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Abstract: Phenol-formaldehyde (PF) resin, modified using nano-copper with varying contents (0 wt%,
1 wt%, 3 wt%), was manufactured to improve the mechanical properties of Chinese fir. The morphol-
ogy, chemical, micromechanical and micromechanical properties of the samples were determined by
transmission electron microscopy (TEM), atomic force microscopy (AFM), environmental scanning
electron microscopy (ESEM), Fourier transform infrared spectroscopy (FTIR), nanoindentation (NI)
and traditional mechanical testing. The TEM and AFM results indicated that the in situ synthesized
nano-copper particles were well-dispersed, and spherical, with a diameter of about 70 nm in PF resin.
From the FTIR chemical changes detected by FTIR inferred that the nano-copper modified PF resin
penetrated into the Chinese fir cell walls and interacted with the acetyl groups of hemicellulose by
forming a crosslinked structure. Accordingly, the micro-mechanical properties of the Chinese fir cell
walls were enhanced after treatment with nano-copper modified PF resin. The filling of the PF-1-Cu
resin (1 wt% nano-copper) in the wood resulted in 13.7% and 22.2% increases in the elastic modulus
(MOE) and hardness, respectively, of the cell walls. Besides, the impact toughness and compressive
strength of the Chinese fir impregnated with PF-1-Cu resin were 21.8% and 8.2% higher than that
of the PF-0-Cu resin. Therefore, in situ synthesized nano-copper-modified PF resin is a powerful
treatment method for Chinese fir due to improved diffusive properties and reinforcement of the
mechanical properties.

Keywords: cell walls; micromechanical properties; macromechanical properties; PF resin; modifica-
tion

1. Introduction

Chinese fir is the main planted timber species in southern China. Wood from Chinese
fir forests has become an important industrial raw material for broad commercial use,
because of its aesthetic, good adaptability to the environment, and shorter growth cycle.
However, Chinese fir presents several major disadvantages, such as low surface hardness
and dimensional stability, which limit its commercial and practical applications [1].

To improve the surface hardness and stability of plantation wood, various modification
methods have been developed, including chemical impregnation, densification, thermal
treatment, and surface coating [2–5]. Chemical impregnation has been a powerful method
to improve the mechanical properties of wood and promote its industrial utilization [6–9].

Low molecular weight phenolic resin as a common impregnation modifier has been
widely used to improve wood properties [8,10–12]. Among the modifiers, water-soluble
low molecular weight phenol-formaldehyde (PF) resin is known for its low initial viscosity,
low-cost, low-toxicity, and non-flammability; they can also easily diffuse into wood cell
walls, and enhance the properties of wood [13]. PF resin can also form a complex, cross-
linked structure with components in its wood cell walls [14–16]. Other studies have shown
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that water-soluble PF resin can significantly improve the dimensional stability, surface
hardness and compressive properties of wood [14–18].

Phenolic resin as an impregnation modifier has numerous advantages. But limited by
its chemical structure, PF resin is still characterized by several deficiencies. The phenolic
hydroxyl group and methylene of PF resin are easily oxidized, which can reduce its
oxidative resistance [18]. The cured PF, which is only connected by methylene, results
in the high density of the rigid groups (benzene ring). Notably, large steric hindrance
and small rotational degrees of freedom enhance the brittleness of pure PF. Accordingly,
brittleness increases when PF resin cures on the wood surface, which significantly limits its
application range and service life. Therefore, PF resin must be modified. Nanoparticles such
as TiO2, Al2O3, CuO, ZnO have been widely used in recent years to enhance the physical
and mechanical properties of PF resin [19–22]. It has been reported that the inherent
brittleness of PF resin being used as a friction material (plastic field) is one of its limiting
conditions, whereas nano copper has excellent properties which can be used to enhance
the strength, hardness, toughness and chemical resistance of PF resin. [23,24]. Nano-copper
can also reduce the apparent activation energy and curing time of PF resins [25].

