## § Supplementary Material §

# Cooperative effects of cellulose nanocrystals and sepiolite when combined on ionic liquid plasticised chitosan materials

Pei Chen<sup>a,b</sup>, Fengwei Xie<sup>b,\*,†</sup>, Fengzai Tang<sup>c</sup>, Tony McNally<sup>b,\*\*</sup>

<sup>a</sup> College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China

<sup>b</sup> International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry

CV4 7AL, United Kingdom

<sup>c</sup> WMG, University of Warwick, Coventry CV4 7AL, United Kingdom

\* Corresponding author. Email addresses: d.xie.2@warwick.ac.uk, fwhsieh@gmail.com (F. Xie)

\*\* Corresponding author. Email address: t.mcnally@warwick.ac.uk (T. McNally)

<sup>†</sup> This author leads the research.

#### **Table of Contents**

| 1   | Figures          | S2 |
|-----|------------------|----|
|     |                  |    |
| 2   | Notes to figures | S5 |
|     |                  |    |
| Ref | erences          | S5 |

## 1 Figures



Figure S1. Scanning electron microscopy (SEM) images of the different bionanocomposite films.



Figure S2. Scanning transmission electron microscopy (STEM) images of sepiolite (SPT). BF,

bright field; HAADF, High-angle annular dark-field.



Figure S3. Fourier-transform infrared (FTIR) spectrum of cellulose nanocrystals (CNCs) and sepiolite (SPT).



**Figure S4.** Derivative weight *vs.* temperature curve measured by thermogravimetric analysis (TGA) for cellulose nanocrystals (CNCs).



**Figure S5.** Representative stress–strain curves under tensile testing for different biopolymer composite films: a) chitosan matrix; and b) chitosan/CMC matrix.



Figure S6. Shore D hardness values of the different biocomposite films.

### 2 Notes to figures

**Figure S3** shows that for cellulose nanocrystals (CNCs), the broad bands in the 3680–3000 cm<sup>-1</sup> region are due to O–H stretching vibrations and the peak at 2899 cm<sup>-1</sup> corresponds to C–H stretching vibrations. The 1430 cm<sup>-1</sup> band is assigned to C6–CH<sub>2</sub> bending [1]. The band at 899 cm<sup>-1</sup> is attributed to C–O stretching and C–H vibration in cellulose [2]. There is a sulphate peak at 1205 cm<sup>-1</sup> resulting from the esterification reaction, suggesting this CNCs was obtained by acid hydrolysis. The O–H stretching at 3270 cm<sup>-1</sup> and the out-of-plane bending at 710 cm<sup>-1</sup> indicates this CNCs is of the cellulose I $\beta$  type [1]. For sepiolite (SPT), the band at 964 cm<sup>-1</sup> can be assigned to Si–O stretching [3].

## References

- Lu, P.; Hsieh, Y.-L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. *Carbohydr. Polym.* 2010, *82*, 329-336, doi:10.1016/j.carbpol.2010.04.073.
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. *Ind. Crops Prod.* 2012, *37*, 93-99, doi:10.1016/j.indcrop.2011.12.016.
- McKeown, D.A.; Post, J.E.; Etz, E.S. Vibrational analysis of palygorskite and sepiolite. *Clays Clay Miner.* 2002, *50*, 667-680, doi:10.1346/000986002320679549.