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Abstract: Artificial knee joints play a critical role in improving the quality of life of the elderly and
those with knee injuries. Such knee joints are fabricated using a composite material consisting of
metal alloy particles and polymer resin and are generally produced using the metal powder injection
molding (MIM) process. However, if the local powder concentration of the molded product is too
low, the mechanical properties and aesthetic appearance of the joint are severely degraded. Similarly,
if the product undergoes excessive shrinkage following removal from the mold, the dimensional
accuracy will fail to meet the design specifications. Accordingly, the present study applies a hybrid
approach based on the Taguchi robust design methodology and gray relation analysis (GRA) theory
to determine the optimal MIM processing conditions that simultaneously maximize the powder
concentration uniformity while minimizing the volume shrinkage. The feasibility of the proposed
approach is demonstrated by means of CAE (Computer Aided Engineering) mold flow simulations.
The results show that while the robust Taguchi design method enables the optimal processing
parameters that maximize the powder concentration uniformity and minimize the volume shrinkage
to be individually determined, the hybrid Taguchi–GRA method enables both quality measures to be
optimized simultaneously.

Keywords: artificial knee joints; metal powder injection molding; Taguchi method; gray relation
analysis; black lines; powder concentration; volume shrinkage

1. Introduction

The knee joint is the largest and most complex joint in the human body, connecting
the ends of the femur and tibia. The joint provides an essential support pivot in standing,
walking, and running. However, for those with knee joint injuries or old age, it is often
necessary to replace the joint with an artificial implant in order to maintain (or restore)
quality of life or mobility. The replacement procedure involves the removal of damaged
bones and cartilage from the thigh, tibia, and knee bone regions and then replacing them
with an artificial joint (prosthesis) made of metal alloy and polymer [1–3]. As shown in
Figure 1, artificial knee joints consist mainly of a thigh bone–femoral metal component,
a shin bone–metal tibial screw, and a plastic bearing positioned between them. The
conventional materials used for artificial knee joint implantation include stainless steel,
cobalt–chromium alloy, titanium, titanium alloy, tantalum, zirconium alloy, and zirconia [4].
The material library used in this study has relatively complete material information for
stainless steel powder with polypropylene (abbreviated as PP), so stainless steel was used
as the metal material for subsequent analysis. The relevant information for the material
formula is shown in Table 1.
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Figure 1. (a) Front view and (b) side view of artificial knee joint assembly, consisting of a thigh bone–femoral metal
component, shin bone–metal tibial screw, and plastic insert.

Table 1. Material properties of polypropylene (PP) with metal (60% vol) and PP used in Moldex3D
flow simulations.

Property PP with Metal * (60% Vol) PP

ρ: density
[g/cm3] 5.1 0.91

µ: viscosity
[Pa-s]

(3.5~5.5) × 102

(T: 190–230 ◦C;
.
γ: 10–105)

(6.8~9) × 102

(T: 190–270 ◦C;
.
γ: 10–105)

α: thermal expansion
[1/K] 8.5 × 10−5 1.5 × 10−4

k: heat conduction
[erg/(s·cm·K)] 8 × 104 2.52 × 104

Cp: specific heat
[erg/(g·K)] 8 × 106 3.1 × 107

Cv: specific volume
[cm3/g]

0.183–0.201
(T: 10–300 ◦C; P: 0–200 MPa)

0.777–0.974
(T: 10–300 ◦C; P: 0–200 MPa)

Note: * Metal powder (stainless steel): density = 7.9 g/cm3; dimensions = 10 microns.

Artificial knee joints are extremely effective in reducing pain and restoring function
in damaged or diseased knees. However, during walking, the joint experiences both a
cyclic load, which causes fatigue damage, and a sliding load, which promotes wear of
the plastic insert. To avoid the need for replacement surgery, the artificial joint must be
capable of resisting these fatigue and wear mechanisms such that it is able to support
the body weight and endure the limb rotation friction over a prolonged service life [5,6].
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Accordingly, the surface mechanical properties and geometrical tolerance of the artificial
knee joint components are critical concerns.

Metal injection molding (MIM) provides a rapid and convenient approach for mass
production of all manner of components with complex forms, small sizes, and superior
surface finish [7–9]. The MIM process commences by working a fine metal or ceramic
powder into a plasticized polymer binder to form a feedstock material. This material is
then injected into a mold in a process akin to the conventional plastic molding process.
Finally, the binder is removed from the molded component by sintering technology and
a sintering process is performed to improve the density and dimensional accuracy of
the final component [10]. Due to the small size of the metal particles in the composite
material (~10 µm), the molded components are of extremely high precision. Furthermore,
the density and strength of the final sintered products are typically far higher than those
of products produced using a conventional powder metallurgy process [11]. As a result,
MIM products are used in a wide variety of applications nowadays, including surgical
instruments, automotive components, fiber-optic parts, mobile phone parts, and biomedical
implants.