Unfortunately, nanoparticles-reinforced PF resin generally suffers from some problems.
Generally, nanoparticles can easily agglomerate in the PF resin matrix and the PF resin
exhibits weak interfacial bonding with reinforced nanoparticles. Therefore, the mechanical
properties of PF resin were reduced. These factors limit the application of nanomaterials in
PF resin modification. In addition, in the wood modification, nano-copper and PF resin
are typically used separately to modify wood to improve their corrosion resistance, and
mechanical properties, respectively [26,27]. To the best of our knowledge, researchers rarely
combine nano-copper with PF resin to modify wood, because of the large aggregations of
nano-copper and very limited studies focusing on the mechanical properties of wood cell
walls after impregnation with modified PF resin.

Therefore, to address the problem of nano-copper agglomeration, many attempts
have been made to explore effective methods for dispersing nanoparticles in PF resins. To
render nano-copper more uniformly dispersed in PF resins, polyvinyl pyrrolidone (PVP) is
used as the surface stabilizer, reducing agent and dispersant. The bonding strength of the
filler-matrix is thus improved. Subsequently, a nano-copper modified PF resin with good
dispersibility was synthesized in situ, alleviating the brittleness of wood treated with PF
resin. The morphology, chemical, micromechanical and macromechanical properties of the
treated and control samples were determined by transmission electron microscopy (TEM),
transmission electron microscopy (AFM), environmental scanning electron microscopy
(ESEM), Fourier transform infrared spectroscopy (FTIR) and nanoindentation (NI), etc., to
investigate the interaction mechanism of the modified resin with wood. This study can
provide an effective method for the preparation of high-quality wood products, such as
high mechanical properties and dimensional instability, used for outdoor or high humidity
environments.

2. Materials and Methods
2.1. Materials

In this study, 40-year-old Chinese fir (Cunninghamia lanceolata) was sourced from the
Gongyi Forest Farm in the Huangshan, Anhui Province of China. Samples were chosen
at a trunk height of 1.5 m. The specimens were cut into a final size of 10 × 5 × 5 mm3 in
the longitudinal (L), tangential (T), and radial (R) directions. They were then numbered by
the sawing sequence from the initial location (Figure 1). Among them, odd samples were
modified with vacuum and high-pressure impregnation treatment; even samples were
marked as control samples. All reagents were purchased from Beijing Chemicals in Beijing,
China and used as received.
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Figure 1. Schematic illustration of the sample preparation. (a) Chinese fir logs, (b) Sawed samples, (c) Preparation of
nano-copper modified PF resin, (d) Chinese fir samples impregnated with resin.

2.2. Preparation of PF Resin

The modified PF resins were synthesized in a three-necked flask. Phenol and formalin
were first fed into the flask. The reaction of phenol with formaldehyde proceeded at
70–80 ◦C under stirring for 1 h in the reactor and was catalyzed by NaOH (40 wt% dissolved
in water). Then, it was rapidly stopped by placing the reactor in a cold-water bath.
Subsequently, the formaldehyde added into the reactor was vigorously stirred at 75 ◦C for
2 h. After that, it was quickly cooled to 40 ◦C (the molar ratio of formaldehyde, phenol and
NaOH was 1:2.1:0.2).

2.3. Preparation of Nano-Copper Modified PF Resin

The percentage of nano-copper in PF (by weight) was controlled by changing the
amount of CuSO4 and prepolymer to obtain small particle sizes and good dispersion, and
PVP was also mixed the polymer to avoid of nano-copper agglomeration during synthesis.
Four groups of samples were prepared: the control group and the groups with 0%, 1%, and
3% nano-copper-modified PF (Table 1).

Table 1. The main compositions prepared for nano-copper modified phenol-formaldehyde (PF) resin.

Sample CuSO4
5H2O/mol EDTA-2Na/g PVP/g Sodium

Pyrophosphate/g
Seignette

Salt/g
Deionized
Water/mL Cu/%

Control - - - - - - -
PF-0-Cu 0 - - - - - 0
PF-1-Cu 0.05 18.61 0.433 2.659 5.645 25 1
PF-3-Cu 0.15 55.83 1.299 7.977 16.934 25 3

