly(vinylbenzyltributylphosphonium chloride) also show antibacterial activity against
S. aureus, E. coli, and P. aeruginosa [129]. The antibacterial activity is strong even at
very low nanoparticle concentrations (0.1 wt%) in different formulations (silicone rubber,
polystyrene, and commercial paints). Hybrid nanoparticles obtained by co-condensation
of N-(3-triethoxysilylpropyl)-5,5-dimethylhydantoin and TEOS, followed by chlorination,
showed excellent antimicrobial activities against E. coli and S. aureus, with good storage
stability for application in coating materials [127]. Antibacterial behavior against the
same strains was also obtained for coating formulations containing polyols from Linseed
and Castor oils as the organic fillers and TEOS as the inorganic constituent [128]. The
chemical structure of this biodegradable family of materials can suffer chemical trans-
formations yielding low molecular weight polymeric materials useful for eco-friendly
coatings [140,141].

Table 3. Examples of hybrid silica-polymer coating applications.

Applications Organic Matrix References

Flame retardancy Polyurethane, EGMP a [119]

Solvent and chemical resistance Epoxy [123,124]

Stain resistance
Epoxy [102]
PIT b [124]

Anti-cavitation Epoxy [81]

Robustness
Phenylene Sulfide [121]

Nylon-6 [125]

Antimicrobial

PQDMAEMA c, PTMOSPMA d [126]
TS-DMH e [127]

Polyols [128]
PVBBPC f, Silicone rubber [129]

Epoxy [130]
PSBDPS g [131]

Superhydrophobic

Epoxy [84]
Epoxy-functionalized methacrylate [95]

PIT b [124]
TSI-PDMAEMA-PS h [132]

Fluoroloakylosiloxane polymer [133]
Urethane acrylate [134,135]

PFCP i -based chlorosilane [136]
DFMA j [137]

Poly(methyl hydrosiloxane) [138]

Photoactive, fluorescent Poly(butyl methacrylate) [29]
a Ethylene glycol methacrylate phosphate; b poly(isobutylmethacrylate-co-3-methacryloxypropyltrimethoxysilane);
c poly(2-(dimethylamino)ethyl methacrylate); d poly-(3-(trimethoxysilyl)propyl methacrylate); e N-(3-triethoxysilylpropyl)-
5,5-dimethylhy-dantoin; f poly(vinylbenzyltributylphosphonium chloride); g poly(p-styrene tributyltetradecylphospho-
nium sulfate); h trimethoxysilane-end-capped poly(dimethylaminoethyl methacrylate)-block-polystyrene; i perfluorocy-
clopentene; j dodecafluoroheptyl methacrylate.

Nano-structuring of the coating film surface by the SNP has been explored to im-
part superhydrophobicity to coatings. This is an extremely interesting property, with
application in self-cleaning, anticorrosion, antipollution, self-healing, and ice repellent
surfaces [142]. Coatings with contact angles above 150◦ have been prepared using nanopar-
ticles modified with different hydrophobic groups (e.g., fluorinated) [124,133–136,138] and
modulating the roughness of the surface (e.g., using raspberry-like structures) [95,115,132].
Nahum et al. prepared nanocomposite coatings based on urethane acrylate and epoxy,
containing SNPs functionalized with photoreactive benzophenone groups and a fluo-
rinated silane [134]. These coatings are UV-cured to yield high contact angles and a
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good bonding between the SNPs and polymeric matrix. Water-repellent fluorine-free
coatings were also reported, based on nanostructured roughness provided by the incor-
poration of SNP in polyester [124]. After treatment with poly(isobutylmethacrylate-co-
3-methacryloxypropyltri-methoxysilane) (PIT), hydrophobic polyester fabrics with good
water repellence were obtained (Figure 9).

SNPs not only feature high chemical and mechanical stability, but also have the ability
to protect guest molecules incorporated in the silica structure. They offer an excellent
support for photoactive molecules since they are transparent in a wide range of wave-
lengths, from the ultraviolet to the near infrared (NIR), and they shield the dyes from
oxygen, enhancing their photostability [29]. For example, fluorescent waterborne coatings
were prepared from nanoparticles with a silica core and a polymer shell that originates
from the coating film [88]. The SNPs were modified by the incorporation of a perylene
diimide (PDI) derivative covalently linked to the silica network during the synthesis of the
SNPs. The silica shields the dyes from oxygen, increasing their photostability, while the
anchoring groups reduce dye aggregation and consequent fluorescence quenching. The
SNPs surface was modified with MPS to graft a poly(butyl methacrylate) shell by emulsion
polymerization. The hybrid particles yield films with good flexibility and transparency,
strong fluorescence emission, and high mechanical strength (Figure 10). Compared to
the films without the SNPs, those with hybrid nanoparticles have improved mechanical
strength and higher Tg due to the lower polymer mobility [29,143].
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Figure 9. Hydrophobization of fabric with silica and polymeric water-repellent PIT. (a) Alkali-treated
polyester fabric, (b) SiO2@fabric, and (c) PIT hydrophobized SiO2@fabric. The anti-stain properties of
the fabric are observed upon trial with several aqueous mixtures (bottom). Reprinted with permission
from ref. [124]. Copyright 2017 Elsevier.
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5. Conclusions and Outlook