However, MIM components are susceptible to significant volumetric shrinkage and
warpage during the cooling process. Furthermore, an excessive shear rate during the
molding process may cause the separation of the metal particles and polymer binding
agent within the feedstock material, which results in turn in the formation of black lines
on the surface of the molded component [12,13]. Thus, proper control of the molding
parameters is essential to ensure that the finished component meets the required geometric
and aesthetic standards [14,15]. In practice, the MIM processing conditions, e.g., the melt
temperature, filling time, packing pressure, and so on, have both individual and interactive
effects on the quality of the final molded parts. As a result, experimental trial-and-error
methods for determining the optimal processing conditions are not only laborious and
time-consuming, but also offer no guarantee of success. Furthermore, MIM components
are typically very small, and hence discriminating between the metal powder distributions
and surface defects of molded parts produced under different processing conditions is
extremely challenging. Consequently, in attempting to optimize the MIM processing
parameters, simulation methods tend to provide faster, more reliable, and more convenient
approaches.

Among the many optimization methods available in the engineering field, e.g., per-
formance measure modeling (PMM), response function modeling (RFM), and Taguchi
robust design, the latter method provides a particularly attractive approach for optimiz-
ing the quality of manufactured products through a minimum number of experimental
trials [16–22]. Thus, taking the metal femoral component of an artificial knee joint for illus-
tration purposes, the present study combines the Taguchi design method with Moldex3D
simulations [23,24] to determine the MIM processing conditions, which maximize the
uniformity of the powder particle distribution in the final component and minimize the
volume shrinkage magnitude during the cooling phase, respectively. The present study
commences by performing Taguchi experiments to determine the processing conditions
that optimize the uniformity of the powder concentration distribution in the final product.
A second series of Taguchi experiments is then performed to establish the processing pa-
rameters that minimize the volume shrinkage of the part (i.e., the knee joint) following its
removal from the mold. Finally, a gray relation analysis (GRA) technique [25] is applied to
the Taguchi results to determine the processing parameters that optimize both the powder
distribution and the volume shrinkage simultaneously.

2. Theoretical Basis for Metal Powder Injection Molding Simulation

The three basic conservation laws (mass, momentum, and energy) for generalized
Newtonian fluids [26], the material constitute relationships for the specific polymer mate-
rials [27], and the particle-phase conservation relationships for a rigid spherical particle
suspension in the polymer fluid [28–31] will be used as the theoretical basis for metal
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injection simulation analysis. In addition, this also includes the formation of black lines on
the surface due to the metal particle migration effect of the mixed fluid during processing.

2.1. Shear-Induced Phase Separation Effect

In the MIM process, the near-wall friction force produced as the molten resin flows
into the mold creates a high shear rate gradient within the channel, which causes the
particles to undergo local rotation (see region B in Figure 2). As the melt proceeds along
the channel, the particles aligned with the point of maximum shear are pushed toward
the wall or central region of the channel, respectively. As a result, a separation of the
powder particles and binder material occurs (see region C in Figure 2). Since the point of
maximum shear is located asymmetrically within the channel, the powder concentration
has a non-uniform distribution, with a lower powder density close to the wall surface and
a higher powder density toward the center of the channel [32].

Figure 2. Shear-induced migration of metal powder particles in composite MIM material: (A) metal powder particles
randomly distributed in binder matrix; (B) metal powder particles rotated in different directions under effects of high shear
rate gradient; (C) phase separation of metal powder particles and binder material.

2.2. Formation of Black Lines on Product Surface

As shown in Figure 3, the non-uniform distribution of the powder concentration
within the channel leads to a difference in behavior of the light incident on the molded
part surface. In particular, in regions of the surface with a dense powder arrangement,
the surface roughness is relatively lower. Consequently, the majority of the incident light
is reflected from the surface, giving rise to a bright and shiny appearance. However, in
the regions of the surface with a low powder concentration, some of the incident light is
trapped within the voids between the particles. As a result, the reflectance of the surface is
reduced and “black lines” are produced, which severely degrade the aesthetic appearance
of the product.
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Figure 3. Schematic illustration showing formation of black lines under effects of non-uniform powder particle concentration
distribution [11].