Preparation of the PF-1-Cu resin: In the fabrication of PF-1-Cu, the former part was
prepared using the same method as that of PF resin. The amount of composition added
during the experiment is listed in Table 1. Until the PF resin in the three-necked flask
was quickly cooled below 60 °C, the mixture (sodium pyrophosphate and potassium
sodium tartrate was dissolved in the aqueous solution of formaldehyde) was added. Under
vigorous stirring, the 40% NaOH was added for 20 min to adjust the pH to 12. Subsequently,
a solution of copper sulfate (CuSO4, disodium ethylenediamine tetraacetate (EDTA-2Na),
and PVP dissolved in H2O, with pH adjusted to 11.5 by using NaOH (40%)) was added into
the three-necked flask. It was stirred at 50 ± 5 ◦C for 30 min and NaOH (40%) was added
to maintain the pH at 12 ± 0.5. The temperature was set to 70 ± 5 ◦C for another period of
1 h, and then cooled to 40 ◦C to obtain the PF-1-Cu resin synthesized in situ. Similarly, the
PF-3-Cu resin was to be synthesized in accordance with Table 1. The viscosities and solid
contents of the modified PF resins are listed in Table 2.

Cu2+ + 4OH− + 2HCHO = Cu + 2HCOO− + H2 + 2H2O (1)
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Table 2. Viscosity, solids content and pH values of PF resin, alone or amended with nano-copper
particles.

Sample pH Viscosity (mPa·S) Solids Contents (%)

PF-0-Cu 10.11 32.6 0.52
PF-1-Cu 11.08 13.9 0.39
PF-3-Cu 11.07 13.8 0.40

2.4. Vacuum and High-Pressure Impregnation Treatment

Before impregnation, the moisture contents (MC) of all samples were conditioned
to 12% at 65% relative humidity (RH) and 20 ◦C. The samples were impregnated with in
situ synthesized nano-copper modified PF resin in a vacuum from different groups under
pressurized conditions. First, the resin was diluted with deionized water to a concentration
of 25%. Then, the samples were impregnated in the resin and placed in a vacuum for 2–3 h
to ensure the resin had been adsorbed. Next, the process was conducted at 0.5 MPa for 1 h,
then at 0.6 MPa for 2 h, and finally at 0.7 MPa for 4 h. The samples were then placed in an
oven, dried at 45 ◦C for 4 h, 70 ◦C for 6 h, and 103 ◦C for gradual drying in the end.

2.5. Characterization

Particle sizes and morphologies were characterized by TEM (H-800, Hitachi Inc.,
Tokyo, Japan). The resin was dropped on the copper grid, and after drying, the morpholog-
ical characteristics of the copper particles were observed by TEM. The acceleration voltage
was 80 kV, and the magnification level was 40–200 Kx.

The morphological and chemical compositions of impregnated Chinese fir were inves-
tigated by environmental scanning electron microscope coupled with an energy dispersive
spectrometer (ESEM–EDS) (SU8010, Hitachi Inc., Tokyo, Japan). The samples were cut into
0.15 × 5 × 5 mm3 (L × R × T) pieces with a microtome. After the surface was sprayed
with gold, the samples were observed at an operating voltage of 15 kV.

The sample surfaces of the nano-copper particles were performed with an AFM
(Multimode 8, Bruker Inc., Santa Barbara, CA, USA) under PF-QNM imaging mode. The
surface topography of the PF-1-Cu was recorded over an area of 1× 1µm2 in tapping
mode, at a high resolution with a sharp silicon tip (0.5 N/m). The two-dimensional (2D)
and three-dimensional (3D) images were obtained at the room temperature (24 ± 1 ◦C).

Chemical changes in the control and nano-copper modified Chinese fir samples
were characterized using a Nicolet IN10 Fourier infrared spectrometer (Thermo Scientific,
Waltham, Waltham, MA, USA) within the range of 4000–800 cm−1, using 64 scans with a
resolution of 4 cm−1. Thereafter, the FTIR spectra were processed using Origin 9.1 software
(OriginLab Inc., Northampton, Waltham, MA, USA). The corrected spectra were subjected
to three corrections, namely, atmospheric, flat, and baseline offset corrections.

The mechanical properties of the wood are the main indicators of resistance to external
forces during wood application. Among these factors, impact toughness and compressive
strength are one of the most important factors. The impact strength of specimens measuring
300 × 20 × 20 mm3 was determined using a pendulum impact tester (Tinius Olsen Inc.,
Horsham, PA, USA) according to ISO 13061-10. The compressive strength parallel to
the grain was measured on a CMT 5205 test machine (MTS Systems Co. Ltd., Shenzhen,
Guangdong, China), the sample 20 × 20 × 30 mm3 according to ISO 3129:2012.