The need to replace solvent-borne coatings by environmentally friendly waterborne
coatings without losing performance has led to the development of different hybrid coating
solutions. Those containing silica nanoparticles (SNP) offer the opportunity to design
coatings with good mechanical performance and also other properties, such as super-
hydrophobicity, anti-corrosion, antimicrobial activity, optical activity, etc.

The combination of polymer and SNPs can improve the mechanical properties and
the chemical resistance of hybrid coatings, but also offers the flexibility to develop high-
performance environmentally friendly coatings with a wide range of functions. In these
types of materials, the properties and performance are highly dependent on the silica
content and the homogeneity of nanoparticles distribution in the coating film. Therefore,
coupling agents play a major role in the nanofiller incorporation. These agents contain
both reactive groups to attach to the polymer component and to anchor to the SNPs. This
approach is particularly interesting in obtaining core-shell nanostructures, with a silica
core and a polymer shell, offering excellent control over the distribution of the inorganic
component in the polymer matrix of the coating, providing better mechanical performance
and avoiding cavitation. The versatility of the preparation and surface modification of SNPs
provide the design flexibility to use them as vehicles to impart different functionalities
for specific coating applications, from flame retardancy to antimicrobial properties or
photoactivity. Other functions, based on the structuring of the coating film provided
by the nanoparticles have attracted strong interest, namely to produce anti-stain and
superhydrophobic coatings. Better control of the nano-structuring in hybrid coatings offer
other still underexplored possibilities, such as the development of structural color.

Silica-polymer hybrid nanostructures still hold untapped potential for the develop-
ment of high performance environmentally friendly functional coatings for a plethora of
novel applications.
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unsaturated polyester based nanocomposites: Effect of vinyl modified nanosilica on mechanical properties. Express Polym. Lett.
2016, 10, 139–159. [CrossRef]

72. Qu, A.; Wen, X.; Pi, P.; Cheng, J.; Yang, Z. Synthesis of composite particles through emulsion polymerization based on
silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants. J. Colloid Interface Sci. 2008, 317, 62–69. [CrossRef]

73. Maghami, S.; Dierkes, W.K.; Noordermeer, J.W.M. Functionalized SBRs in silica-reinforced tire tread compounds: Evidence for
interations between filler and zinc oxide. Rubber Chem. Technol. 2016, 89, 559–572. [CrossRef]

74. Meador, M.A.B.; Scherzer, C.M.; Vivod, S.L.; Quade, D.; Nguyen, B.N. Epoxy reinforced aerogels made using a streamlined
process. ACS Appl. Mater. Interfaces 2010, 2, 2162–2168. [CrossRef]

75. Karimi, A.A.; Ahmad, Z. Effect of interface on the thermal mechanical properties of chemically bonded epoxy-silica hybrids.
Prog. Org. Coat. 2017, 106, 137–144. [CrossRef]

76. Ammar, S.; Ramesh, K.; Ma, I.A.W.; Farah, Z.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K. Studies on SiO2-hybrid polymeric
nanocomposite coatings with superior corrosion protection and hydrophobicity. Surf. Coat. Technol. 2017, 324, 536–545. [CrossRef]

77. Barna, E.; Bommer, B.; Kürsteiner, J.; Vital, A.; Trzebiatowski, O.V.; Koch, W.; Schmid, B.; Graule, T. Innovative, scratch proof
nanocomposites for clear coatings. Compos. Part A Appl. Sci. Manuf. 2005, 36, 473–480. [CrossRef]

78. Santiago, A.M.; Ribeiro, T.; Rodrigues, A.S.; Ribeiro, B.; Frade, R.F.M.; Baleizão, C.; Farinha, J.P.S. Multifunctional Hybrid Silica
Nanoparticles with a Fluorescent Core and Active Targeting Shell for Fluorescence Imaging Biodiagnostic Applications. Eur. J.
Inorg. Chem. 2015, 2015, 4579–4587. [CrossRef]
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