2.3. Quantification of Metal Powder Concentration Distribution

In the present study, the uniformity of the powder concentration distribution is
quantified by computing the standard deviation of the local powder concentration with
respect to the average powder concentration in accordance with:

σ =

√√√√ 1
N

N

∑
i = 1

(yi − µ)2 (1)

where yi is the value of each discrete sampling point, σ is the standard deviation, µ is the
average value, N is the total number of sampling points, and i is the sampling point index.
A smaller value of Equation (1) indicates that the powder concentration has both a smaller
dispersion and lies closer to the average value. In other words, the powder particles are
more uniformly distributed, and hence the black line effect is reduced [33].

2.4. Volume Shrinkage Distribution

In practical MIM processes, the properties of the polymer material are heterogeneous
rather than homogeneous and vary significantly in response to local changes in the tem-
perature and shear rate. As a result, the melt temperature, mold temperature, packing
pressure, packing time, and filling speed all have significant effects on the residual stress
produced within the molded component during the filling and packing stages. In most
cases, the magnitude of the residual stress varies from one region of the component to
another, depending on the local geometric thickness. Consequently, the component in-
evitably undergoes a certain amount of warpage and shrinkage on ejection from the mold
and subsequent cooling. In the present study, the extent of the volume shrinkage produced
under different MIM processing conditions is again evaluated using Equation (1), where
in this case, the equation is applied at all of the mesh nodes within the Moldex3D model
rather than at the surface nodes only.

3. MIM Simulations, Taguchi Method, and Gray Relation Analysis
3.1. Geometry Model and Feedstock Material

As described in Section 1, the present simulations considered the metal femoral
component of an artificial knee joint for illustration purposes (see Figure 1). The simulation
model comprised a total of 71,290 elements and 26,035 nodes, of which 4635 of these
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nodes were surface nodes. The feedstock material was assumed to be CAE-MIM-001
(Supplier material number-Moldex3D), with thermophysical properties taken directly from
the Moldex3D library. The material consisted of a plastic matrix (PP) and 60% metal
powder (see Table 1).

3.2. Mold Flow Analysis

The powder particle distribution within the molded component was evaluated by
means of Moldex3D CAE simulations (CoreTech System Co., Ltd., Zhubei City, Taiwan).
The knee joint had the component geometry shown in Figure 1 and the thermophysical
properties of the metal powder and polymer resin were assigned the values shown in
Table 1. The viscosity and specific volume properties of the composite material are shown
in Figure 4a,b, respectively. As shown in Figure 5, the simulation model comprised the
metal femoral component of the artificial knee joint and a single flow gate. The model was
constructed using boundary layer mesh (BLM) technology [34,35] and had a total volume
of 41.61 cm3.

Figure 4. Material properties of composite material: (a) viscosity vs. shear rate; (b) specific volume
vs. temperature.
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Figure 5. Simulation model (a) and mesh (b) of metal femoral component in artificial knee joint.

3.3. Taguchi Experiments

In the present study, the Taguchi method was used to determine the optimal settings
of the MIM processing conditions, which enhanced the powder particle concentration
uniformity within the molded product and minimized the volume shrinkage. Having
solved the two corresponding single-objective optimization problems, a GRA method was
applied to determine the processing conditions, which jointly optimized both the powder
concentration uniformity and the volume shrinkage at the same time (see Figure 6).

Figure 6. Flow chart of Taguchi–GRA framework for MIM simulations of an artificial knee joint.
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In the Taguchi method, the qualities of the outcomes obtained from the various runs in
the orthogonal array (OA) are evaluated using a signal-to-noise (S/N) metric [36]. Various
S/N ratios are applicable, depending on the particular problem under consideration. In the
present study, the aim was to minimize the standard deviation metric shown in Equation
(1) for both the powder particle concentration and the volume shrinkage. Consequently,
the following “smaller-the-better” S/N ratio was employed:

S/N = −10 log
(

y2 + Sn
2
)

(2)

The simulations considered five control factors, namely the melt temperature (factor
A), the filling time (factor B), the gate size (factor C), the mold temperature (factor D),
and the packing pressure (Factor E). As shown in Table 2, each factor was assigned four
levels based on the recommended processing range for the chosen MIM composite material
specified in the Moldex3D-MIM software. Consequently, the experimental trials (i.e.,
simulation runs) were configured in an L16(45) orthogonal array, as shown in the gray
region of Table 3.

Table 2. The L16(45) orthogonal array (OA) comprising five control factors and four levels.