Besides, to evaluate the effects of nano-copper-modified low molecular weight PF
on the nanomechanical properties of the wood cell walls, an NI (Triboindenter, Hysitron
Inc., Minneapolis, MN, USA) with an in situ imaging function was used. The samples
were glued to a sample holder and flattened with a diamond knife. The samples were then
conditioned in the nanoindentation test chamber for more than 48 h. Subsequently, the
test was performed using a Berkovich diamond indenter (the tip radius of under 100 nm),
loaded in 5 s to a peak force of 250 µN, with the maximum force held for 6 s, and ultimately
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unloaded in 5 s. The NI hardness and modulus of elasticity (MOE) of the samples were
calculated using the method described in the literature (Yu et al., 2007; Huang et al., 2013).

High-resolution electrospray ionization mass spectrometry of PF-1-Cu samples was
acquired using a Bruker Apex IV FTMS (Bruker Inc., Bremen, Germany). It was shown
that the modified resin mostly varied from 343 to 615 g/mol. This means that the modified
resin exhibited low molecular weight, which aided in better penetration into the wood
cell walls.

3. Results and Discussion
3.1. Dispersion of Low Molecular Weight PF and Nano-Copper in the Wood Cell Walls

The penetration depth of modified PF resin into wood cell walls was generally affected
t by the molecular weight of the PF resin oligomers and the dispersibility of nano particles.
Figure 2 shows that the molecular weight of the PF resin is relatively low (mostly less than
500 g/mol). In addition, to elucidate the permeability of the nano-copper modified low
molecular weight PF resin in the wood cell walls, it is essential to study the distribution
and diameter of the in situ synthesized nano-copper particles.

Figure 2. High resolution mass spectrum of the molecular weight distribution of 1 wt% nano-copper modified low molecular
weight PF resin.

To further verify the more detailed nano-copper modified PF resin microstructure,
Figure 3 shows the TEM image of the modified PF resin with 1 wt% in situ synthesized
nano-copper particles. The black particles in the figure represent the in situ synthesized
nano-copper, whereas the gray portion denotes the low molecular weight PF resin. As
indicated in the figure, the nano-copper is well-dispersed throughout the PF resin. Distinct
from that of the PF resin micrograph, the morphology of the nano-copper particles could be
easily identified with spherical in geometry, which agrees with previous reports [28]. The
diameters of the nano-copper particles were in the nanometer range and their distribution
showed no agglomeration.
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Figure 3. TEM image of the 1 wt% nano-copper modified low molecular weight PF resin when the
scale bars are (a) 500 nm and (b) 100 nm, respectively.

The AFM image not only clearly reveals the distribution of nano-copper in the PF resin,
but also obtains the diameter of the nano-copper accurately and concretely. Figure 4 is the
AFM image of 1 wt% nano-copper modified PF resin, which shows that the nanoparticles
were dispersed well throughout the sample, with average diameters of about 70 nm. This
result was attributable to the use of in situ synthesis method to prepare the nano-copper
modified PF resin.

Figure 4. AFM imaging of 1 wt% nano-copper-modified PF resin. (a) and (b) are the three-
dimensional and two-dimensional image of AFM, respectively; (c) the section analysis image of AFM.

Nanoparticles exhibit high surface activity that can easily aggregate. However, the
nano-copper in this experiment did not aggregate for the following reasons: (1) As the
polycondensation reaction was initiated, and nanosized copper particles suffer from steric
hindrance ascribed to the increasing molecular weight and viscosity of the PF resin pre-
polymer [29]). (2) The PVP added to the reaction system acted as a protective layer by
coordinating atomic N, O, and Cu. Simultaneously, the long chains of aliphatic C-H ex-
tended to the surrounding environment and form a stereoscopic barrier to prevent the
agglomeration of copper particles. PVP was used as a dispersant and stabilizer in the
process of nano-copper modified PF resin, and the stable PVP-coated Cu nanoparticles
were prepared using a simple chemical route to prevent the agglomeration of copper
particles [30]. Copper ions were reduced in the presence of PVP.

