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I. ANOMALOUS JUMP DIFFUSION MODEL: RESULTS ON THE JUMP LENGTH
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FIG. S1. Temperature dependence of the preferred jump length involved in the anomalous jump

diffusion model for the different kinds of atoms in PIB. Errors are about 0.1. Dotted lines show

the mean values for the different species.
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II. CHECKING THE DECONVOLUTION APPROACH FOR METHYL-GROUP

HYDROGENS

In the paper we show that the deconvolution approach clearly fails at long times. We

have also checked whether it works in the time region where methyl-group rotations seem to

occur (between ≈ 2 ps and 2 ns) for 335 K, see Fig. 7(a) in the article. We have thus tried

to describe the deconvoluted function obtained as FDeconv
s (Q, t) = FmH

s (Q, t)/F cH
s (Q, t) at

335 K in the time interval 2 ps ≤ t ≤ 2 ns in terms of the rotational rate distribution

model (RRDM) [1–3] described in the next section. By considering expressions S-5 and S-6,

Eq. S-13 was used to fit the data. The width σ and the center τMG
o of the log-normal dis-

tribution function of characteristic times H(log τ) are the only free parameters (in addition,

obviously, to an amplitude A accounting for the microscopic contribution). It turned out

that the fit at low Q-values (Q < 1.5 Å−1) was impossible by fixing the geometry of the

motion as that expected for methyl-group rotations. Leaving EISF as free parameter a rea-

sonable description was achieved. The obtained values for the EISF are depicted in Fig. S2

as empty squares. In the Q-range Q < 1.5 Å−1 (corresponding to large length scales)

they are sensitively lower than the theoretical ones. In this Q-range, the results regarding

the other parameters involved in the RRDM –σ and τMG
o – are also inconsistent with the

expectations (Q-independent values), as can be seen in Fig. S3 (empty squares).
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FIG. S2. EISF values obtained from the application of the RRDM to the resulting function from

the deconvolution approach in the time interval 2 ps ≤ t ≤ 2 ns. The dotted line is the theoretical

prediction (Eq. S-6).
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FIG. S3. Momentum transfer dependence of the RRDM parameters σ (a) and τMG
o (b) obtained

at 335 K from the fit of FDeconv
s (Q, t) (empty squares) and F rel

s (Q, t) (solid circles).
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III. METHYL GROUP DYNAMICS: THE ROTATIONAL RATE DISTRIBUTION

MODEL

This section presents the elementary theoretical background used to treat the problem

of methyl group dynamics in the manuscript. Further and more general information about

methyl-group dynamics in glass-forming systems can be found e. g. in Ref. [3].

The simplest model for methyl group rotations considers that only the first term (V3) is

relevant in the Fourier series in which the potential V (φ) can be expanded (3-fold approxi-

mation):

V (φ) =
∞∑
n=1

V3n

2
[1− cos(3nφ+ δ3n)] . (S-1)

Here φ is one characteristic coordinate, which is measured in the plane perpendicular

to the C3-symmetry axis of the methyl group. By solving the corresponding Schrödinger

equation, one can obtain the quantized energy levels of a threefold potential. The energy

levels E0i, i=0, 1, 2, ... corresponding to the individual potential wells are named torsional

or librational levels. Due to the coupling between the single-well wave functions, these

energy levels are split. Three relevant magnitudes –which are experimentally accessible

by neutron scattering– can be defined from the methyl group rotational potential: (1) the

transition energies between the librational levels, mainly the transition E01 between the

ground state and the first excited state. (2) The splitting energy of the ground librational

state (∆0 = ~ωt) characterized by the quantum ’tunneling frequency’ ωt. (3) The activation

energy EMG
a , related to the methyl group ’classical hopping’ between adjacent wells. This

energy is defined as the difference between the top of the barrier and the ground state. These

three quantities are direct functions of the potential barrier V3:

E01(meV ) = 0.470V 0.548
3 (S-2)

~ωt(meV ) = 0.655

(
1 +

V3

2.67

)1.06

exp

[
−
(
V3

4

)0.5
]

(S-3)

EMG
a (K) = 0.598V 1.05

3 (S-4)

(V3 expressed in K).
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In the low temperature regime (a few K), quantum effects dominate the dynamics, and

tunneling transitions between the split librational levels are expected. At high temperature,

the methyl group dynamics can be described by hopping processes over the potential bar-

riers. We will focus on the latter case, which is that relevant in this study. Assuming that

the hopping time between two equilibrium positions is negligible in comparison with the

residence time τR between consecutive jumps in a 3-fold potential, the characteristic time is

τ = 2τR/3 and the intermediate incoherent scattering function for a methyl group can be

written as:

F τ
s (Q, t) = EISF + (1− EISF) exp

(
− t

τ

)
. (S-5)

The elastic incoherent structure factor EISF carrying the information about the geometry

of the motion in the 3-fold approximation is given by:

EISF =
1

3

(
1 + 2

sin (QrHH)

QrHH

)
. (S-6)

Here rHH = 1.78 Å is the distance between the hydrogens in the methyl group. The temper-

ature dependence of τ is determined by the activation energy EMG
a by the Arrhenius law,

τ = τ∞ exp[EMG
a /(KBT )].

It is well known that this simple model does not work in glassy systems where the inherent

disorder leads to distributions of mobilities. This aspect was introduced by the so-called

rotation rate distribution model (RRDM) [1–3]. The RRDM model is based on the idea

that due to the structural disorder inherent to the glassy state, there exists a distribution

of potential barriers g(V3). This is assumed to be Gaussian:

g(V3) =
1√
2πσV

exp

[
−(V3 − 〈V3〉)2

2σ2
V

]
. (S-7)

Here 〈V3〉 is the average barrier and σV is the standard deviation of the distribution. As

a consequence, the three relevant magnitudes E01, ~ωt and EMG
a are obviously also dis-

tributed according to the corresponding distribution functions F (E01), h(~ωt) and f(EMG
a ).

The functional relations (Eqs. S-2,S-3,S-4) between E01, ~ωt and EMG
a and V3 allow for a

straightforward transformation between g(V3) and F (E01), h(~ωt) and f(EMG
a ):

g(V3)dV3 = F (E01)dE01 = −h(~ωt)d(~ωt) = f(EMG
a )dEMG

a . (S-8)
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Given the almost linear relationship between EMG
a and V3 (Eq. S-4), a Gaussian functional

form can be considered as a good approximation for the associated distribution of activation

energies f(EMG
a ):

f(EMG
a ) = g(V3)

dV3

dEMG
a

=
1√
2πσE

exp

[
−
(
EMG

a − 〈EMG
a 〉

)2
2σ2

E

]
(S-9)

with average energy 〈EMG
a 〉 and standard deviation σE. The preexponential factor τ∞ is

assumed to be independent of the barrier, leading to a log-Gaussian distribution of charac-

teristic times for classical hopping:

H(log τ) =
1√
2πσ

exp

[
−
(
log τ − log τMG

o

)2
2σ2

]
. (S-10)

where

σ =
σE log(e)

KBT
(S-11)

is the width of the distribution H(log τ) centered at τMG
o , which is the characteristic time

corresponding to the average activation energy:

τMG
o = τ∞ exp

(
〈EMG

a 〉
KBT

)
(S-12)

Thus, the final scattering function is built by adding the scattering functions of the hydrogens

located in the different environments weighted by the distribution function,

F rot
s (Q, t) =

∫ +∞

−∞
H(log τ)F τ

s (Q, t)d(log τ). (S-13)
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