L16(45)
OA

A
Melt.
Temp.
(◦C)

B
Filling
Time

(s)

C
Gate
Size

(mm)

D
Mold
Temp.
(◦C)

E
Packing
Pressure

(MPa)

Level 1 180 1 4 70 170

Level 2 185 1.5 5 80 175

Level 3 190 2 6 90 180

Level 4 195 2.5 7 100 185

Table 3. Taguchi analysis results for powder concentration (blue region) and volume shrinkage (green region). (Gray region
is Taguchi trials with orthogonal array).

Trials Powder Concentration (%) Volume Shrinkage (%)
L16(45) A B C D E

µ σ S/N µ σ S/N
1 180 1 4 70 170 59.807 0.263 9.733 0.514 0.921 −0.459
2 180 1.5 5 80 175 59.835 0.217 11.279 0.420 0.912 −0.034
3 180 2 6 90 180 59.855 0.190 12.440 0.335 0.906 0.304
4 180 2.5 7 100 185 59.898 0.135 15.455 0.254 0.900 0.583
5 185 1 5 90 185 59.820 0.266 9.865 0.381 0.931 −0.054
6 185 1.5 4 100 180 59.834 0.229 10.970 0.458 0.928 −0.297
7 185 2 7 70 175 59.855 0.201 12.120 0.530 0.921 −0.527
8 185 2.5 6 80 170 59.858 0.192 12.445 0.599 0.917 −0.789
9 190 1 6 100 175 59.837 0.261 10.246 0.642 0.940 −1.127

10 190 1.5 7 90 170 59.845 0.231 11.109 0.718 0.932 −1.415
11 190 2 4 80 185 59.850 0.211 11.749 0.483 0.932 −0.418
12 190 2.5 5 70 180 59.860 0.197 12.329 0.550 0.926 −0.642
13 195 1 7 80 180 59.857 0.255 10.664 0.673 0.944 −1.282
14 195 1.5 6 70 185 59.858 0.228 11.434 0.591 0.940 −0.910
15 195 2 5 100 170 59.858 0.214 11.808 0.807 0.932 −1.817
16 195 2.5 4 90 175 59.862 0.202 12.247 0.729 0.930 −1.449

Optimal (Powder Concentration) 180 2.5 7 100 185 59.898 0.135 15.455 -
Optimal (Volume Shrinkage) 180 2.5 6 80 185 - 0.253 0.899 0.594

3.4. Gray Relation Analysis

Gray relation analysis (GRA) provides a powerful approach for solving multiobjective
optimization problems characterized by multiple factors and variables with complex
interrelationships between them [37–39]. Notably, GRA not only enables the relative
importance of multiple factors in complex unknown systems to be explored, but also
provides the means to identify which particular factors dominate the quality of the final
outcome. In the present study, GRA was used to characterize the relationships between
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the S/N ratios obtained for the powder concentration distribution uniformity and volume
shrinkage in the respective single-response Taguchi experiments in terms of a single gray
relation grade. This grade was then used as the optimization target in a further Taguchi
analysis to determine the control factor level settings, which jointly optimized both the
powder concentration and the volume shrinkage. In implementing the GRA method, the
original response sequence was normalized as follows:

xi
∗ =

xi
(0)(k)−minxi

(0)(k)
maxxi

(0)(k)−minxi
(0)(k)

, (3)

where xi
∗ is the normalized value from the data, minxi

(0)(k) is the smallest value of xi
(0)(k),

and maxxi
(0)(k) is the largest value of xi

(0)(k).
In GRA theory, a gray relation coefficient equal to unity implies that the two sequences

are related. The related expressions are given as follows:

∆ij(k) = ||xi(k)− xj(k)||, (4)

γ
(

xi(k), xj(k)
)
=

∆min + δ∆max
∆ij(k) + δ∆max

, (5)

where i = 1, 2, 3, . . . , m; j = 1, 2, 3 . . . , m; k = 1, 2, 3, . . . , n; ∆ij(k) is the absolute value dif-
ference between xi(k) and xj(k); xi(k) is the reference series; xj(k) is a specific comparison
series; γ

(
xi(k), xj(k)

)
is the gray relation coefficient; ∆min is the smallest value; ∆max is

the largest value; and δ is the distinguishing coefficient, where δ ∈ [0, 1]. (Note that the
distinguishing coefficient is an index used to distinguish among the different factors and
was assigned a value of 0.5 by default in the present study.)