The improvement of the nano-copper-modified PF resin on the properties of Chinese
fir mainly depends on the permeability and uniformity distribution of nano-copper and
the resin in the cell walls. After impregnating PF resin with nano-copper content of
0 wt%, 1 wt%, and 3 wt%, the weight gain rates of Chinese fir were 26.67%, 19.36%, and
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18.75%, respectively. The morphology of the treated and control samples were observed
directly by ESEM (Figure 5). It is clear that nano-copper-modified PF resin entered the cell
lumens of the Chinese fir. Moreover, the modified PF molecules freely diffused into the
intercellular spaces of the wood under vacuum and pressure conditions. In addition, it was
also observed that no obvious boundary was found between the cell walls and the filled
modified PF resin, which may indicate that some PF resin has penetrated into the S2 layers
of the cell walls and may interact with one another.

Figure 5. ESEM image of the control samples (a) and PF-1-Cu samples (b).

Table 3 shows the copper containing percentage of the 10 points taken in Figure 5. The
calculation is based on the weights of C, O, and Cu in the EDS test results.

Table 3. Relative percentage of Cu at each point in Figure 5b.

Sampling
Point 1 2 3 4 5 6 7 8 9 10

Cu (%) 2.94 4.11 0 0 2.84 1.41 0 2.04 3.07 1.59

The ESEM test was used to study the permeability of nano-copper modified PF in
Chinese fir, and the results are listed in Table 3. Among them, points 5 and 6 were located
in the cell lumen, while the remaining points are located on the cell walls. Table 3 shows
that the nano-copper modified low molecular weight PF was diffused and penetrated
widely not only into the cell lumens but also into the cell walls. The relative percentage of
nano-copper was high in the PF-1-Cu samples. The average percentage of nano-copper in
the cell lumens was 2.13%, which was nearly 24% higher than that in the wood cell walls
(1.72%). This result indicated that the modified PF resin was easier to penetrate into the cell
lumens than the cell walls. Smith et al. (1985) and Imamura et al. (1998) reported that the
molecular weight of a resin was crucial to its penetration into wood cell walls and revealed
that the presence of resin in the cell walls than in the cell lumens can alter the properties
of wood to greater extents [31,32]. Therefore, the penetration of the modified PF resin is
highly influential on the mechanical properties of cell walls.

3.2. Improvement of the Micromechanical Properties of the Wood Cell Walls

Figure 6 shows the images of nanoindentations, showing the measurement locations
of untreated and PF-1-Cu-treated Chinese fir, respectively, to evaluate the effects of nano-
copper modified PF resin on the NI MOE and hardness of the wood cell walls. Figure 7
and Table 4 display the changes in the mechanical properties of the cell walls before and
after modification.
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Figure 6. Nanoindentation images of Chinese fir marked with measurement location. (a) control
sample, (b) PF-1-Cu sample.

Figure 7. Micromechanical properties of samples before and after modification treatment (a) elastic
modulus, (b) hardness.

Table 4. Changes in cell walls mechanical properties of samples before and after modification
treatment.

Samples Average MOE
(GPa)

Average Hardness
(MPa)

MOE Increase
(%)

Hardness
Increase (%)

Control 17.3 ± 0.45 B 415.1 ± 10.92 B 1 1
PF-0-Cu 18.9 ± 0.19 A 491.4 ± 24.58 A 9.9 18.4
PF-1-Cu 19.5 ± 0.48 A 507.3 ± 10.18 A 12.8 22.2
PF-3-Cu 19.6 ± 0.44 A 506.1 ± 10.19 A 13.7 21.9

The MOE, hardness values followed by different letters significantly differ according to the Tukey test (p < 0.05).

The variation coefficient of NI MOE of the samples was small, less than 10% for each
sample. The average NI MOE and hardness values of the cell walls in the samples are listed
in Table 4. As shown in the table, the average NI MOE value of the untreated Chinese fir
was 17.3 GPa, and that of the sample impregnated with PF-0-Cu resin was 18.9 GPa, which
was 9.9% higher than that of the former. Obviously, the average NI MOE of the PF-3-Cu
samples was higher (maximum of 19.6 GPa), which was 13.7% higher than the control
Chinese fir. However, the NI MOE values of PF-1-Cu and PF-3-Cu samples were similar.