Having calculated all the gray relation coefficients, the corresponding gray relation
grade was computed as follows:

Γ
(
xi, xj

)
=

1
c

c

∑
k = 1

γ
(
xi(k), xj(k)

)
(6)

where Γ
(

xi, xj
)

is the gray relation grade and c is the number of sequences.
The gray relation grade is used for Taguchi analysis to obtain the optimal combina-

tion of processing parameters. Figure 6 demonstrates the steps of the CAE simulation
framework, Taguchi parameter design, and with gray relation analysis.

4. Results and Discussion

Mold flow simulations were performed for each run in the L16(45) OA. After each
run, the average value (µ) and standard deviation value (σ) of the metal powder particle
concentration and volume shrinkage were computed directly from the simulation results
(see blue and green regions in Table 3, respectively). Moreover, the corresponding S/N
ratios were computed from Equation (2).

Figure 7 shows the simulation results obtained for the temperature distribution and
shear rate distribution within artificial knee joints produced using pure polymer resin (PP
(pure)) and polymer resin with metal powder (PP (with metal powder)), respectively. As
shown in Figure 7a, the gate region of the component produced using polymer resin with
powder particles has a lower temperature than that of the component produced using pure
polymer resin due to the conductive effect of the metal particles (see Table 1). However, as
shown in Figure 7b, the surface shear rate of the component produced using the composite
material with metal particles is significantly higher than that of the component produced
using only polymer resin. The reason is the frictional heat generated by the fluid containing
metal particles flowing on the inner surface of the mold, as well as the enhanced shear
effect and phase separation effect. As a result, a significant phase separation effect occurs
within the composite material, giving rise to the formation of black lines on the surface of
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the molded component and a significant degradation of the mechanical properties of the
joint. Therefore, due to the low particle concentration on the surface of artificial knee joint,
the composition strength of the surface material is weak, which will not be conducive to
the function of artificial knee joint that must bear wear.

Figure 7. Temperature distribution (a) and shear rate distribution (b) in cross-section of artificial
knee joints produced using pure polymer resin (left) and polymer resin with metal particles (right).

4.1. Optimization of Powder Concentration Distribution

In optimizing the MIM processing conditions for the powder concentration distribu-
tion, the aim was to achieve a powder concentration of 60% at each surface node. Table 3
shows the mean value (µ), standard deviation (σ), and S/N ratio of the powder concentra-
tion distribution for each of the 16 trials in the Taguchi OA. Table 4 and Figure 8a show the
factor response analysis results for the five factors and corresponding level settings. The
results show that the control factors can be ranked in order of decreasing influence on the
powder concentration distribution uniformity as follows: (B) filling time, (C) gate size, (A)
melt temperature, (E) packing pressure, and (D) mold temperature. In other words, a longer
filling time (i.e., a slower filling velocity) reduces the shear force effect in the near-wall
region of the channel, and therefore reduces the degree of phase separation (metal powder
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and particles) within the feedstock material. An inspection of Figure 8a shows that the
optimal powder concentration uniformity is obtained using a melt temperature of 180 ◦C,
a filling time of 2.5 s, a gate size of 7 mm, a mold temperature of 100 ◦C, and a packing
pressure of 185 MPa (also see Table 3).

Table 4. Response and variance analysis for powder concentrations.

Level
Factor

A B C D E Total

Level 1 12.227 10.127 11.175 11.404 11.274

Level 2 11.350 11.198 11.320 11.534 11.473

Level 3 11.358 12.029 11.641 11.415 11.601

Level 4 11.539 13.119 12.337 12.120 12.126

Range 0.877 2.992 1.162 0.716 0.852

Rank 3 1 2 5 4

Variance 0.69 6.43 1.07 0.46 0.53 9.18

Contribution (%) 7.51 70.04 11.66 5.02 5.78 100

Figure 8. Response diagrams for powder concentration (a) and volume shrinkage (b) values (unit: dB).

Referring to Table 3, it can be seen that the S/N value for this optimal trial (S/N = 15.455)
is identical to that of the 4th trial. Hence, the robust Taguchi method is used to obtain
the optimal trial by fixing filling time (most influential) factor (See Table 4). The analysis
of variance shows that the filling time accounts for 70.04% of the contribution and is the
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largest contribution factor (see Table 4). Considering the Taguchi robust design method, a
factor has a significant contribution to an objective, and this factor level is the best choice
without considering the influence of this factor on other design objectives. Hence, one
can fix the filling time at the optimal value of 2.5 s, redesign the orthogonal array, and
conduct Taguchi analysis to obtain a set of optimal trial. The process parameters are: (A)
melt temperature 180 ◦C, (B) filling time 2.5 s, (C) gate size 7 mm, (D) mold temperature 70
◦C, (E) packing pressure 170 MPa. The results of this trial can be confirmed as the best trial
by comparing them with the previous trials.