The NI hardness value of the control samples was 415.1 MPa, and that of the PF-0-Cu
samples reached 491.4 MPa, reflecting a difference of approximately 18.4%. After 1 wt%
nano-copper was added, the NI hardness of the samples was as high as 507.3 MPa, which
was 22.2% higher than the control samples. The results prove that a 1% addition of nano-
copper could improve the mechanical properties of the wood cell walls. Furthermore, the
variation coefficient of NI hardness with different contents of nano-copper was within a
small range.
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According to the literature, it can be inferred that the modified PF resin diffused
into the nanopores of the wood cell walls and form crosslinked networks, improving the
mechanical properties of wood [33]. In the current experiment, the mechanical properties
of the wood cell walls were improved through physical and chemical modification. It was
further confirmed that nano-copper-modified low molecular weight PF could be evenly
distributed in the cell walls and enhanced the mechanical properties of the cell walls.
Furthermore, the increase in NI hardness was significantly more than the increase of NI
MOE, which was attributed to the lower MOE and higher hardness of the modified PF
resin polymers [34]. In addition, the average values of the NI MOE and hardness values
of PF-1-Cu and PF-3-Cu samples were similar, which is likely, because the PF resin with
1 wt% nano-copper to modified Chinese fir is better than the latter. The reason was that the
low content of nano-copper not only economically saves materials, but also prevents the
agglomeration of nano-copper.

3.3. Mechanical Properties of Chinese Fir after Impregnation

Relative to that of samples treated using PF-0-Cu resin, the impact toughness of the
Chinese fir impregnated by PF-1-Cu resin increased by 21.8%, while that of the PF-3-Cu
resin decreased by 1.4% (Figure 8a). The results indicated a significant decrease in the
brittleness of the samples impregnated with in situ synthesized nano-copper modified PF
resin. The PF-1-Cu resin absorbed more impact force and increased the toughness of the
Chinese fir [35–37].

Figure 8. Mechanical properties of the control, PF-0-Cu, PF-1-Cu, and PF-3-Cu samples. (a) impact toughness, (b) compres-
sive strength.

Compression experiments parallel to the growth direction were performed, shown
in Figure 8b. The Chinese fir impregnated with PF-0-Cu showed compressive strength
was 15.3% higher than the control samples. However, compressive strength of the wood
treated with PF-1-Cu resin significantly improved by 24.7% relative to that of the untreated
wood, making this material possible for commercial applications. This may be due to the
fact that nano-copper well-dispersed in PF played an indispensable role in improving the
compressive strength of Chinese fir.

3.4. FTIR Analysis of the Combination of Low Molecular Weight PF, Nano-Copper and Wood
Cell Walls

The cell walls of Chinese fir are primarily composed of cellulose, hemicellulose, and
lignin. It was reported in previous literature that cellulose etherification with formaldehyde
or urea-formaldehyde oligomers can react in acidic conditions. This contrasts with the same
reaction in neutral or alkaline conditions, where the extents of reactions are low [38,39].
To confirm the possible interactions between the wood cell walls and the modified PF
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resin in this study, changes in the chemical groups of the samples were detected by FTIR
spectroscopy. The FTIR spectra of the samples are presented in Figure 9 and Table 5.

Figure 9. FTIR spectra of the control (a), PF-0-Cu, PF-1-Cu, and PF-3-Cu samples (b).

Table 5. FTIR spectrum assignments of the control, PF-0-Cu, PF-1-Cu, and PF-3-Cu samples.

Wavenumbers (cm−1) Assignment

3316 O–H stretching vibration
2900 C–H stretching vibration of methylene
1724 C=O stretching vibration in acetyl groups in the hemicellulose
1600 elongation of C=C

1270 C–O stretching vibration of aliphatic C–OH, aliphatic C–O,
and methylol C–OH

The red and orange curves in Figure 9 denote the control and PF-0-Cu samples,
respectively. The absorption at 1724 cm−1 of the red curve indicated C=O stretching
vibration in the acetyl groups in the hemicellulose [40]. After being impregnated with PF
resin (orange spectra), the carbonyl and carboxyl groups’ adsorptions at 1724 cm−1 of the
control sample shifted to lower wave numbers at 1722 cm−1.