Figure 9 compares the powder concentration distributions of the original design and
the GRA-optimized design. The results show that the hybrid Taguchi–GRA method yields
an effective improvement in the uniformity of the powder concentration distribution on
the part surface compared to the original design, and therefore minimizes the formation of
black lines on the surface of the final component.

Figure 9. Metal powder concentration distributions in the original design (a) and GRA optimal
design (b).

4.2. Optimization of Volume Shrinkage

In determining the optimal processing conditions for the volume shrinkage of the
molded component, the aim of the Taguchi experiments was to obtain volume shrinkage
of 0% at each of the nodes (surface nodes and interior nodes) in the simulation model.
Table 3 (green region) shows the mean and standard deviation values of the volume
shrinkage obtained in each of the 16 runs in the Taguchi OA. Table 5 and Figure 8b show
the corresponding factor analysis results. It is seen that the control factors can be ranked in
terms of a diminishing effect on the volume shrinkage as follows: (A) melt temperature, (E)
packing pressure, (B) filling time, (D) mold temperature, and (C) gate size. Moreover, the
optimal process parameters are determined to be a melt temperature of 180 ◦C, a filling
time of 2.5 s, a gate size of 6 mm, a mold temperature of 80 ◦C, and a packing pressure
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of 185 MPa. As shown in Table 5, the variance in the volume shrinkage is determined
mainly by the melt temperature (contribution 70.98%) and packing pressure (contribution
28.12%). In particular, for the optimal melt temperature, the volume shrinkage reduces
with an increasing packing pressure. The comparison between the original trial and the
optimal trial is shown in Figure 10, which means that it has the best response to the
objective function at this level, while the best level of the five control factors is set as one the
processing parameters for the optimal trial. The optimal process parameters obtained are:
(A) melt temperature 180 ◦C, (B) filling time 2.5 s, (C) gate size 6 mm, (D) mold temperature
80 ◦C, and (E) packing pressure 185 MPa.

Table 5. Response and variance analysis for volume shrinkage.

A B C D E Total

Level 1 0.099 −0.730 −0.656 −0.634 −1.120

Level 2 −0.417 −0.664 −0.637 −0.631 −0.784

Level 3 −0.900 −0.614 −0.630 −0.654 −0.479

Level 4 −1.365 −0.574 −0.660 −0.665 −0.200

Range 1.463 0.156 0.030 0.034 0.920

Rank 1 3 5 4 2

Variance 1.58 0.02 0.00 0.00 0.63 2.23

Contribution (%) 70.98 0.81 0.04 0.05 28.12 100

Figure 10. Volume shrinkage distributions in the original design (left) and GRA optimal design (right):
(a) cross-section of the volume shrinkage distribution; (b) surface volume shrinkage distribution.
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Figure 10 compares the distributions of the volume shrinkage in the original design
and the GRA optimized design. It can be seen that the hybrid Taguchi–GRA method yields
a significant improvement in the volume shrinkage, both within the interior of the molded
component (Figure 10a) and on the surface of the component (Figure 10b).

4.3. Multiobjective Optimization

Referring to Table 3, it can be seen that the processing conditions that optimize the
powder concentration distribution uniformity are different from those that optimize the
volume shrinkage. Thus, to establish the processing conditions that optimize the tradeoff
between the powder concentration distribution uniformity and the volume shrinkage, a
further GRA-based analysis was performed, as described below.

According to the results presented in Tables 4 and 5, the powder concentration distri-
bution and volume shrinkage of the molded component are dominated by the filling time
and melt temperature, respectively. Accordingly, a further series of Taguchi experiments
was performed, in which the filling time and melt temperature were set to their optimal
values (i.e., 180 ◦C and 2.5 s) and the level settings of the remaining factors were varied
within their respective ranges (see Table 6).

Table 6. Factors vs. levels used for robust analysis.

L16
(
45)

OA

A
Melt
Temp.
(◦C)

B
Filling
Time

(s)

C
Gate
Size

(mm)

D
Mold
Temp.
(◦C)

E
Pack

Pressure
(MPa)

Level 1 180 2.5 4 70 170

Level 2 180 2.5 5 80 175

Level 3 180 2.5 6 90 180

Level 4 180 2.5 7 100 185

In order to perform the GRA analysis, the S/N data for the single-objective optimiza-
tion outcomes given in Table 3 were first normalized such that the S/N ratios for both
objective functions lay between 0 and 1. A GRA analysis was then performed using the
“larger-the-better” formula. In particular, the normalized data were calculated and sub-
stituted into the GRA coefficient formula with δ set as 0.5. The GRA coefficients were
then averaged to obtain the gray relation degree of the powder concentration and volume
shrinkage S/N ratios, as shown in Table 7.

By averaging the results obtained at each level, the optimal processing conditions
were found to be a melt temperature of 180 ◦C, a filling time of 2.5 s, a gate size of 7
mm, a mold temperature of 100 ◦C, and a packing pressure of 185 MPa (see Table 3). As
shown in Table 8, the corresponding powder concentration S/N ratio was equal to 15.455 dB
(i.e., 0.34% lower than that of the equivalent single-objective optimal result. Similarly, the
corresponding volume shrinkage S/N ratio was equal to 0.582 dB (i.e., 2% lower than the
equivalent single-objective optimal result).
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Table 7. Normalized analysis results for single-factor Taguchi trials and GRA.

Trials Powder
Concentration Volume Shrinkage GRA

1 0.074474871 1 0.601846711

2 0.118743247 0.031603158 0.874320425

3 0.994559262 0.125072712 0.567226864

4 0.136785401 0.424339483 0.663060341

5 0.039340238 0.048821136 0.919051109

6 0.088170005 0.999974321 0.591716697

7 0.12264666 0.453345465 0.663746255

8 0.992915038 0.144401858 0.555414293

9 1 0.112484708 0.574840123

10 0.188646003 0.445416936 0.627464818

11 0.068970053 0.94038335 0.612955342

12 0 0.037172791 0.965399596

13 0.166884588 0.448893419 0.638342244

14 0.992915038 0.144401858 0.555414293

15 0.09549909 0 0.919815923

16 0.153565371 0.990535114 0.550242205

Table 8. Optimal results for powder concentration and volume shrinkage.

Taguchi Trials
Signal Noise Ratio: S/N (dB)

Powder Concentration
(µ, σ) (%)

Volume Shrinkage
(µ, σ) (%)

(A) Original Design 9.733472
(59.807, 0.263)

−0.458532346
(0.514, 0.921)

(B) Powder Concentration
(Optimal Design/Robust)

15.508172
(59.9, 0.0.134)

−0.228890
(0.487, 0.904)

(C) Volume Shrinkage
(Optimal Design)

13.143036
(59.864, 0.173)

0.593923262
(0.253, 0.899)

(D) Gray Relation Analysis
(Optimal Design)

15.455095
(59.898, 0.135)

0.582665424
(0.254, 0.9)

Table 9 presents a normalized comparison of the powder concentration uniformity
and volume shrinkage performance of the original design (A), single-objective optimized
designs (B and C), and Taguchi–GRA design (D), respectively. Note that in compiling
the table, the particle concentration distribution uniformity and volume shrinkage of the
original design (A) were taken as the minimal values of the respective normalization ranges,
while the optimal results obtained using the corresponding single-objective functions (B and
C) were taken as the maximal values. A summed normalization value closer to 2 indicates
that the corresponding design has a better ability to satisfy both design requirements
simultaneously. Thus, the results presented in Table 9 confirm that the hybrid Taguchi–
GRA design achieves a better overall performance than either of the two single-objective
optimization designs.
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Table 9. Normalized analysis results for overall performances.

Trials
Normalized

Powder
Concentration Volume Shrinkage SUM

(A) Original Design 0 0 0

(B) Powder Concentration
(Optimal Design/Robust) 1 0.218188154 1.218188154

(C) Volume Shrinkage
(Optimal Design) 0.590431364 1 1.590431364

(D) Gray Relation Analysis
(Optimal Design) 0.9908087 0.989303266 1.980111966

4.4. Improvement Performance Analysis

Table 8 shows the Taguchi optimal results using the processing parameters as follows:
(A) the original design, (B) the powder concentration (considering the powder concen-
tration only), (C) the volume shrinkage (considering the volume shrinkage only), and
(D) the GRA optimal design (considering both the powder concentration and the volume
shrinkage simultaneously). For the single-objective optimization, considering that the two
objectives cannot be optimized simultaneously, one can discuss the performance quality
obtained by using the same processing conditions for another objective. In row (B), the
processing parameter (the optimal powder concentration only) is used to compute the
powder concentration and the volume shrinkage, whereby (µ, σ) = (59.9,0.0.134) and (µ,
σ) = (0.487,0.904), respectively. In row (C), the processing parameter (the optimal volume
shrinkage only) is used in computing the powder concentration and the volume shrinkage,
whereby (µ, σ) = (59.864, 0.173) and (µ, σ) = (0.253, 0.899), respectively. In the above
situation, it is really impossible to achieve optimal results for both objectives.