Comparison of the PF-0-Cu and PF-1-Cu curves indicate that a chemical reaction
occurred among the wood cell walls, nano-copper particles, and PF resin. The C=O
stretching vibration at 1724 cm−1 disappeared after nano-copper modification, whereas
the C–O stretching vibration of aliphatic C–OH, aliphatic C–O, and methylol C–OH at
1270 cm−1 were intensified in the modified PF resin curves (green and blue spectra).

From the FTIR spectra of the control samples, PF-0-Cu, PF-1-Cu, and PF-3-Cu, the
carbonyl and carboxyl groups in the hemicelluloses of the control sample at 1724 cm−1

shifted to 1722 cm−1. This finding agrees with reports that PF resin accelerates the oxidation
of wood cell walls [41]. This occurrence is consistent with the literature indicating that
PF resin and –OH groups in wood polymers can crosslink [18,34]. It is conducive to the
adhesive forces across the interphase boundaries between the wood cell walls and PF resin.

Comparison of the curves of the FTIR spectra indicated that the C=O stretching vibra-
tion at 1724 cm−1 disappeared after nano-copper modification, while the C–O stretching
vibration of aliphatic C–OH, aliphatic C–O, and methylol C–OH at 1270 cm−1 increased
in the modified PF resin curves (green and blue spectra). These changes revealed that the
modified PF resin reacted with acetyl groups in the hemicelluloses [42]. The modified
PF resin samples showed a relatively larger ratio at 1600 cm−1, which was attributed to
the enhanced condensation reaction of the methylol in the PF resin in the presence of
nano-copper to form methylene (–CH2–) [42].

The surface atomic coordination of nano-copper particles is insufficient at high surface
energy and chemical activity. Nano-copper particles can easily react with hydroxyl groups
in the PF resin to form metal complexes, block the hydroxyl groups, and increase the chem-
ical stability of the PF resin. It has been speculated that the structure of the coordination
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compound with copper nanoparticles and PF resin may crosslink with the acetyl groups of
hemicelluloses [23,43] (Figure 10). Therefore, under the interactions of Chinese fir, PF resin,
and nano-copper, the physical properties of Chinese fir were considerably improved. This
modified Chinese fir can be utilized in outdoor buildings and furniture.

Figure 10. Schematic of the chemical reactions of cell wall components with nano-copper-modified PF resin.

3.5. Novelty, Limitations and Perspectives of the Study

In this study, nano-copper-modified PF resins with good dispersibility were syn-
thesized in situ, with PVP as the surface stabilizer, reducing agent, and dispersant for
the uniform dispersion of nano-copper in the PF resins. The bonding strength of the
filler-matrix was improved, solving the brittleness problem of the PF resin-treated wood.
Consequently, the mechanical properties of Chinese fir were enhanced. In future research,
we intend to focus on the weathering test resistance and antibacterial properties of Chinese
fir impregnated with nano-copper modified PF resins, which is essential to be utilized in
outdoor buildings and furniture.

4. Conclusions

In situ synthesized nano-copper modified PF resin is an effective treatment method for
Chinese fir, due to the improved diffusive properties and reinforcement of the mechanical
properties of Chinese fir. The in situ synthesized nano-copper particles were well-dispersed,
and their morphology was basically spherical, with a diameter of about 70 nm in the PF
resin. Due to the small size, the nano-copper modified low molecular weight PF resin
could penetrate into the S2 layers of the cell walls and interact with them. The modified
PF resin crosslinked with the acetyl groups of hemicelluloses of the Chinese fir, and the
nano-copper reacted with the hydroxyl groups in the PF resin to form metal complexes,
block the hydroxyl groups, and increase the chemical stability of the PF resin. Therefore, the
micro-and macro-mechanical properties of the Chinese fir were enhanced after treatment
with nano-copper modified PF resin. The PF-1-Cu modified PF resin was identified as the
best choice for the modification of Chinese fir, where the average NI MOE and hardness
values of the cell walls in the samples increased by 12.8% and 22.2%, respectively, and the
impact toughness and compressive strength of them increased obviously 21.8% and 8.2%
than that of the pure PF resin, respectively. This study can provide practical guidance for
the modification of Chinese fir utilized in outdoor buildings and furniture.
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