Referring to Table 8 once again, it can be seen that the hybrid Taguchi–GRA method
improves the S/N for the powder concentration distribution uniformity from 9.73 dB (origi-
nal design) to 15.46 (dB) and improves the S/N for the volume shrinkage from −0.46 dB
(original design) to 0.58 (dB). Similarly, the mean powder concentration is increased from
59.807% to 59.898% (where 60% is the objective value) and the volume shrinkage is reduced
from 0.514% to 0.254% (where 0% is the objective value). Finally, the standard deviations of
the powder concentration and volume shrinkage are reduced from 0.263% to 0.135% and
0.921% to 0.9%, respectively. Figure 11 compares the powder concentration distributions of
the original design (A), two single-objective function designs (B and C), and Taguchi–GRA
design (D), respectively. It can be seen that the powder concentration single-objective
design (B) and Taguchi–GRA design (D) both approach the objective value of 60% and
show only slight standard deviation. Figure 12 shows the equivalent results for the volume
shrinkage. It can be seen that volume shrinkage values for the single-objective design
(C) and Taguchi–GRA design (D) both approach the objective value of 0% and show only
slight standard deviation. Overall, the results presented in Figures 11 and 12 show that
the hybrid Taguchi–GRA method achieves effective improvements of both the powder
concentration distribution and the volume shrinkage of the molded component, with only
marginal degradation of the two quality outcomes compared to the results achieved using
the respective single-objective optimization functions.
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Figure 11. Comparison of metal powder concentration distributions in the (A) original design,
(B) powder concentration optimal design, (C) volume shrinkage optimal design, and (D) GRA
optimal design. (µ and σ are the average value and standard deviation of the powder concentration,
respectively).

Figure 12. Comparison of volume shrinkage distributions in the (A) original design, (B) powder
concentration optimal design, (C) volume shrinkage optimal design, and (D) GRA optimal design.
(µ and σ are the average value and standard deviation of the volume shrinkage, respectively).
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5. Conclusions

This study employed a hybrid Taguchi–GRA method to optimize the MIM processing
conditions for an artificial knee joint in such a way as to improve both the powder concen-
tration distribution uniformity and the volume shrinkage of the molded component. In the
proposed method, single-objective Taguchi experiments are first performed to determine
the optimal settings for the melt temperature, filling time, gate size, mold temperature, and
packing pressure, resulting in a powder concentration uniformity close to the optimal value
of 60% (i.e., the volume fraction of metal powder particles within the original feedstock
material). A second series of Taguchi experiments is then performed to establish the MIM
processing conditions that yield the volume shrinkage result closest to the optimal value of
0%. Finally, the S/N ratio results obtained in the two single-objective Taguchi experiments
are used in a further Taguchi–GRA optimization process to determine the factor level set-
tings that optimize the tradeoff between the powder concentration distribution uniformity
and the volume shrinkage of the molded component. The main results of this study can be
summarized as follows:

(1). The single-objective Taguchi experiments showed that for the artificial knee joint
considered in the present study, the optimal powder concentration distribution uniformity
was obtained using a melt temperature of 180 ◦C, a filling time of 2.5 s, a gate size of 7 mm,
a mold temperature of 100 ◦C, and a packing pressure of 185 MPa. Conversely, the optimal
volume shrinkage was obtained using a melt temperature of 180 ◦C, a filling time of 2.5 s, a
gate size of 6 mm, a mold temperature of 80 ◦C, and a packing pressure of 185 MPa;

(2). The multiobjective Taguchi–GRA experiments showed that the optimal tradeoff
between the powder concentration distribution uniformity and the volume shrinkage was
obtained using a melt temperature of 180 ◦C, a filling time of 2.5 s, a gate size of 7 mm, a
mold temperature of 100 ◦C, and a packing pressure of 185 MPa. Given these processing
conditions, both quality outcomes approach their optimal values and show only slight
standard deviation. In other words, the parameter settings both minimize the formation of
black lines on the product surface and improve the dimensional accuracy of the molded
component;

(3). Overall, the hybrid Taguchi–GRA optimization method successfully improves
both the powder concentration uniformity and the volume shrinkage of the molded prod-
uct, with no more than a slight degradation of the two quality outcomes compared to the
results achieved using the corresponding single-factor optimization functions.
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